DENSE METRIZABILITY

Stevo Todorcevic

University of Toronto, CNRS Paris, Mathematical Institute SASA

Prague, July 25, 2022
Outline

1. Dense metrizability
2. Complete dense metrizability
3. Character of generic points
4. From Eberlein to Corson
5. Some examples old and new
6. A hierarchy of compact spaces
7. A spectrum of dense metrizability
8. Dense metrizability in powers
9. Cellularity versus density in powers
Outline

1. Dense metrizability
Outline

1. Dense metrizability

2. Complete dense metrizability
Outline

1. Dense metrizability
2. Complete dense metrizability
3. Character of generic points
Outline

1. Dense metrizability
2. Complete dense metrizability
3. Character of generic points
4. From Eberlein to Corson
Outline

1. Dense metrizability
2. Complete dense metrizability
3. Character of generic points
4. From Eberlein to Corson
5. Some examples old and new
Outline

1. Dense metrizability
2. Complete dense metrizability
3. Character of generic points
4. From Eberlein to Corson
5. Some examples old and new
6. A hierarchy of compact spaces
Outline

1. Dense metrizability
2. Complete dense metrizability
3. Character of generic points
4. From Eberlein to Corson
5. Some examples old and new
6. A hierarchy of compact spaces
7. A spectrum of dense metrizability
Outline

1. Dense metrizability
2. Complete dense metrizability
3. Character of generic points
4. From Eberlein to Corson
5. Some examples old and new
6. A hierarchy of compact spaces
7. A spectrum of dense metrizability
8. Dense metrizability in powers
Outline

1. Dense metrizability
2. Complete dense metrizability
3. Character of generic points
4. From Eberlein to Corson
5. Some examples old and new
6. A hierarchy of compact spaces
7. A spectrum of dense metrizability
8. Dense metrizability in powers
9. Cellularity versus density in powers
Characterizing dense metrizability

Theorem (T., 1999)
The following are equivalent for a compact Hausdorff space K:

1. K contains a dense metrizable subspace.
2. K has a dense set of G_δ points and the generic ultrafilter of the regular open algebra of K is countably generated.

Corollary (T., 1999)
The following are equivalent for a compactum K with a dense set of G_δ-points:

1. K has a dense metrizable subspace.
2. the generic ultrafilter of the regular-open algebra of K is countably generated.
Characterizing dense metrizability

Theorem (T. 1999)

The following are equivalent for a compact Hausdorff space K:

1. K contains a dense metrizable subspace.
2. K has a dense set of G_δ points and the generic ultrafilter of the regular open algebra of K is countably generated.
Theorem (T. 1999)

The following are equivalent for a compact Hausdorff space K:

1. K contains a dense metrizable subspace.
2. K has a dense set of G_δ points and the generic ultrafilter of the regular open algebra of K is countably generated.

Corollary (T., 1999)

The following are equivalent for a compactum K with a dense set of G_δ-points:

1. K has a dense metrizable subspace.
2. the generic ultrafilter of the regular-open algebra of K is countably generated.
Dense set of G_δ points
Dense set of G_δ points

Theorem (Shapirovskii, 1980)

Every Corson compactum K has a dense set of G_δ-points.
Dense set of G_δ points

Theorem (Shapirovskii, 1980)

Every Corson compactum K has a dense set of G_δ-points.

Proof.
Assume $K \subseteq \Sigma(I)$ for some index-set I.
Let P_I be the standard σ-closed poset that forces $|I| = \aleph_1$.
Dense set of G_δ points

Theorem (Shapirovskii, 1980)

Every Corson compactum K has a dense set of G_δ-points.

Proof.
Assume $K \subseteq \Sigma(I)$ for some index-set I.
Let \mathbb{P}_I be the standard σ-closed poset that forces $|I| = \aleph_1$.
Note that K remains compact in the forcing extension of \mathbb{P}_I.
Theorem (Shapirovskii, 1980)

Every Corson compactum K has a dense set of G_{δ}-points.

Proof.
Assume $K \subseteq \Sigma(I)$ for some index-set I.
Let \mathbb{P}_I be the standard σ-closed poset that forces $|I| = \aleph_1$.

Note that K remains compact in the forcing extension of \mathbb{P}_I.
Moreover, \mathbb{P}_I forces that $|K| = \aleph_1$.
Dense set of G_δ points

Theorem (Shapirovskii, 1980)

Every Corson compactum K has a dense set of G_δ-points.

Proof.

Assume $K \subseteq \Sigma(I)$ for some index-set I.
Let \mathbb{P}_I be the standard σ-closed poset that forces $|I| = \aleph_1$.

Note that K remains compact in the forcing extension of \mathbb{P}_I.

Moreover, \mathbb{P}_I forces that $|K| = \aleph_1$.
Therefore K has a G_δ-point, a statement that is absolute between the universe and the forcing extension of \mathbb{P}_I.

\square
Theorem (Bourgain, 1978)

Every compact subset K of the first Baire class has a dense set of $G_δ$-points.
Theorem (Bourgain, 1978)

Every compact subset K of the first Baire class has a dense set of G_δ-points.

Proof.
Theorem (Bourgain, 1978)

Every compact subset K of the first Baire class has a dense set of G_δ-points.

Proof.
Assume K is a subspace of the space of Baire-class-1 functions on some Polish space X.

Let P be the standard σ-closed poset that forces $|X| = \aleph_1$. Note that forcing with P does not change X, the set of Baire-class-1 functions on X and the fact K is sequentially compact. By a result of Rosenthal sequentially compact sets of Baire-class-1 functions are compact. Therefore in the forcing extension, the set K remains compact. Thus K is compact in the forcing extension and has cardinality at most \aleph_1. Thus, K has a G_δ-point in the forcing extension by P, a statement that is absolute between the universe and the forcing extension.
Theorem (Bourgain, 1978)

Every compact subset K of the first Baire class has a dense set of G_δ-points.

Proof.
Assume K is a subspace of the space of Baire-class-1 functions on some Polish space X.
Let \mathbb{P} be the standard σ-closed poset that forces $|X| = \aleph_1$.
Theorem (Bourgain, 1978)

Every compact subset K of the first Baire class has a dense set of G_δ-points.

Proof.

Assume K is a subspace of the space of Baire-class-1 functions on some Polish space X.
Let \mathbb{P} be the standard σ-closed poset that forces $|X| = \aleph_1$.
Note that forcing with \mathbb{P} does not change X, the set of Baire-class-1 functions on X and the fact K is sequentially compact.
Theorem (Bourgain, 1978)

Every compact subset K of the first Baire class has a dense set of G_δ-points.

Proof.
Assume K is a subspace of the space of Baire-class-1 functions on some Polish space X.
Let \mathbb{P} be the standard σ-closed poset that forces $|X| = \aleph_1$.
Note that forcing with \mathbb{P} does not change X, the set of Baire-class-1 functions on X and the fact K is sequentially compact.

By a result of Rosenthal sequentially compact sets of Baire-class-1 functions are compact. Therefore in the forcing extension, the set K remains compact.
Theorem (Bourgain, 1978)

Every compact subset K of the first Baire class has a dense set of G_δ-points.

Proof.

Assume K is a subspace of the space of Baire-class-1 functions on some Polish space X.

Let \mathbb{P} be the standard σ-closed poset that forces $|X| = \aleph_1$.

Note that forcing with \mathbb{P} does not change X, the set of Baire-class-1 functions on X and the fact K is sequentially compact.

By a result of Rosenthal sequentially compact sets of Baire-class-1 functions are compact. Therefore in the forcing extension, the set K remains compact.

Thus K is compact in the forcing extension and has cardinality at most \aleph_1. Thus, K has a G_δ-point in the forcing extension by \mathbb{P}, a statement that is absolute between the universe and the forcing extension.
The first application of the method

Theorem (T., 1999)

If K is a compact set of Baire-class-1 functions then the generic filter of the regular-open algebra of K is countably generated.

Proof. (Sketch) Assume $K \subseteq \mathcal{B}_1(X)$ for some Polish space X.

Let $P_K = \text{RO}(K)$ and go to the forcing extension of P_K.

Let \hat{X} be the metric completion of X.

Then every $f \in K$ naturally extends to $\hat{f} \in \mathcal{B}_1(\hat{X})$.

Then $\hat{K} = \{\hat{f} : f \in K\}$ is relatively compact in $\mathcal{B}_1(\hat{X})$.

Then the closure \hat{K} is included in $\mathcal{B}_1(\hat{X})$.

The generic filter is generated by sets that form a free sequence of regular pairs of \hat{K} and so it is countably generated.

Corollary (T., 1999)

Every compact set of Baire-class-1 functions has a dense metrizable subspace.
The first application of the method

Theorem (T., 1999)

If \(K \) is a compact set of Baire-class-1 functions then the generic filter of the regular-open algebra of \(K \) is countably generated.

Proof. (Sketch) Assume \(K \subseteq \mathcal{B}_1(\mathcal{X}) \) for some Polish space \(\mathcal{X} \).

Let \(P_K = \mathcal{RO}(K) + \) and go to the forcing extension of \(P_K \).

Let \(\hat{\mathcal{X}} \) be the metric completion of \(\mathcal{X} \).

Then every \(f \in K \) naturally extends to \(\hat{f} \in \mathcal{B}_1(\hat{\mathcal{X}}) \).

Then \(\hat{K} = \{ \hat{f} : f \in K \} \) is relatively compact in \(\mathcal{B}_1(\hat{\mathcal{X}}) \).

Then the closure \(\hat{K} \) is included in \(\mathcal{B}_1(\hat{\mathcal{X}}) \).

The generic filter is generated by sets that form a free sequence of regular pairs of \(\hat{K} \) and so it is countably generated.

Corollary (T., 1999)

Every compact set of Baire-class-1 functions has a dense metrizable subspace.
The first application of the method

Theorem (T., 1999)

If K is a compact set of Baire-class-1 functions then the generic filter of the regular-open algebra of K is countably generated.

Proof.

(Sketch) Assume $K \subseteq \mathcal{B}_1(X)$ for some Polish space X.

Corollary (T., 1999)

Every compact set of Baire-class-1 functions has a dense metrizable subspace.
The first application of the method

Theorem (T., 1999)

If K is a compact set of Baire-class-1 functions then the generic filter of the regular-open algebra of K is countably generated.

Proof.

(Sketch) Assume $K \subseteq B_1(X)$ for some Polish space X. Let $\mathbb{P}_K = \text{RO}(K)^+$ and go to the forcing extension of \mathbb{P}_K.
The first application of the method

Theorem (T., 1999)

If K is a compact set of Baire-class-1 functions then the generic filter of the regular-open algebra of K is countably generated.

Proof.

(Sketch) Assume $K \subseteq \mathcal{B}_1(X)$ for some Polish space X. Let $\mathbb{P}_K = \text{RO}(K)^+$ and go to the forcing extension of \mathbb{P}_K. Let \hat{X} be the metric completion of X.
The first application of the method

Theorem (T., 1999)

If K is a compact set of Baire-class-1 functions then the generic filter of the regular-open algebra of K is countably generated.

Proof.

(Sketch) Assume $K \subseteq B_1(X)$ for some Polish space X. Let $\mathbb{P}_K = RO(K)^+$ and go to the forcing extension of \mathbb{P}_K. Let \hat{X} be the metric completion of X. Then every $f \in K$ naturally extends to $\hat{f} \in B_1(\hat{X})$.

Corollary (T., 1999)

Every compact set of Baire-class-1 functions has a dense metrizable subspace.
The first application of the method

Theorem (T., 1999)

If K *is a compact set of Baire-class-1 functions then the generic filter of the regular-open algebra of* K *is countably generated.*

Proof.

(Sketch) Assume $K \subseteq B_1(X)$ *for some Polish space* X.

Let $\mathbb{P}_K = \text{RO}(K)^+$ *and go to the forcing extension of* \mathbb{P}_K.

Let \hat{X} *be the metric completion of* X.

Then every $f \in K$ *naturally extends to* $\hat{f} \in B_1(\hat{X})$.

Then $\hat{K} = \{ \hat{f} : f \in K \}$ *is relatively compact in* $B_1(\hat{X})$.

Corollary (T., 1999)

Every compact set of Baire-class-1 functions has a dense metrizable subspace.
The first application of the method

Theorem (T., 1999)

If K is a compact set of Baire-class-1 functions then the generic filter of the regular-open algebra of K is countably generated.

Proof.

(Sketch) Assume $K \subseteq \mathcal{B}_1(X)$ for some Polish space X. Let $\mathbb{P}_K = \text{RO}(K)^+$ and go to the forcing extension of \mathbb{P}_K. Let \hat{X} be the metric completion of X. Then every $f \in K$ naturally extends to $\hat{f} \in \mathcal{B}_1(\hat{X})$. Then $\hat{K} = \{\hat{f} : f \in K\}$ is relatively compact in $\mathcal{B}_1(\hat{X})$. Then the closure $\overline{\hat{K}}$ is included in $\mathcal{B}_1(\hat{X})$.
The first application of the method

Theorem (T., 1999)

If K *is a compact set of Baire-class-1 functions then the generic filter of the regular-open algebra of* K *is countably generated.*

Proof.

(Sketch) Assume $K \subseteq B_1(X)$ for some Polish space X. Let $\mathbb{P}_K = RO(K)^+$ and go to the forcing extension of \mathbb{P}_K. Let \hat{X} be the metric completion of X. Then every $f \in K$ naturally extends to $\hat{f} \in B_1(\hat{X})$. Then $\hat{K} = \{ \hat{f} : f \in K \}$ *is relatively compact in* $B_1(\hat{X})$. Then the closure $\overline{\hat{K}}$ is included in $B_1(\hat{X})$. The generic filter is generated by sets that form a **free sequence** of regular pairs of \hat{K} and so it is countably generated.
The first application of the method

Theorem (T., 1999)

If K is a compact set of Baire-class-1 functions then the generic filter of the regular-open algebra of K is countably generated.

Proof.

(Sketch) Assume $K \subseteq B_1(X)$ for some Polish space X. Let $\mathbb{P}_K = \text{RO}(K)^+$ and go to the forcing extension of \mathbb{P}_K. Let \hat{X} be the metric completion of X. Then every $f \in K$ naturally extends to $\hat{f} \in B_1(\hat{X})$. Then $\hat{K} = \{\hat{f} : f \in K\}$ is relatively compact in $B_1(\hat{X})$. The closure $\overline{\hat{K}}$ is included in $B_1(\hat{X})$. The generic filter is generated by sets that form a free sequence of regular pairs of $\overline{\hat{K}}$ and so it is countably generated.

Corollary (T., 1999)

Every compact set of Baire-class-1 functions has a dense metrizable subspace.
Compact spaces of functional analysis

K is a Eberlein compact if it is homeomorphic to a weakly compact subset of a Banach space.

K is a Talagrand compact if the Banach space C(K) with its weak topology is K-analytic (continuous image of a closed subset of the product of irrationals and a compact space).

K is a Gul'ko compact if the Banach space C(K) with its weak topology is countably determined (continuous image of a closed subset of the product of a set of irrationals and a compact space).

K is a Corson compact if it can be embedded in a Σ-Product of the real line.
K is a **Eberlein compact** if it is homeomorphic to a weakly compact subset of a Banach space.
Compact spaces of functional analysis

K is a **Eberlein compact** if it is homeomorphic to a weakly compact subset of a Banach space.

K is a **Talagrand compact** if the Banach space $C(K)$ with its weak topology is K-analytic (continuous image of a closed subset of the product of irrationals and a compact space).
Compact spaces of functional analysis

K is a **Eberlein compact** if it is homeomorphic to a weakly compact subset of a Banach space.

K is a **Talagrand compact** if the Banach space $C(K)$ with its weak topology is K-analytic (continuous image of a closed subset of the product of irrationals and a compact space).

K is a **Gul’ko compact** if the Banach space $C(K)$ with its weak topology is countably determined (continuous image of a closed subset of the product of a set of irrationals and a compact space).
Compact spaces of functional analysis

K is a **Eberlein compact** if it is homeomorphic to a weakly compact subset of a Banach space.

K is a **Talagrand compact** if the Banach space $C(K)$ with its weak topology is K-analytic (continuous image of a closed subset of the product of irrationals and a compact space).

K is a **Gul’ko compact** if the Banach space $C(K)$ with its weak topology is countably determined (continuous image of a closed subset of the product of a set of irrationals and a compact space).

K is a **Corson compact** if it can be embedded in a Σ-Product of the real line.
An old example of a Corson compact space

An old example of a Corson compact space

Theorem (T., 1978)

There is a first countable Corson compact space without dense metrizable subspace.
An old example of a Corson compact space

Theorem (T., 1978)

There is a first countable Corson compact space without dense metrizable subspace.

Proof.
(Sketch) Choose an everywhere branching Baire subtree of $\bigcup_{\alpha<\omega_1} \omega^\alpha$ with no uncountable branches and let

$$K_T = \{1_A : A \text{ is a path of } T\} \subseteq \{0, 1\}^T.$$
Sokolov’s characterization of Gul’ko compacta

A compactum K is Gulko if it can be embedded into a Tychonov cube \mathbb{R} in such a way that for some countable decomposition $I = \bigcup_{n<\omega} I_n$ of the index set I, we have that for every $x \in K$, if we let $N_x = \{n<\omega: |\text{supp}(x) \cap I_n| < \aleph_0\}$, then $I = \bigcup_{n \in N_x} I_n$.
Sokolov’s characterization of Gul’ko compacta

Theorem (Sokolov, 1984)

A compactum K is Gulko if it can be embedded into a Tychonov cube \mathbb{R}^l in such a way that for some countable decomposition

$$l = \bigcup_{n<\omega} l_n$$

of the index set I, we have that for every $x \in K$, if we let

$$N_x = \{n < \omega : |\text{supp}(x) \cap l_n| < \aleph_0\},$$

then

$$l = \bigcup_{n \in N_x} l_n.$$
Theorem (Sokolov, 1984)

A compactum \(K \) is Gul’ko if it has a weakly \(\sigma \)-point-finite \(T_0 \)-separating cover by co-zero sets, i.e. a \(T_0 \)-separating cover \(\mathcal{U} \) by co-zero sets which has a decomposition

\[
\mathcal{U} = \bigcup_{n<\omega} \mathcal{U}_n
\]

such that for every \(x \in K \), if we let

\[
N_x = \{ n < \omega : \text{ord}(x, \mathcal{U}_n) < \aleph_0 \},
\]

then \(\mathcal{U} = \bigcup_{n \in N_x} \mathcal{U}_n \).
Two classical results

Theorem (Namioka, 1974)
Every Eberlein compactum has a dense completely metrizable subspace.
Proof.
(Hint). Use Namioka's joint versus separate continuity theorem

Theorem (Leiderman, 1985; Gruenhage, 1987)
Every Gul'ko compactum has a dense completely metrizable subspace.
Proof.
(Hint). Use Sokolov's characterization theorem.
Two classical results

Theorem (Namioka, 1974)

Every Eberlein compactum has a dense completely metrizable subspace.

Proof.
(Hint). Use Namioka’s joint versus separate continuity theorem
Two classical results

Theorem (Namioka, 1974)
Every Eberlein compactum has a dense completely metrizable subspace.

Proof.
(Hint). Use Namioka’s joint versus separate continuity theorem.

Theorem (Leiderman, 1985; Gruenhage, 1987)
Every Gul’ko compactum has a dense completely metrizable subspace.

Proof.
(Hint). Use Sokolov’s characterization theorem.
Definition

For a cardinal θ, we say that a compact subset K of the Tychonov cube \mathbb{R}^I has the property $E_2(\theta)$ if there is a sequence $I_n (n < \omega)$ of subsets of I such that if for $x \in K$, we let $N_x = \{n < \omega : |\text{supp}(x) \cap I_n| < \aleph_0\}$, then $|I \setminus \bigcup_{n \in N_x} I_n| < \theta$.

Remark (1) $E_2(1)$ is the class of Gul'ko compacta.

Remark (2) $E_2(\beth_1)$ is included in the class of Corson compacta.

Remark (3) $E_2(\beth_1)$ was first considered by Leiderman (2012) under the name almost Gul'ko compact spaces.
A hierarchy of compact spaces

Definition
For a cardinal θ, we say that a compact subset K of the Tychonov cube \mathbb{R}^I has the property $E_{2}(\theta)$ if there is a sequence $I_n \ (n < \omega)$ of subsets of I such that if for $x \in K$, we let

$$N_x = \{n < \omega : |\text{supp}(x) \cap I_n| < \aleph_0\},$$

then $|I \setminus \bigcup_{n \in N_x} I_n| < \theta$.

Remark (1) $E_{2}(1)$ is the class of Gul’ko compacta.

Remark (2) $E_{2}(\aleph_1)$ is included in the class of Corson compacta.

Remark (3) $E_{2}(\aleph_1)$ was first considered by Leiderman (2012) under the name almost Gul’ko compact spaces.
A hierarchy of compact spaces

Definition
For a cardinal θ, we say that a compact subset K of the Tychonov cube \mathbb{R}^I has the property $\mathcal{E}_2(\theta)$ if there is a sequence $I_n (n < \omega)$ of subsets of I such that if for $x \in K$, we let

$$N_x = \{ n < \omega : |\text{supp}(x) \cap I_n| < \aleph_0 \},$$

then $|I \setminus \bigcup_{n \in N_x} I_n| < \theta$.

Remark
(1) $\mathcal{E}_2(1)$ is the class of Gul’ko compacta.
A hierarchy of compact spaces

Definition
For a cardinal θ, we say that a compact subset K of the Tychonov cube \mathbb{R}^I has the property $E_2(\theta)$ if there is a sequence $I_n (n < \omega)$ of subsets of I such that if for $x \in K$, we let

$$N_x = \{ n < \omega : |\text{supp}(x) \cap I_n| < \aleph_0 \},$$

then $|I \setminus \bigcup_{n \in N_x} I_n| < \theta$.

Remark
(1) $E_2(1)$ is the class of Gul’ko compacta.
(2) $E_2(\aleph_1)$ is included in the class of Corson compacta.
A hierarchy of compact spaces

Definition
For a cardinal θ, we say that a compact subset K of the Tychonov cube \mathbb{R}^I has the property $E_2(\theta)$ if there is a sequence I_n ($n < \omega$) of subsets of I such that if for $x \in K$, we let

$$N_x = \{n < \omega : |\text{supp}(x) \cap I_n| < \aleph_0\},$$

then $|I \setminus \bigcup_{n \in N_x} I_n| < \theta$.

Remark
(1) $E_2(1)$ is the class of Gul’ko compacta.
(2) $E_2(\aleph_1)$ is included in the class of Corson compacta.
(3) $E_2(\aleph_1)$ was first considered by Leiderman (2012) under the name almost Gul’ko compact spaces.
Two examples in $\mathcal{E}_2(2) \setminus \mathcal{E}_2(1)$

Example (Leiderman, 1985)

Let $I = [0, 1]$ and let $K_L = \{ A : A \subseteq I$ and $(\exists b \in I) \sum_{a \in A} |b - a| \leq 1 \}$. Then $K_L \in \mathcal{E}_2(2)$ by letting $I_n (n < \omega)$ be an enumeration of all intervals of I with rational end-points.

Example (Argyros-Marcourakis, 1993)

Call a subset A of $I = [0, 1]$ admissible if for every finite subset $a_1 < \cdots < a_n$ of A, we have that $a_n - a_m < \frac{1}{m}$ for all $m < n$.

Let $K_{AM} = \{ A : A \text{ admissible subset of } I \}$. Then $K_{AM} \in \mathcal{E}_2(2)$ by letting again $I_n (n < \omega)$ be an enumeration of all intervals of I with rational end-points.
Two examples in $\mathcal{E}_2(2) \setminus \mathcal{E}_2(1)$

Example (Leiderman, 1985)
Let $I = [0, 1]$ and let

$$K_L = \{1_A : A \subseteq I \text{ and } (\exists b \in I) \sum_{a \in A} |b - a| \leq 1\}.$$

Then $K_L \in \mathcal{E}_2(2)$ by letting $I_n (n < \omega)$ be an enumeration of all intervals of I with rational end-points.

Example (Argyros-Marcourakis, 1993)
Call a subset A of $I = [0, 1]$ admissible if for every finite subset $a_1 < \cdots < a_n$ of A, we have that $a_n - a_m < 1/m$ for all $m < n$.

Let $K_{AM} = \{1_A : A \text{ admissible subset of } I\}$.

Then $K_{AM} \in \mathcal{E}_2(2)$ by letting again $I_n (n < \omega)$ be an enumeration of all intervals of I with rational end-points.
Two examples in $\mathcal{E}_2(2) \setminus \mathcal{E}_2(1)$

Example (Leiderman, 1985)
Let $I = [0, 1]$ and let

$$K_L = \{ 1_A : A \subseteq I \text{ and } (\exists b \in I) \sum_{a \in A} |b - a| \leq 1 \}. $$

Then $K_L \in \mathcal{E}_2(2)$ by letting $I_n (n < \omega)$ be an enumeration of all intervals of I with rational end-points.

Example (Argyros-Marcourakis, 1993)
Call a subset A of $I = [0, 1]$ admissible if for every finite subset $a_1 < \cdots < a_n$ of A, we have that $a_n - a_m < 1/m$ for all $m < n$. Let

$$K_{AM} = \{ 1_A : A \text{ admissible subset of } I \}. $$

Then $K_{AM} \in \mathcal{E}_2(2)$ by letting again $I_n (n < \omega)$ be an enumeration of all intervals of I with rational end-points.
A Corson compactum in $\mathcal{E}_2(c^+) \setminus \mathcal{E}_2(c)$
A Corson compactum in $\mathcal{E}_2(c^+) \setminus \mathcal{E}_2(c)$

Example

Let T to be the tree of all closed subsets of a stationary subset E of ω_1 whose complement $\omega_1 \setminus E$ is also stationary. The Corson compactum

$$K_T = \{1_A : A \text{ is a path of } T\}$$

has no metrizable subspaces and $K_T \not\in \mathcal{E}_2(c)$.
A Corson compactum in $\mathcal{E}_2(c^+) \setminus \mathcal{E}_2(c)$

Example

Let T to be the tree of all closed subsets of a stationary subset E of ω_1 whose complement $\omega_1 \setminus E$ is also stationary. The Corson compactum

$$K_T = \{1_A : A \text{ is a path of } T\}$$

has no metrizable subspaces and $K_T \not\in \mathcal{E}_2(c)$.

Question

For which θ do we have that every compactum in $\mathcal{E}_2(\theta)$ has a metrizable subspace?
Theorem (T., 2022)

There is a compact subset K of $\Sigma^b(I)$ for some index set I of cardinality b such that $K \in E^2(b)$ and K has no dense metrizable subspace.

Corollary (T., 2022)

If $b = \aleph_1$ there is a (Corson) compactum in $E^2(\aleph_1)$ without a dense metrizable subspace.
A new example

Theorem (T., 2022)

There is a compact subset K of $\Sigma_b(I)$ for some index set I of cardinality b such that $K \in \mathcal{E}_2(b)$ and K has no dense metrizable subspace.

Corollary (T., 2022)

If $b = \aleph_1$ there is a (Corson) compactum in $\mathcal{E}_2(\aleph_1)$ without a dense metrizable subspace.
A new example

Theorem (T., 2022)

There is a compact subset K of $\Sigma_b(I)$ for some index set I of cardinality b such that $K \in \mathcal{E}_2(b)$ and K has no dense metrizable subspace.

Corollary (T., 2022)

If $b = \aleph_1$ there is a (Corson) compactum in $\mathcal{E}_2(\aleph_1)$ without a dense metrizable subspace.
Fix a set $I \subseteq \omega^\omega$ of increasing functions well-ordered by \prec^* in order type b and unbounded in (ω^ω, \prec^*).
Fix a set $I \subseteq \omega^\omega$ of increasing functions well-ordered by $<^*$ in order type b and unbounded in $(\omega^\omega, <^*)$.

For $a \neq b$ in I, let

$$D(a, b) = \{n < \omega : a(n) \neq b(n)\}.$$
Fix a set $I \subseteq \omega^\omega$ of increasing functions well-ordered by \prec^* in order type b and unbounded in (ω^ω, \prec^*).

For $a \neq b$ in I, let

$$D(a, b) = \{ n < \omega : a(n) \neq b(n) \}.$$

For $m, n \in D(a, b)$, set

$mE(a, b)n$ if either $a >_{[m,n]} b$ or $b >_{[m,n]} a$.

Finally, let

$$\osc^*(a, b) = |D(a, b)/E(a, b)|.$$

and

$$\osc(a, b) = \osc(a \upharpoonright k, b \upharpoonright k),$$

where k is the minimum of the first relatively large equivalence class in $D(a, b)/E(a, b)$.

Fix a set $I \subseteq \omega^\omega$ of increasing functions well-ordered by $<^*$ in order type b and unbounded in $(\omega^\omega, <^*)$.

For $a \neq b$ in I, let

$$D(a, b) = \{ n < \omega : a(n) \neq b(n) \}.$$

For $m, n \in D(a, b)$, set

$mE(a, b)n$ if either $a >_{[m,n]} b$ or $b >_{[m,n]} a$. Finally, set

$$\text{osc}(a, b) = |D(a, b)/E(a, b)|.$$

and

$$\text{osc}^*(a, b) = \text{osc}(a \upharpoonright k, b \upharpoonright k),$$

where k is the minimum of the first relatively large equivalence class in $D(a, b)/E(a, b)$.
A crucial property of the oscillation mapping

For every positive integers k and ℓ and every family F of pairwise disjoint subsets of I of size ℓ there exist $p \neq q$ in F such that $\text{osc}^* (p(i), q(i)) + 1 = \text{osc} (p(i), q(i)) = k$ for all $i < \ell$.

Define $c : [I]^2 \to \{0, 1\}$ by letting $c(\{a, b\}) = 0$ if and only if $\text{osc} (a, b)$ is even.

Let $K = \{A : A \subseteq I \text{ and } c(A) = \{0\}\}$.
A crucial property of the oscillation mapping

(o) For every positive integers k and ℓ and every family \mathcal{F} of pairwise disjoint subsets of I of size ℓ there exist $p \neq q$ in \mathcal{F} such that

$$\text{osc}^*(p(i), q(i)) + 1 = \text{osc}(p(i), q(i)) = k \text{ for all } i < \ell.$$
A crucial property of the oscillation mapping

(o) For every positive integers k and ℓ and every family \mathcal{F} of pairwise disjoint subsets of I of size ℓ there exist $p \neq q$ in \mathcal{F} such that

$$\text{osc}^*(p(i), q(i)) + 1 = \text{osc}(p(i), q(i)) = k \text{ for all } i < \ell.$$

Define

$$c : [I]^2 \to \{0, 1\}$$

by letting $c(\{a, b\}) = 0$ if and only if $\text{osc}^*(a, b)$ is even.
A crucial property of the oscillation mapping

(o) For every positive integers k and ℓ and every family \mathcal{F} of pairwise disjoint subsets of I of size ℓ there exist $p \neq q$ in \mathcal{F} such that

$$\text{osc}^*(p(i), q(i)) + 1 = \text{osc}(p(i), q(i)) = k \text{ for all } i < \ell.$$

Define

$$c : [l]^2 \to \{0, 1\}$$

by letting $c(\{a, b\}) = 0$ if and only if $\text{osc}^*(a, b)$ is even.

Let

$$K = \{1_A : A \subseteq I \text{ and } c[[A]^2] = \{0\}\}.$$
Properties of K

(1) For K but K has no cellular family of open subsets of cardinality b. Thus, K has no dense metrizable subspace.

(2) Let $s_n (n < \omega)$ be an enumeration of $\omega < \omega$. For $n < \omega$, set $I_n = \{a \in I: s_n \sqsubseteq a\}$. Then ($I_n: n < \omega$) establishes the fact that $K \in E_2 (b)$.

Namely, if for $x_1 = 1 A$ in K, we let $N_x = \{n < \omega: |A \cap I_n| < \aleph_0\}$, then $I \setminus \bigcup_{n \in N_x} I_n$ has cardinality $< b$.
Properties of K

(1) $d(K) = \mathfrak{b}$ but K has no cellular family of open subsets of cardinality \mathfrak{b}. Thus, K has no dense metrizable subspace.

(2) Let s_n ($n < \omega$) be an enumeration of $\omega^{<\omega}$. For $n < \omega$, set

$$I_n = \{ a \in I : s_n \subseteq a \}.$$

Then $(I_n : n < \omega)$ establishes the fact that $K \in \mathcal{E}_2(\mathfrak{b})$.
Properties of K

(1) $d(K) = b$ but K has no cellular family of open subsets of cardinality b. Thus, K has no dense metrizable subspace.

(2) Let $s_n (n < \omega)$ be an enumeration of $\omega^{<\omega}$. For $n < \omega$, set

$$I_n = \{ a \in I : s_n \subseteq a \}.$$

Then $(I_n : n < \omega)$ establishes the fact that $K \in E_2(b)$. Namely, if for $x = 1_A$ in K, we let

$$N_x = \{ n < \omega : |A \cap I_n| < \aleph_0 \},$$

then $I \setminus \bigcup_{n \in N_x} I_n$ has cardinality $< b$.
The main result

Theorem (T., 2022) The generic ultrafilter of every compactum in E^{\aleph_0} is countably generated.

Corollary (T., 2022) Every compactum in the class E^{\aleph_0} contains a dense metrizable subspace.
The main result

Theorem (T., 2022)

The generic ultrafilter of every compactum in $E_2(\mathbb{N}_0)$ is countably generated.
The main result

Theorem (T., 2022)

The generic ultrafilter of every compactum in $E_2(\aleph_0)$ is countably generated.

Corollary (T., 2022)

Every compactum in the class $E_2(\aleph_0)$ contains a dense metrizable subspace.
Sketch of a proof

Fix a compact subset K of some Σ-product $\Sigma(I)$ and assume that the generic ultra-filter of the regular-open algebra $\text{RO}(K)$ is not countably generated and go towards showing $K \not\in E_2(\mathbb{N})$.

We assume that I well-ordered and replacing I by an initial segment Γ and K by its projection to $\Sigma(\Gamma)$, we may assume that every element of $\text{RO}(K)^+$ forces that I has uncountable cofinality.

Let \dot{x}_G be the $\text{RO}(K)^+$-name for the generic point of K, the intersection of closures of elements of the generic filter \dot{G} and let \dot{J} be the $\text{RO}(K)^+$-name for the set $\{\gamma \in I : (\exists n) \{y \in K : |y(\gamma)| > 1/n\} \in \dot{G}\}$.

Note that our assumption in particular means that every member of $\text{RO}(K)^+$ forces that \dot{J} is a cofinal subset of I.
Fix a compact subset K of some Σ-product $\Sigma(I)$ and assume that the generic ultra-filter of the regular-open algebra $\text{RO}(K)$ is not countably generated and go towards showing $K \notin \mathcal{E}_2(\aleph_0)$.

Note that our assumption in particular means that every member of $\text{RO}(K)$ forces that \dot{J} is a cofinal subset of I.

We assume that I well-ordered and replacing I by an initial segment Γ and K by its projection to $\Sigma(\Gamma)$, we may assume hat very element of $\text{RO}(K)$ forces that I has uncountable cofinality.
Fix a compact subset K of some Σ-product $\Sigma(I)$ and assume that the generic ultra-filter of the regular-open algebra $RO(K)$ is \textbf{not} countably generated and go towards showing $K \notin \mathcal{E}_2(\mathbb{N}_0)$.

We assume that I well-ordered and replacing I by an initial segment Γ and K by its projection to $\Sigma(\Gamma)$, we may assume hat very element of $RO(K)^+$ forces that I has uncountable cofinality.
Skect of a proof

Fix a compact subset K of some Σ-product $\Sigma(I)$ and assume that the generic ultra-filter of the regular-open algebra $RO(K)$ is not countably generated and go towards showing $K \not\in \mathcal{E}_2(\mathbb{N}_0)$.

We assume that I well-ordered and replacing I by an initial segment Γ and K by its projection to $\Sigma(\Gamma)$, we may assume hat very element of $RO(K)^+$ forces that I has uncountable cofinality.

Let x_G be the $RO(K)^+$-name for the generic point of K, the intersection of closures of elements of the generic filter G and let \dot{J} be the $RO(K)^+$-name for the set

$$\{\gamma \in I : (\exists n)\{y \in K : |y(\gamma)| > 1/n\} \in \dot{G}\}.$$
Fix a compact subset K of some Σ-product $\Sigma(I)$ and assume that the generic ultra-filter of the regular-open algebra $RO(K)$ is not countably generated and go towards showing $K \not\in \mathcal{E}_2(\mathbb{N}_0)$.

We assume that I well-ordered and replacing I by an initial segment Γ and K by its projection to $\Sigma(\Gamma)$, we may assume hat very element of $RO(K)^+$ forces that I has uncountable cofinality.

Let \dot{x}_G be the $RO(K)^+$-name for the generic point of K, the intersection of closures of elements of the generic filter \dot{G} and let \dot{J} be the $RO(K)^+$-name for the set

$$\{ \gamma \in I : (\exists n)\{ y \in K : |y(\gamma)| > 1/n \} \in \dot{G} \}.$$

Note that our assumption in particular means that every member of $RO(K)^+$ forces that \dot{J} is a cofinal subset of I.
Sketch of a proof

Fix a compact subset K of some Σ-product $\Sigma(I)$ and assume that the generic ultra-filter of the regular-open algebra $\text{RO}(K)$ is not countably generated and go towards showing $K \not\in \mathcal{E}_2(\aleph_0)$.

We assume that I well-ordered and replacing I by an initial segment Γ and K by its projection to $\Sigma(\Gamma)$, we may assume hat very element of $\text{RO}(K)^+$ forces that I has uncountable cofinality.

Let \dot{x}_G be the $\text{RO}(K)^+$-name for the generic point of K, the intersection of closures of elements of the generic filter \dot{G} and let \dot{J} be the $\text{RO}(K)^+$-name for the set

$$\{\gamma \in I : (\exists n)\{y \in K : |y(\gamma)| > 1/n\} \in \dot{G}\}.$$

Note that our assumption in particular means that every member of $\text{RO}(K)^+$ forces that \dot{J} is a cofinal subset of I.
Fix a sequence \(l_n (n < \omega) \) of subsets of \(I \).
We shall find \(x \in K \) such that \(I \setminus \bigcup_{n \in N_x} l_n \) is infinite, where
\(N_x = \{ n < \omega : \text{supp}(x) \cap l_n \text{ is finite} \} \).
Fix a sequence $l_n \ (n < \omega)$ of subsets of I.
We shall find $x \in K$ such that $I \setminus \bigcup_{n \in N_x} l_n$ is infinite, where
$N_x = \{ n < \omega : \text{supp}(x) \cap l_n \text{ is finite} \}$.

Let \dot{N} be the $\text{RO}(K)^+$-name for the set of all $n < \omega$ such that
$l_n \cap \dot{J}$ is bounded in I.
Fix a sequence \(I_n (n < \omega) \) of subsets of \(I \). We shall find \(x \in K \) such that \(I \setminus \bigcup_{n \in N_x} I_n \) is infinite, where \(N_x = \{ n < \omega : \text{supp}(x) \cap I_n \text{ is finite} \} \).

Let \(\dot{N} \) be the \(\text{RO}(K)^+ \)-name for the set of all \(n < \omega \) such that \(I_n \cap J \) is bounded in \(I \).

Let \(P \) be the collection of all finite partial mappings \(p \) from \(I \) to open intervals of \(\mathbb{R} \) with end points in \(\mathbb{Q} \) such that for every \(i \in \text{dom}(p) \), the interval \(p(i) \) is either centered at 0 and both of its end points are strictly above or strictly below 0 and such that

\[
O(p) = \{ x \in K : \forall i \in \text{dom}(p) \ x(i) \in p(i) \}
\]

is a nonempty open subset of \(K \).
Fix a sequence \(l_n \ (n < \omega) \) of subsets of \(I \).
We shall find \(x \in K \) such that \(I \setminus \bigcup_{n \in N_x} l_n \) is infinite, where \(N_x = \{ n < \omega : \text{supp}(x) \cap l_n \text{ is finite} \} \).

Let \(\dot{N} \) be the RO\((K)^+\)-name for the set of all \(n < \omega \) such that \(l_n \cap \dot{J} \) is bounded in \(I \).

Let \(\mathcal{P} \) be the collection of all finite partial mappings \(p \) from \(I \) to open intervals of \(\mathbb{R} \) with end points in \(\mathbb{Q} \) such that for every \(i \in \text{dom}(p) \), the interval \(p(i) \) is either centered at 0 and both of its end points are strictly above or strictly below 0 and such that

\[
O(p) = \{ x \in K : \forall i \in \text{dom}(p) \ x(i) \in p(i) \}
\]

is a nonempty open subset of \(K \). Note that \(O(p) \ (p \in \mathcal{P}) \) is a dense subset of RO\((K)^+\). For \(p \in \mathcal{P} \), let

\[
\text{supp}(p) = \{ i \in \text{dom}(p) : 0 \not\in p(i) \}.
\]
Fix $p_0 \in \mathbb{P}$ and $\alpha_0 \in \Gamma$ such that $O(p_0)$ forces that α_0 is an upper bound of the set $\bigcup_{n \in \hat{\mathbb{N}}} I_n \cap \hat{J}$. We may assume that $\alpha_0 \in \text{dom}(p_0)$.
Fix $p_0 \in \mathbb{P}$ and $\alpha_0 \in \Gamma$ such that $O(p_0)$ forces that α_0 is an upper bound of the set $\bigcup_{n \in \check{\mathbb{N}}} I_n \cap \check{J}$. We may assume that $\alpha_0 \in \text{dom}(p_0)$.

Fix an enumeration n_k ($k < \omega$) of ω such that every $n < \omega$ is equal to n_k for infinitely many k.
Fix $p_0 \in \mathbb{P}$ and $\alpha_0 \in \Gamma$ such that $O(p_0)$ forces that α_0 is an upper bound of the set $\bigcup_{n \in \mathbb{N}} I_n \cap J$. We may assume that $\alpha_0 \in \text{dom}(p_0)$.

Fix an enumeration n_k ($k < \omega$) of ω such that every $n < \omega$ is equal to n_k for infinitely many k.

Starting from p_0 and α_0, recursively on $k < \omega$, we define an increasing sequence p_k of elements of \mathbb{P} and an increasing sequence α_k of ordinals from I such that for all k:
Fix \(p_0 \in \mathbb{P} \) and \(\alpha_0 \in \Gamma \) such that \(O(p_0) \) forces that \(\alpha_0 \) is an upper bound of the set \(\bigcup_{n \in \dot{N}} I_n \cap J \). We may assume that \(\alpha_0 \in \text{dom}(p_0) \).

Fix an enumeration \(n_k \ (k < \omega) \) of \(\omega \) such that every \(n < \omega \) is equal to \(n_k \) for infinitely many \(k \).

Starting from \(p_0 \) and \(\alpha_0 \), recursively on \(k < \omega \), we define an increasing sequence \(p_k \) of elements of \(\mathbb{P} \) and an increasing sequence \(\alpha_k \) of ordinals from \(I \) such that for all \(k \) :

If there is \(q \in \mathbb{P} \) extending \(p_k \) such that \(O(q) \) forces that \(n_k \in \dot{N} \), we choose \(p_{k+1} \) to extend such \(q \) and have an \(\alpha_{k+1} > \alpha_k \) in \(\text{supp}(p_{n+1}) \).
Fix \(p_0 \in \mathbb{P} \) and \(\alpha_0 \in \Gamma \) such that \(O(p_0) \) forces that \(\alpha_0 \) is an upper bound of the set \(\bigcup_{n \in \dot{N}} I_n \cap J \). We may assume that \(\alpha_0 \in \text{dom}(p_0) \).

Fix an enumeration \(n_k (k < \omega) \) of \(\omega \) such that every \(n < \omega \) is equal to \(n_k \) for infinitely many \(k \).

Starting from \(p_0 \) and \(\alpha_0 \), recursively on \(k < \omega \), we define an increasing sequence \(p_k \) of elements of \(\mathbb{P} \) and an increasing sequence \(\alpha_k \) of ordinals from \(I \) such that for all \(k \):

If there is \(q \in \mathbb{P} \) extending \(p_k \) such that \(O(q) \) forces that \(n_k \in \dot{N} \), we choose \(p_{k+1} \) to extend such \(q \) and have an \(\alpha_{k+1} > \alpha_k \) in \(\text{supp}(p_{n+1}) \).

If such a \(q \) cannot be found, we have that \(O(p_k) \) forces \(n_k \not\in \dot{N} \), so we can then find \(\alpha_{k+1} > \alpha_k \) in \(I_{n_k} \) and \(p_{k+1} \) extending \(p_k \) such that \(\alpha_{k+1} \in \text{supp}(p_{k+1}) \).
Fix \(p_0 \in \mathbb{P} \) and \(\alpha_0 \in \Gamma \) such that \(O(p_0) \) forces that \(\alpha_0 \) is an upper bound of the set \(\bigcup_{n \in \hat{N}} I_n \cap \hat{J} \). We may assume that \(\alpha_0 \in \text{dom}(p_0) \).

Fix an enumeration \(n_k \) \((k < \omega)\) of \(\omega \) such that every \(n < \omega \) is equal to \(n_k \) for infinitely many \(k \).

Starting from \(p_0 \) and \(\alpha_0 \), recursively on \(k < \omega \), we define an increasing sequence \(p_k \) of elements of \(\mathbb{P} \) and an increasing sequence \(\alpha_k \) of ordinals from \(I \) such that for all \(k \):

If there is \(q \in \mathbb{P} \) extending \(p_k \) such that \(O(q) \) forces that \(n_k \in \hat{N} \), we choose \(p_{k+1} \) to extend such \(q \) and have an \(\alpha_{k+1} > \alpha_k \) in \(\text{supp}(p_{n+1}) \).

If such a \(q \) cannot be found, we have that \(O(p_k) \) forces \(n_k \not\in \hat{N} \), so we can then find \(\alpha_{k+1} > \alpha_k \) in \(I_{n_k} \) and \(p_{k+1} \) extending \(p_k \) such that \(\alpha_{k+1} \in \text{supp}(p_{k+1}) \).
Pick an element x in the intersection $\bigcap_{k<\omega} \overline{O(p_k)}$. Let $A = \{\alpha_k : k < \omega\}$. Note that $A \subseteq \text{supp}(x)$.
Pick an element x in the intersection $\bigcap_{k<\omega} \overline{O(p_k)}$. Let $A = \{\alpha_k : k < \omega\}$. Note that $A \subseteq \text{supp}(x)$.

We claim that $I_n \cap A = \emptyset$ **for all** $n \in N_x$.

It follows that $K \not\in E_2(\aleph_0)$. The proof of the main result is finished.
Pick an element x in the intersection $\bigcap_{k<\omega} \overline{O(p_k)}$. Let $A = \{\alpha_k : k < \omega\}$. Note that $A \subseteq \text{supp}(x)$.

We claim that $I_n \cap A = \emptyset$ **for all** $n \in N_x$.

This shows that A is then an infinite subset of $I \setminus \bigcup_{n \in N_x} I_n$ and therefore that $|I \setminus \bigcup_{n \in N_x} I_n| \geq \aleph_0$, as required.
Pick an element x in the intersection $\bigcap_{k<\omega} \overline{O(p_k)}$. Let $A = \{\alpha_k : k < \omega\}$. Note that $A \subseteq \text{supp}(x)$.

We claim that $I_n \cap A = \emptyset$ for all $n \in \mathbb{N}_x$.

This shows that A is then an infinite subset of $I \setminus \bigcup_{n \in \mathbb{N}_x} I_n$ and therefore that $|I \setminus \bigcup_{n \in \mathbb{N}_x} I_n| \geq \aleph_0$, as required.

It follows that $K \notin \mathcal{E}_2(\aleph_0)$.

The proof of the main result is finished.
Theorem (Leiderman-Spadaro-T., 2021)

The following are equivalent for every Corson compact space K:

1. K^ω has a dense metrizable subspace.
2. K^ω has a cellular family of open sets of cardinality $d(K)$.

Proof. (Sketch) To prove the implication from (2) to (1), it suffices to prove that the generic ultrafilter of the forcing notion $O(K^\omega)^+$ is countably generated. For this, we show that $O(K^\omega)^+$ forces that K and therefore K^ω has countable π-basis.

Fix a π-basis P of K of cardinality $d(K)$.

Partition ω into countably many infinite sets I_n ($n<\omega$). Our assumption allows us to fix for each $n<\omega$ a cellular family C_n of cardinality $d(K)$ of finitely supported open sets with supports all included in the infinite set I_n.
Dense metrizability in powers

Theorem (Leiderman-Spadaro-T., 2021)

The following are equivalent for every Corson compact space K:

1. K^ω has a dense metrizable subspace.
2. K^ω has a cellular family of open sets of cardinality $d(K)$.

Proof. (Sketch) To prove the implication from (2) to (1), it suffices to prove that the generic ultrafilter of the forcing notion $O^{(K^\omega)+}$ is countably generated. For this, we show that $O^{(K^\omega)+}$ forces that K and therefore K^ω has countable π-basis.

Fix a π-basis P of K of cardinality $d(K)$. Partition ω into countably many infinite sets I_n ($n < \omega$).

Our assumption allows us to fix for each $n < \omega$ a cellular family C_n of cardinality $d(K)$ of finitely supported open sets with supports all included in the infinite set I_n.
Dense metrizability in powers

Theorem (Leiderman-Spadoro-T., 2021)

The following are equivalent for every Corson compact space K:

1. K^ω has a dense metrizable subspace.
2. K^ω has a cellular family of open sets of cardinality $d(K)$.

Proof.

(Sketch) To prove the implication from (2) to (1), it suffices to prove that the generic ultrafilter of the forcing notion $\mathcal{O}(K^\omega)^+$ is countably generated. For this, we show that $\mathcal{O}(K^\omega)^+$ forces that K and therefore K^ω has countable π-basis.
Dense metrizability in powers

Theorem (Leiderman-Spadaro-T., 2021)

The following are equivalent for every Corson compact space K:

1. K^ω has a dense metrizable subspace.
2. K^ω has a cellular family of open sets of cardinality $d(K)$.

Proof.

(Sketch) To prove the implication from (2) to (1), it suffices to prove that the generic ultrafilter of the forcing notion $O(K^\omega)^+$ is countably generated. For this, we show that $O(K^\omega)^+$ forces that K and therefore K^ω has countable π-basis.

Fix a π-basis \mathcal{P} of K of cardinality $d(K)$.

Dense metrizability in powers

Theorem (Leiderman-Spadaro-T., 2021)

The following are equivalent for every Corson compact space K:

1. K^ω has a dense metrizable subspace.
2. K^ω has a cellular family of open sets of cardinality $d(K)$.

Proof.

(Sketch) To prove the implication from (2) to (1), it suffices to prove that the generic ultrafilter of the forcing notion $\mathcal{O}(K^\omega)^+$ is countably generated. For this, we show that $\mathcal{O}(K^\omega)^+$ forces that K and therefore K^ω has countable π-basis.

Fix a π-basis \mathcal{P} of K of cardinality $d(K)$.

Partition ω into countably many infinite sets I_n ($n < \omega$).
Dense metrizability in powers

Theorem (Leiderman-Spadaro-T., 2021)

The following are equivalent for every Corson compact space K:

1. K^ω has a dense metrizable subspace.
2. K^ω has a cellular family of open sets of cardinality $d(K)$.

Proof.

(Sketch) To prove the implication from (2) to (1), it suffices to prove that the generic ultrafilter of the forcing notion $\mathcal{O}(K^\omega)^+$ is countably generated. For this, we show that $\mathcal{O}(K^\omega)^+$ forces that K and therefore K^ω has countable π-basis.

Fix a π-basis \mathcal{P} of K of cardinality $d(K)$.

Partition ω into countably many infinite sets $I_n (n < \omega)$.

Our assumption allows us to fix for each $n < \omega$ a cellular family C_n of cardinality $d(K)$ of finitely supported open sets with supports all included in the infinite set I_n.
For each $n < \omega$, we fix a bijection $f_n : \mathcal{P} \rightarrow C_n$.

Let \dot{G} be the $\mathcal{O}(K^\omega)^+-$name of the generic ultrafilter of $\mathcal{O}(K^\omega)^+$. Using this we describe a $\mathcal{O}(K^\omega)^+-$name $\dot{g} : \mathcal{P} \rightarrow \omega$ for an injection, as follows. Given $U \in \mathcal{P}$, we let $\dot{g}(U)$ to be the minimal $n < \omega$ such that $f_n(U) \in \dot{G}$. Note that since C_n is a cellular family and since f_n is an injection, no two different U and V in \mathcal{P} get mapped to the same n, so indeed \dot{g} is an injection. To see that \dot{g} is indeed a name for a function with domain \mathcal{P}, fix a member V of $\mathcal{O}(K^\omega)^+$ and $U \in \mathcal{P}$. By going to a subset, we may assume, V has finite support. Pick $n < \omega$ so that I_n does not intersect the support of V. Then V and $f_n(U)$ are compatible, so their intersection $V \cap f_n(U)$ is a refinement of V forcing that $\dot{g}(U)$ is defined. Since V was arbitrary, this finishes the proof.
For each $n < \omega$, we fix a bijection $f_n : \mathcal{P} \rightarrow \mathcal{C}_n$.
Let \dot{G} be the $\mathcal{O}(K^\omega)^+$-name of the generic ultrafilter of $\mathcal{O}(K^\omega)^+$.
For each $n < \omega$, we fix a bijection $f_n : \mathcal{P} \to \mathcal{C}_n$. Let $\dot{\mathcal{G}}$ be the $\mathcal{O}(K^\omega)^+$-name of the generic ultrafilter of $\mathcal{O}(K^\omega)^+$. Using this we describe a $\mathcal{O}(K^\omega)^+$-name $\dot{g} : \mathcal{P} \to \omega$ for an injection, as follows.
For each \(n < \omega \), we fix a bijection \(f_n : \mathcal{P} \rightarrow \mathcal{C}_n \).
Let \(\mathcal{G} \) be the \(O(K^\omega)^+ \)-name of the generic ultrafilter of \(O(K^\omega)^+ \).

Using this we describe a \(O(K^\omega)^+ \)-name \(\dot{g} : \mathcal{P} \rightarrow \omega \) for an injection, as follows.

Given \(U \in \mathcal{P} \), we let \(\dot{g}(U) \) to be the minimal \(n < \omega \) such that \(f_n(U) \in \mathcal{G} \).
For each $n < \omega$, we fix a bijection $f_n : \mathcal{P} \to \mathcal{C}_n$. Let \mathcal{G} be the $\mathcal{O}(K^\omega)^+$-name of the generic ultrafilter of $\mathcal{O}(K^\omega)^+$. Using this we describe a $\mathcal{O}(K^\omega)^+$-name $\dot{g} : \mathcal{P} \to \omega$ for an injection, as follows.

Given $U \in \mathcal{P}$, we let $\dot{g}(U)$ to be the minimal $n < \omega$ such that $f_n(U) \in \mathcal{G}$.

Note that since \mathcal{C}_n is a cellular family and since f_n is an injection, no two different U and V in \mathcal{P} get mapped to the same n, so indeed \dot{g} is an injection.
For each $n < \omega$, we fix a bijection $f_n : \mathcal{P} \rightarrow \mathcal{C}_n$. Let \dot{G} be the $\mathcal{O}(K^\omega)^+$-name of the generic ultrafilter of $\mathcal{O}(K^\omega)^+$. Using this we describe a $\mathcal{O}(K^\omega)^+$-name $\dot{g} : \mathcal{P} \rightarrow \omega$ for an injection, as follows.

Given $U \in \mathcal{P}$, we let $\dot{g}(U)$ to be the minimal $n < \omega$ such that $f_n(U) \in \dot{G}$.

Note that since \mathcal{C}_n is a cellular family and since f_n is an injection, no two different U and V in \mathcal{P} get mapped to the same n, so indeed \dot{g} is an injection.

To see that \dot{g} is indeed a name for a function with domain \mathcal{P}, fix a member V of $\mathcal{O}(K^\omega)^+$ and $U \in \mathcal{P}$. By going to a subset, we may assume, V has finite support.
For each $n < \omega$, we fix a bijection $f_n : \mathcal{P} \to \mathcal{C}_n$.
Let \mathcal{G} be the $O(K^\omega)^+$-name of the generic ultrafilter of $O(K^\omega)^+$.

Using this we describe a $O(K^\omega)^+$-name $\dot{g} : \mathcal{P} \to \omega$ for an injection, as follows.

Given $U \in \mathcal{P}$, we let $\dot{g}(U)$ to be the minimal $n < \omega$ such that $f_n(U) \in \mathcal{G}$.

Note that since \mathcal{C}_n is a cellular family and since f_n is an injection, no two different U and V in \mathcal{P} get mapped to the same n, so indeed \dot{g} is an injection.

To see that \dot{g} is indeed a name for a function with domain \mathcal{P}, fix a member V of $O(K^\omega)^+$ and $U \in \mathcal{P}$. By going to a subset, we may assume, V has finite support.

Pick $n < \omega$ so that I_n does not intersect the support of V. Then V and $f_n(U)$ are compatible, so their intersection $V \cap f_n(U)$ is a refinement of V forcing that $\dot{g}(U)$ is defined. Since V was arbitrary, this finishes the proof.
Question
Is there a Corson compactum K such that K^ω has no dense metrizable subspace.
Question
Is there a Corson compactum K such that K^ω has no dense metrizable subspace.
Equivalently, is there a Corson compactum K such that K^ω contains no cellular family of open sets of cardinality $d(K)$?
Question
Is there a Corson compactum K such that K^ω has no dense metrizable subspace.
Equivalently, is there a Corson compactum K such that K^ω contains no cellular family of open sets of cardinality $d(K)$?

Theorem (Leiderman-Spadaro-T., 2021)

If there is a locally countable family of countable sets of cardinality bigger than the cardinality of its union, then there is a Corson compactum K such that K^ω has no dense metrizable subspace.
Sketch of the construction
Sketch of the construction

The assumption allows us to find a cardinal κ and a subset I of κ^ω of cardinality bigger than κ such that

$$T(A) = \{ a \upharpoonright n : a \in A, n < \omega \}$$

is uncountable for every uncountable $A \subseteq I$.
Sketch of the construction

The assumption allows us to find a cardinal κ and a subset I of κ^ω of cardinality bigger than κ such that

$$T(A) = \{a \upharpoonright n : a \in A, n < \omega\}$$

is uncountable for every uncountable $A \subseteq I$.

Call a subset A of I **binary** if the tree $T(A)$ is binary, i.e., every node of $T(A)$ has at most two immediate successors.
Sketch of the construction

The assumption allows us to find a cardinal \(\kappa \) and a subset \(I \) of \(\kappa^\omega \) of cardinality bigger than \(\kappa \) such that

\[
T(A) = \{ a \upharpoonright n : a \in A, n < \omega \}
\]

is uncountable for every uncountable \(A \subseteq I \).

Call a subset \(A \) of \(I \) **binary** if the tree \(T(A) \) is binary, i.e., every node of \(T(A) \) has at most two immediate successors.

By our choice of \(I \), no uncountable subset of \(I \) is binary.
Sketch of the construction

The assumption allows us to find a cardinal κ and a subset I of κ^ω of cardinality bigger than κ such that

$$T(A) = \{ a \upharpoonright n : a \in A, n < \omega \}$$

is uncountable for every uncountable $A \subseteq I$.

Call a subset A of I binary if the tree $T(A)$ is binary, i.e., every node of $T(A)$ has at most two immediate successors.

By our choice of I, no uncountable subset of I is binary.

Let

$$K = \{ 1_A : A \subseteq I \text{ is binary} \}.$$
Sketch of the construction

The assumption allows us to find a cardinal κ and a subset I of κ^ω of cardinality bigger than κ such that

$$T(A) = \{ a \upharpoonright n : a \in A, n < \omega \}$$

is uncountable for every uncountable $A \subseteq I$.

Call a subset A of I **binary** if the tree $T(A)$ is binary, i.e., every node of $T(A)$ has at most two immediate successors.

By our choice of I, no uncountable subset of I is binary.

Let

$$K = \{ 1_A : A \subseteq I \text{ is binary} \}.$$

Then K is Corson, $d(K^\omega) = \kappa^+$ and $c(K^\omega) = \kappa$.
Sketch of the construction

The assumption allows us to find a cardinal κ and a subset I of κ^ω of cardinality bigger than κ such that

$$T(A) = \{ a \upharpoonright n : a \in A, n < \omega \}$$

is uncountable for every uncountable $A \subseteq I$.

Call a subset A of I **binary** if the tree $T(A)$ is binary, i.e., every node of $T(A)$ has at most two immediate successors.

By our choice of I, no uncountable subset of I is binary.

Let

$$K = \{ 1_A : A \subseteq I \text{ is binary} \}.$$

Then K is Corson, $d(K^\omega) = \kappa^+$ and $c(K^\omega) = \kappa$. So K^ω has no dense metrizable subspace.
Theorem (T., 2022)

There exist two compact subsets \(K_0 \) and \(K_1 \) of \(\Sigma^b(I) \), both belonging to the class \(E_2^b \) such that neither of the infinite powers \(K_0^\omega \) and \(K_1^\omega \) has a dense metrizable subspace but their product does have a dense metrizable subspace.

Proof. (Sketch) As before we fix a subset \(I \) of \(\omega^\omega \) consisting of increasing mappings from \(\omega \) into \(\omega \) such that \(I \) is well-ordered by \(<^* \) in order type \(b \) and such that \(I \) is unbounded in \((\omega^\omega, <^*) \). Consider the oscillation mappings \(\text{osc} : [I]^{2} \to \omega \) and \(\text{osc}^* : [I]^{2} \to \omega \) on \(I \) and the projection \(c : [I]^{2} \to 2 \).

Let \(K_0 = \{ 1^A : A \subseteq I, c[A] = \{ 0 \} \} \) and \(K_1 = \{ 1^A : A \subseteq I, c[A] = \{ 1 \} \} \).
Theorem (T., 2022)

There exist two compact subspaces K_0 and K_1 of $\Sigma_b(I)$, both belonging to the class $\mathcal{E}_2(b)$ such that neither of the infinite powers K_0^ω and K_1^ω has a dense metrizable subspace but their product does have a dense metrizable subspace.
Theorem (T., 2022)

There exist two compact subses K_0 and K_1 of $\Sigma_b(I)$, both belonging to the class $E_2(b)$ such that neither of the infinite powers K_0^ω and K_1^ω has a dense metrizable subspace but their product does have a dense metrizable subspace.

Proof.
(Sketch) As before we fix a subset I of ω^ω consisting of increasing mappings from ω into ω such that I is well-ordered by $<^*$ in order type b and such that I is unbounded in $(\omega^\omega, <^*)$. and consider the oscillation mappings $\text{osc} : [I]^2 \to \omega$ and $\text{osc}^* : [I]^2 \to \omega$ on I and the projection $c : [I]^2 \to 2$.

\textit{b-example}
Theorem (T., 2022)

There exist two compact subspaces K_0 and K_1 of $\Sigma_b(I)$, both belonging to the class $\mathcal{E}_2(b)$ such that neither of the infinite powers K_0^{ω} and K_1^{ω} has a dense metrizable subspace but their product does have a dense metrizable subspace.

Proof.

(Sketch) As before we fix a subset I of ω^ω consisting of increasing mappings from ω into ω such that I is well-ordered by $<^*$ in order type b and such that I is unbounded in $(\omega^\omega, <^*)$. and consider the oscillation mappings $\text{osc} : [I]^2 \to \omega$ and $\text{osc}^* : [I]^2 \to \omega$ on I and the projection $c : [I]^2 \to 2$. Let

\[K_0 = \{1_A : A \subseteq I, c[[A]^2] = \{0\}\} \text{ and } K_1 = \{1_A : A \subseteq I, c[[A]^2] = \{1\}\}. \]
Then as before K_0 and K_1 belong to $\mathcal{E}_2(b)$.
Then as before K_0 and K_1 belong to $\mathcal{E}_2(\mathfrak{b})$.

The crucial property (o) of the oscillation mapping shows that neither of the infinite powers K_0^ω and K_1^ω has a cellular family of open sets of cardinality \mathfrak{b}.
Then as before K_0 and K_1 belong to $E_2(b)$.

The crucial property (o) of the oscillation mapping shows that neither of the infinite powers K_0^ω and K_1^ω has a cellular family of open sets of cardinality b.

It follows that neither of the infinite powers K_0^ω and K_1^ω has a dense metrizable subspace.
Then as before K_0 and K_1 belong to $\mathcal{E}_2(\mathfrak{b})$.

The crucial property (o) of the oscillation mapping shows that neither of the infinite powers K_0^ω and K_1^ω has a cellular family of open sets of cardinality \mathfrak{b}.

It follows that neither of the infinite powers K_0^ω and K_1^ω has a dense metrizable subspace.

It remains to prove that the product $K_0^\omega \times K_1^\omega$ does have a dense metrizable subspace.
Then as before K_0 and K_1 belong to $\mathcal{E}_2(\mathfrak{b})$.

The crucial property (o) of the oscillation mapping shows that neither of the infinite powers K_0^ω and K_1^ω has a cellular family of open sets of cardinality \mathfrak{b}.

It follows that neither of the infinite powers K_0^ω and K_1^ω has a dense metrizable subspace.

It remains to prove that the product $K_0^\omega \times K_1^\omega$ does have a dense metrizable subspace.

Since $K_0^\omega \times K_1^\omega = (K_0 \times K_1)^\omega$ it suffices to show that the product $K_0 \times K_1$ has a cellular family of open sets of cardinality $\mathfrak{b} = d(K_0 \times K_1)$.
For $a \in I$ and $i < 2$, set

$$[a]_i = \{1_A \in K_i : a \in A\}.$$
For $a \in I$ and $i < 2$, set

$$[a]_i = \{1_A \in K_i : a \in A\}.$$

Then for all $a \in I$ and $i < 2$, the $[a]_i$ is a nonempty basic open set of K_i and the family

$$\mathcal{F} = \{[a]_0 \times [a]_1 : a \in I\}$$

is a cellular family of cardinality b of nonempty basic open subsets of the product $K_0 \times K_1$.

Corollary (T., 2022) If $b = \aleph_1$ there exist two compacta K_0 and K_1 in $E_2(\aleph_1)$ such that neither of the infinite powers K_ω_0 and K_ω_1 has a dense metrizable subspace but their product does have a dense metrizable subspace.
For $a \in I$ and $i < 2$, set

$$[a]_i = \{1_A \in K_i : a \in A\}.$$

Then for all $a \in I$ and $i < 2$, the $[a]_i$ is a nonempty basic open set of K_i and the family

$$\mathcal{F} = \{ [a]_0 \times [a]_1 : a \in I \}$$

is a cellular family of cardinality b of nonempty basic open subsets of the product $K_0 \times K_1$.

Corollary (T., 2022)

If $b = \aleph_1$ there exist two compacta K_0 and K_1 in $\mathcal{E}_2(\aleph_1)$ such that neither of the infinite powers K_0^ω and K_1^ω has a dense metrizable subspace but their product does have a dense metrizable subspace.
References

