Many weak \(P \)-sets

Jan van Mill\(^1\)

University of Amsterdam

Thirteenth Symposium on General Topology and its Relations to Modern Analysis and Algebra
July 25, 2022

\(^1\)Joint work with Alan Dow
Many weak P-sets

Fourth Symposium on General Topology
and its Relations to Modern Analysis and Algebra

was held on August 23-27, 1976 in Prague, Czech Republic. It was organized by the Mathematical Institute of the Czechoslovak Academy of Sciences with support of the International Mathematical Union and in cooperation with the Slovak Academy of Sciences, the Faculty of Mathematics and Physics of the Charles University and the Association of Czechoslovak Mathematicians and Physicists.

Organizing committee

- J. Novák (chairman)
- A. Rážek (treasurer)
- Z. Frolík
- J. Hejcman
- M. Hušek
- M. Katětov
- V. Koutník
- V. Pták
- S. Schwarz
- M. Sekanina
- V. Trnková

The Symposium was attended by 217 mathematicians from 24 countries, including 53 from Czechoslovakia. The program consisted of 30 invited talks (11 plenary, 18 semiplenary, 1 in a session for contributed papers), and 135 fifteen minute talks in three or four parallel sessions.

Prague 1976
Document from 1976, 42 years ago

<table>
<thead>
<tr>
<th>Příjmení</th>
<th>Jméno</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAN POEDEROOYEN</td>
<td>GEERTJE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Státní příslušnost</th>
<th>Číslo cest. dokladu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holandsko</td>
<td>OP N 906144</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ubytování od</th>
<th>Počet nocí</th>
</tr>
</thead>
<tbody>
<tr>
<td>22. srpna</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zaplacenno Kčs slovy</th>
<th>třistasedmdesátom</th>
</tr>
</thead>
<tbody>
<tr>
<td>378</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V Praze dne</th>
<th>Číslo ubytovací pokázky</th>
</tr>
</thead>
<tbody>
<tr>
<td>22. srpna</td>
<td>056</td>
</tr>
</tbody>
</table>

Placenoo USS 37.80

Číslo ubytovací pokázky 056

22.8.1976

Chátrku a podpis
Many weak P-sets

1961

61 years ago!
Many weak P-sets
Many weak P-sets

<table>
<thead>
<tr>
<th>Foreign participants</th>
<th>Toposym 1961</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexandroff (USSR)</td>
<td>Archangelski (USSR)</td>
</tr>
<tr>
<td>Anderson, Arens (USA)</td>
<td>Bessaga, Pełczyński (Poland)</td>
</tr>
<tr>
<td>Bing, Eilenberg (USA)</td>
<td>Borsuk, Engelking (Poland)</td>
</tr>
<tr>
<td>Csásár, Erdős (Hungary)</td>
<td>Dowker, Mazur (UK)</td>
</tr>
<tr>
<td>de Groot (the Netherlands)</td>
<td>Kuratowski (Poland)</td>
</tr>
<tr>
<td>Isbell, Klee, Wallace (USA)</td>
<td>Lejeune, Hakim (France)</td>
</tr>
<tr>
<td>Nagata, Shirotot (Japan)</td>
<td>Chogoshvili (Georgia)</td>
</tr>
</tbody>
</table>
interesting communications. In this connection, the participation of young mathematicians from different countries who contributed in a substantial way to the scientific programme should be mentioned.

The Symposium was held in an atmosphere of friendship and contributed to the establishment and strengthening of personal contacts between the scientists from different countries.

The Organizing Committee has the pleasant duty to express its most sincere thanks to the International Mathematical Union, to the Czechoslovak Academy of Sciences, to all participants and to all those who contributed to the success of the Symposium.
Many weak P-sets

REPORT OF THE ORGANIZING COMMITTEE

interesting communications. In this connection, the participation of young mathematicians from different countries who contributed in a substantial way to the scientific programme should be mentioned.

The Symposium was held in an atmosphere of friendship and contributed to the establishment and strengthening of personal contacts between the scientists from different countries.

The Organizing Committee has the pleasant duty to express its most sincere thanks to the International Mathematical Union, to the Czechoslovak Academy of Sciences, to all participants and to all those who contributed to the success of the Symposium.

- **Prague was (and stayed) the perfect bridge between the East and the West, it brought people together in a divided world 61 years ago!**
interesting communications. In this connection, the participation of young mathematicians from different countries who contributed in a substantial way to the scientific programme should be mentioned.

The Symposium was held in an atmosphere of friendship and contributed to the establishment and strengthening of personal contacts between the scientists from different countries.

The Organizing Committee has the pleasant duty to express its most sincere thanks to the International Mathematical Union, to the Czechoslovak Academy of Sciences, to all participants and to all those who contributed to the success of the Symposium.

- **Prague was (and stayed) the perfect bridge between the East and the West, it brought people together in a divided world 61 years ago!**

- **Let us express hope that the war in Ukraine will not result in such a division again!**
Many weak P-sets
Many weak P-sets

- \mathbb{N} is the *discrete* space of natural numbers.
\(\mathbb{N} \) is the *discrete* space of natural numbers.

\(\beta \mathbb{N} \) is its \(\check{\text{C}} \)ech-Stone compactification.
• \mathbb{N} is the *discrete* space of natural numbers.
• $\beta\mathbb{N}$ is its Čech-Šteone compactification.
• That is, $\beta\mathbb{N}$ is the unique compactification of \mathbb{N} such that any two disjoint subsets of \mathbb{N} have disjoint closures in $\beta\mathbb{N}$.
- \(\mathbb{N} \) is the \textit{discrete} space of natural numbers.
- \(\beta \mathbb{N} \) is its \textit{Čech-Stone compactification}.
- That is, \(\beta \mathbb{N} \) is the unique compactification of \(\mathbb{N} \) such that any two disjoint subsets of \(\mathbb{N} \) have disjoint closures in \(\beta \mathbb{N} \).
- \(\beta \mathbb{N} \) is the \textit{Stone space} \(\text{st}(\mathcal{P}(\mathbb{N})) \) of the Boolean algebra \(\mathcal{P}(\mathbb{N}) \) (Hence \(\beta \mathbb{N} \) is \textit{zero-dimensional}).
- \mathbb{N} is the *discrete* space of natural numbers.
- $\beta\mathbb{N}$ is its Čech-Stone *compactification*.
- That is, $\beta\mathbb{N}$ is the unique compactification of \mathbb{N} such that any two disjoint subsets of \mathbb{N} have disjoint closures in $\beta\mathbb{N}$.
- $\beta\mathbb{N}$ is the *Stone space* $\text{st}(\mathcal{P}(\mathbb{N}))$ of the Boolean algebra $\mathcal{P}(\mathbb{N})$ (Hence $\beta\mathbb{N}$ is *zero-dimensional*).
- $\mathbb{N}^* = \beta\mathbb{N} \setminus \mathbb{N}$.
Many weak P-sets

- \mathbb{N} is the *discrete* space of natural numbers.
- $\beta\mathbb{N}$ is its *Čech-Stone compactification*.
- That is, $\beta\mathbb{N}$ is the unique compactification of \mathbb{N} such that any two disjoint subsets of \mathbb{N} have disjoint closures in $\beta\mathbb{N}$.
- $\beta\mathbb{N}$ is the *Stone space* $\text{st}(\mathcal{P}(\mathbb{N}))$ of the Boolean algebra $\mathcal{P}(\mathbb{N})$ (Hence $\beta\mathbb{N}$ is *zero-dimensional*).
- $\mathbb{N}^* = \beta\mathbb{N} \setminus \mathbb{N}$.
- $\beta\mathbb{N}$ surfaces at many places in mathematics: topology, set theory, logic, analysis, algebra, etc.
• \mathbb{N} is the \textit{discrete} space of natural numbers.
• $\beta\mathbb{N}$ is its \textit{Čech-Stone compactification}.

That is, $\beta\mathbb{N}$ is the unique compactification of \mathbb{N} such that any two disjoint subsets of \mathbb{N} have disjoint closures in $\beta\mathbb{N}$.

• $\beta\mathbb{N}$ is the \textit{Stone space} $\text{st}(\mathcal{P}(\mathbb{N}))$ of the Boolean algebra $\mathcal{P}(\mathbb{N})$ (Hence $\beta\mathbb{N}$ is \textit{zero-dimensional}).
• $\mathbb{N}^* = \beta\mathbb{N} \setminus \mathbb{N}$.

• $\beta\mathbb{N}$ surfaces at many places in mathematics: topology, set theory, logic, analysis, algebra, etc.

• In the ‘old’ days there was a lot of interest in the individual \textit{points} of $\beta\mathbb{N}$.
Many weak P-sets

- \mathbb{N} is the *discrete* space of natural numbers.
- $\beta\mathbb{N}$ is its *Čech-Stone compactification*.
- That is, $\beta\mathbb{N}$ is the unique compactification of \mathbb{N} such that any two disjoint subsets of \mathbb{N} have disjoint closures in $\beta\mathbb{N}$.
- $\beta\mathbb{N}$ is the *Stone space* $\text{st}(\mathcal{P}(\mathbb{N}))$ of the Boolean algebra $\mathcal{P}(\mathbb{N})$ (Hence $\beta\mathbb{N}$ is *zero-dimensional*).
- $\mathbb{N}^* = \beta\mathbb{N} \setminus \mathbb{N}$.
- $\beta\mathbb{N}$ surfaces at many places in mathematics: topology, set theory, logic, analysis, algebra, etc.
- In the ‘old’ days there was a lot of interest in the individual *points* of $\beta\mathbb{N}$.
- Walter Rudin proved that \mathbb{N}^* is not *homogeneous* under CH. That is, there are two points in \mathbb{N}^* that have different topological behavior in \mathbb{N}^*. Frolík proved this in ZFC. Shelah proved that Rudin’s method does not work in ZFC alone.
A definitive result was proved by Kunen in 1978: \mathbb{N}^* contains a so-called weak P-point. That is a point $p \in \mathbb{N}^*$ such that $p \notin \overline{A}$, where A is any countable subset of $\mathbb{N}^* \setminus \{p\}$.
A definitive result was proved by Kunen in 1978: \(\mathbb{N}^* \) contains a so-called *weak P-point*. That is a point \(p \in \mathbb{N}^* \) such that \(p \notin \overline{A} \), where \(A \) is any countable subset of \(\mathbb{N}^* \setminus \{p\} \).

If \(A \subseteq \mathbb{N}^* \) is any countably infinite set, then there exists \(q \in \overline{A} \setminus A \), hence \(q \) is not a weak P-point.
All points in \mathbb{N}^* are topologically homeomorphic (deep theorem), but there are points p and q in \mathbb{N}^* with obvious different topological behavior.
All points in \(\mathbb{N}^* \) are topologically homeomorphic (deep theorem), but there are points \(p \) and \(q \) in \(\mathbb{N}^* \) with obvious different topological behavior.

Kunen’s brilliant proof was generalized in several directions. For example instead of \textit{weak P-points} one can create certain \textit{weak P-sets} in \(\mathbb{N}^* \) (Dow, Simon, vM).
All points in \mathbb{N}^* are topologically homeomorphic (deep theorem), but there are points p and q in \mathbb{N}^* with obvious different topological behavior.

Kunen’s brilliant proof was generalized in several directions. For example instead of weak P-points one can create certain weak P-sets in \mathbb{N}^* (Dow, Simon, vM).

So we can sometimes replace ‘point’ by ‘interesting subspace’. By doing that, we enter a new arena and in some cases open a can of worms.
All points in \mathbb{N}^* are topologically homeomorphic (deep theorem), but there are points p and q in \mathbb{N}^* with obvious different topological behavior.

Kunen’s brilliant proof was generalized in several directions. For example instead of *weak P-points* one can create certain *weak P-sets* in \mathbb{N}^* (Dow, Simon, vM).

So we can sometimes replace ‘point’ by ‘interesting subspace’. By doing that, we enter a new arena and in some cases open a can of worms.

For the ’interesting subspaces’ A and B of \mathbb{N}^*, we can ask:

1. Are A and B topologically homeomorphic?
2. If they are, are they placed in the same way in \mathbb{N}^*?
All points in \(\mathbb{N}^* \) are topologically homeomorphic (deep theorem), but there are points \(p \) and \(q \) in \(\mathbb{N}^* \) with obvious different topological behavior.

Kunen’s brilliant proof was generalized in several directions. For example instead of \textit{weak P-points} one can create certain \textit{weak P-sets} in \(\mathbb{N}^* \) (Dow, Simon, vM).

So we can sometimes replace ‘point’ by ‘interesting subspace’. By doing that, we enter a new arena and in some cases open a can of worms.

For the ’interesting subspaces’ \(A \) and \(B \) of \(\mathbb{N}^* \), we can ask:

1. Are \(A \) and \(B \) topologically homeomorphic?
2. If they are, are they placed in the same way in \(\mathbb{N}^* \)?

Let us identify an ‘interesting subspace’ of \(\mathbb{N}^* \).
Many weak P-sets

- All points in \mathbb{N}^* are topologically homeomorphic (deep theorem), but there are points p and q in \mathbb{N}^* with obvious different topological behavior.

- Kunen’s brilliant proof was generalized in several directions. For example instead of weak P-points one can create certain weak P-sets in \mathbb{N}^* (Dow, Simon, vM).

- So we can sometimes replace ‘point’ by ‘interesting subspace’. By doing that, we enter a new arena and in some cases open a can of worms.

- For the ‘interesting subspaces’ A and B of \mathbb{N}^*, we can ask:
 1. Are A and B topologically homeomorphic?
 2. If they are, are they placed in the same way in \mathbb{N}^*?

- Let us identify an ‘interesting subspace’ of \mathbb{N}^*.

- A subspace of \mathbb{N}^* that is homeomorphic to \mathbb{N}^* is certainly ‘interesting’.
All points in \mathbb{N}^* are topologically homeomorphic (deep theorem), but there are points p and q in \mathbb{N}^* with obvious different topological behavior.

Kunen’s brilliant proof was generalized in several directions. For example instead of weak P-points one can create certain weak P-sets in \mathbb{N}^* (Dow, Simon, vM).

So we can sometimes replace ‘point’ by ‘interesting subspace’. By doing that, we enter a new arena and in some cases open a can of worms.

For the ’interesting subspaces’ A and B of \mathbb{N}^*, we can ask:

1. Are A and B topologically homeomorphic?
2. If they are, are they placed in the same way in \mathbb{N}^*?

Let us identify an ‘interesting subspace’ of \mathbb{N}^*.

A subspace of \mathbb{N}^* that is homeomorphic to \mathbb{N}^* is certainly ‘interesting’.

Are there such subspaces, besides \mathbb{N}^* itself?
Every proper nonempty clopen subspace of \mathbb{N}^* is homeomorphic to $\overline{\mathbb{N}}^*$.

Van Douwen called such copies of \mathbb{N}^* in \mathbb{N}^* trivial.

Around 1980 (our best guess) he asked: is there a nowhere dense copy of \mathbb{N}^* in \mathbb{N}^* that is not trivial?

Reformulating: is there a nowhere dense copy of \mathbb{N}^* in \mathbb{N}^* that is not placed in \mathbb{N}^* in a trivial way?
Many weak P-sets

- Every proper nonempty clopen subspace of \mathbb{N}^* is homeomorphic to \mathbb{N}^*.
- Are there copies of \mathbb{N}^* in \mathbb{N}^* that have empty interior in \mathbb{N}^*?

van Douwen called such copies of \mathbb{N}^* in \mathbb{N}^* trivial. Around 1980 (our best guess) he asked: is there a nowhere dense copy of \mathbb{N}^* in \mathbb{N}^* that is not placed in \mathbb{N}^* in a trivial way?
Every proper nonempty clopen subspace of \mathbb{N}^* is homeomorphic to \mathbb{N}^*.

Are there copies of \mathbb{N}^* in \mathbb{N}^* that have empty interior in \mathbb{N}^*?

van Douwen called such copies of \mathbb{N}^* in \mathbb{N}^* trivial.
• Every proper nonempty clopen subspace of \mathbb{N}^* is homeomorphic to \mathbb{N}^*.
• Are there copies of \mathbb{N}^* in \mathbb{N}^* that have empty interior in \mathbb{N}^*?

• van Douwen called such copies of \mathbb{N}^* in \mathbb{N}^* trivial.
• Around 1980 (our best guess) he asked: is there a nowhere dense copy of \mathbb{N}^* in \mathbb{N}^* that is not trivial?
- Every proper nonempty clopen subspace of \mathbb{N}^* is homeomorphic to \mathbb{N}^*.
- Are there copies of \mathbb{N}^* in \mathbb{N}^* that have empty interior in \mathbb{N}^*?

van Douwen called such copies of \mathbb{N}^* in \mathbb{N}^* trivial.

Around 1980 (our best guess) he asked: is there a nowhere dense copy of \mathbb{N}^* in \mathbb{N}^* that is not trivial?

Reformulating: is there a nowhere dense copy of \mathbb{N}^* in \mathbb{N}^* that is not placed in \mathbb{N}^* in a trivial way?
Theorem (Dow (2014))

There is a nontrivial nowhere dense copy of \mathbb{N}^* in \mathbb{N}^*.

1. An Aronszajn tree is a tree of uncountable height with no uncountable branches and no uncountable levels.
2. Here 'nice' means that for every $F \in \mathcal{F}$, the set $\{ n \in \mathbb{N} : F \cap (\{n\} \times 2^{\omega}) = \emptyset \}$ is finite.
Many weak P-sets

Theorem (Dow (2014))

There is a nontrivial nowhere dense copy of \mathbb{N}^* in \mathbb{N}^*.

- Dow used an Aronszajn tree in $2^{<\omega_1}$ to prove the existence of a so-called *nontrivial, maximal, nice* closed filter \mathcal{F} on $\mathbb{N} \times 2^{\omega_1}$.

An Aronszajn tree is a tree of uncountable height with no uncountable branches and no uncountable levels.

Here 'nice' means that for every $F \in \mathcal{F}$, the set $\{n \in \mathbb{N} : F \cap (\{n\} \times 2^{\omega_1}) = \emptyset\}$ is finite.
Many weak P-sets

Theorem (Dow (2014))

There is a nontrivial nowhere dense copy of \mathbb{N}^ in \mathbb{N}^*.***

Dow used an Aronszajn tree in $2^{<\omega_1}$ to prove the existence of a so-called *nontrivial, maximal, nice* closed filter \mathcal{F} on $\mathbb{N} \times 2^{\omega_1}$.

1. (An *Aronszajn tree* is a tree of uncountable height with no uncountable branches and no uncountable levels.)
Many weak P-sets

Theorem (Dow (2014))

There is a nontrivial nowhere dense copy of \mathbb{N}^* in \mathbb{N}^*.

- Dow used an Aronszajn tree in $2^{<\omega_1}$ to prove the existence of a so-called *nontrivial, maximal, nice* closed filter \mathcal{F} on $\mathbb{N} \times 2^{\omega_1}$.
 1. (An *Aronszajn tree* is a tree of uncountable height with no uncountable branches and no uncountable levels.)
 2. Here ‘nice’ means that for every $F \in \mathcal{F}$, the set $\{n \in \mathbb{N} : F \cap (\{n\} \times 2^{\omega_1}) = \emptyset\}$ is finite.
Many weak P-sets

Theorem (Dow (2014))

There is a nontrivial nowhere dense copy of \mathbb{N}^* in \mathbb{N}^*.

- Dow used an Aronszajn tree in $2^{<\omega_1}$ to prove the existence of a so-called *nontrivial, maximal, nice* closed filter F on $\mathbb{N} \times 2^{\omega_1}$.

1. Here ‘nontrivial’ means that for all $x_n \in 2^{\omega_1}$, $n \in \mathbb{N}$, there exists $F \in F$ such that $\{n \in \mathbb{N} : (n, x_n) \notin F\}$ is infinite.
Many weak P-sets

Theorem (Dow (2014))

There is a nontrivial nowhere dense copy of \mathbb{N}^ in \mathbb{N}^*.***

- Dow used an Aronszajn tree in $2^{<\omega_1}$ to prove the existence of a so-called *nontrivial, maximal, nice* closed filter \mathcal{F} on $\mathbb{N} \times 2^{\omega_1}$.

 Here ‘maximal’ means that if for every $n \in \mathbb{N}$, $\{C_0^n, C_1^n\}$ is a clopen partition of 2^{ω_1}, there exist $F \in \mathcal{F}$ and $f \in 2^\mathbb{N}$ such that for every n, $F \cap (\{n\} \times 2^{\omega_1}) \subseteq \{n\} \times C^n_{f(n)}$.
Let $Y = \beta(\mathbb{N} \times 2^{\omega_1})$, the Čech-Stone compactification of $\mathbb{N} \times 2^{\omega_1}$.
Let \(Y = \beta(\mathbb{N} \times 2^{\omega_1}) \), the Čech-Stone compactification of \(\mathbb{N} \times 2^{\omega_1} \).

Then, as Dow showed, \(K_F = \bigcap_{F \in \mathcal{F}} \overline{F} \) is a ‘nontrivial’ copy of \(\mathbb{N}^* \) in \(\beta Y \).
Many weak P-sets

Let $Y = \beta(\mathbb{N} \times 2^{\omega_1})$, the Čech-Stone compactification of $\mathbb{N} \times 2^{\omega_1}$.

Then, as Dow showed, $K_F = \bigcap_{F \in \mathcal{F}} \overline{F}$ is a ‘nontrivial’ copy of \mathbb{N}^* in βY.

We are not done since Y does not embed in \mathbb{N}^*.

So instead of in 2^{ω_1}, Dow used $E(2^{\omega_1})$, the projective cover (or absolute) of 2^{ω_1}. It is an extremally disconnected compact separable space of weight c.

Each node of the Aronszajn tree is associated to a ‘compatible’ ultrafilter of regular open sets in some 2^{α}, for $\alpha < \omega_1$.

This allowed Dow to do the same thing as above in $\beta(\mathbb{N} \times E(2^{\omega_1}))$ instead of $\beta(\mathbb{N} \times 2^{\omega_1})$.

Kunen’s machinery of constructing a weak P-point in \mathbb{N}^* is used to embed $\beta(\mathbb{N} \times E(2^{\omega_1}))$ as a weak P-set in \mathbb{N}^*.
Let $Y = \beta(\mathbb{N} \times 2^{\omega_1})$, the Čech-Stone compactification of $\mathbb{N} \times 2^{\omega_1}$.

Then, as Dow showed, $K_F = \bigcap_{F \in \mathcal{F}} \overline{F}$ is a ‘nontrivial’ copy of \mathbb{N}^* in βY.

We are not done since Y does not embed in \mathbb{N}^*.

So instead of in 2^{ω_1}, Dow used $E(2^{\omega_1})$, the projective cover (or absolute) of 2^{ω_1}. It is an extremally disconnected compact separable space of weight \mathfrak{c}.
Let $Y = \beta(\mathbb{N} \times 2^{\omega_1})$, the Čech-Stone compactification of $\mathbb{N} \times 2^{\omega_1}$.

Then, as Dow showed, $K_F = \bigcap_{F \in F} \overline{F}$ is a ‘nontrivial’ copy of \mathbb{N}^* in βY.

We are not done since Y does not embed in \mathbb{N}^*.

So instead of in 2^{ω_1}, Dow used $E(2^{\omega_1})$, the projective cover (or absolute) of 2^{ω_1}. It is an extremally disconnected compact separable space of weight c.

Each node of the Aronszajn tree is associated to a ‘compatible’ ultrafilter of regular open sets in some 2^α, for $\alpha < \omega_1$.
Let $Y = \beta(N \times 2^{\omega_1})$, the Čech-Stone compactification of $N \times 2^{\omega_1}$.

Then, as Dow showed, $K_\mathcal{F} = \bigcap_{F \in \mathcal{F}} \overline{F}$ is a ‘nontrivial’ copy of N^* in βY.

We are not done since Y does not embed in N^*.

So instead of in 2^{ω_1}, Dow used $E(2^{\omega_1})$, the projective cover (or absolute) of 2^{ω_1}. It is an extremally disconnected compact separable space of weight c.

Each node of the Aronszajn tree is associated to a ‘compatible’ ultrafilter of regular open sets in some 2^{α}, for $\alpha < \omega_1$.

This allowed Dow to do the same thing as above in $\beta(N \times E(2^{\omega_1}))$ instead of $\beta(N \times 2^{\omega_1})$.
Many weak P-sets

- Let $Y = \beta(N \times 2^{\omega_1})$, the Čech-Stone compactification of $N \times 2^{\omega_1}$.
- Then, as Dow showed, $K = \cap_{F \in \mathcal{F}} \overline{F}$ is a ‘nontrivial’ copy of N^* in βY.
- We are not done since Y does not embed in N^*.
- So instead of in 2^{ω_1}, Dow used $E(2^{\omega_1})$, the projective cover (or absolute) of 2^{ω_1}. It is an extremally disconnected compact separable space of weight c.
- Each node of the Aronszajn tree is associated to a ‘compatible’ ultrafilter of regular open sets in some 2^α, for $\alpha < \omega_1$.
- This allowed Dow to do the same thing as above in $\beta(N \times E(2^{\omega_1}))$ instead of $\beta(N \times 2^{\omega_1})$.
- Kunen’s machinery of constructing a weak P-point in N^* is used to embed $\beta(N \times E(2^{\omega_1}))$ as a weak P-set in N^*.
This gives a nontrivial copy of \mathbb{N}^* in \mathbb{N}^* that is contained in a separable closed subspace of \mathbb{N}^*.
Many weak P-sets

- This gives a nontrivial copy of \mathbb{N}^* in \mathbb{N}^* that is contained in a separable closed subspace of \mathbb{N}^*.
- Hence it is not a weak P-set.
Many weak P-sets

- This gives a nontrivial copy of \mathbb{N}^* in \mathbb{N}^* that is contained in a separable closed subspace of \mathbb{N}^*.
- Hence it is not a weak P-set.
- The question of whether there exists a nowhere dense weak P-set copy of \mathbb{N}^* in \mathbb{N}^* was asked before 1990. It was mentioned in the list of open problems on $\beta\mathbb{N}$ by K.P. Hart and vM, published in the *Open Problems in Topology Book* in 1990.

Theorem (Dow and vM)

There is copy of \mathbb{N}^* in \mathbb{N}^* that is a nowhere dense weak P-set.

Instead of $E(2^{\omega_1})$ we use the Stone space of the measure algebra M^{ω_1} on 2^{ω_1}.
• This gives a nontrivial copy of \mathbb{N}^* in \mathbb{N}^* that is contained in a separable closed subspace of \mathbb{N}^*.
• Hence it is not a weak P-set.
• The question of whether there exists a nowhere dense weak P-set copy of \mathbb{N}^* in \mathbb{N}^* was asked before 1990. It was mentioned in the list of open problems on $\beta\mathbb{N}$ by K.P. Hart and vM, published in the *Open Problems in Topology Book* in 1990.

Theorem (Dow and vM)

There is copy of \mathbb{N}^ in \mathbb{N}^* that is a nowhere dense weak P-set.*
This gives a nontrivial copy of \mathbb{N}^* in \mathbb{N}^* that is contained in a separable closed subspace of \mathbb{N}^*.

Hence it is not a weak P-set.

The question of whether there exists a nowhere dense weak P-set copy of \mathbb{N}^* in \mathbb{N}^* was asked before 1990. It was mentioned in the list of open problems on $\beta\mathbb{N}$ by K.P. Hart and vM, published in the *Open Problems in Topology* Book in 1990.

Theorem (Dow and vM)

There is copy of \mathbb{N}^ in \mathbb{N}^* that is a nowhere dense weak P-set.*

Instead of $E(2^{\omega_1})$ we use the Stone space of the measure algebra \mathcal{M}_{ω_1} on 2^{ω_1}.
Many weak P-sets

That space is extremally disconnected, and every countable subset has nowhere dense closure, so it is not separable.
That space is extremally disconnected, and every countable subset has nowhere dense closure, so it is not separable.

We let every node in the Aronszajn tree that we used before correspond to a ‘compatible’ remote point in the Stone space of a certain subalgebra of \mathcal{M}_{ω_1}.
Many weak P-sets

- That space is extremally disconnected, and every countable subset has nowhere dense closure, so it is not separable.
- We let every node in the Aronszajn tree that we used before correspond to a ‘compatible’ remote point in the Stone space of a certain subalgebra of M_{ω_1}.
- A remote point of a space X is a point $p \in \beta X \setminus X$ such that $p \notin \text{cl}_{\beta X} A$, for any nowhere dense subset A of X.
Many weak P-sets

- That space is extremally disconnected, and every countable subset has nowhere dense closure, so it is not separable.
- We let every node in the Aronszajn tree that we used before correspond to a ‘compatible’ \textit{remote point} in the Stone space of a certain subalgebra of \mathcal{M}_{ω_1}.
- A \textit{remote point} of a space X is a point $p \in \beta X \setminus X$ such that $p \notin \text{cl}_{\beta X} A$, for any nowhere dense subset A of X.
- So a remote point of X cannot be ‘reached’ by any nowhere dense subset of X.
Many weak \(P \)-sets

- That space is extremally disconnected, and every countable subset has nowhere dense closure, so it is not separable.
- We let every node in the Aronszajn tree that we used before correspond to a ‘compatible’ remote point in the Stone space of a certain subalgebra of \(\mathcal{M}_{\omega_1} \).
- A remote point of a space \(X \) is a point \(p \in \beta X \setminus X \) such that \(p \not\in \text{cl}_{\beta X} A \), for any nowhere dense subset \(A \) of \(X \).
- So a remote point of \(X \) cannot be ‘reached’ by any nowhere dense subset of \(X \).
- So in the Stone space of our measure algebra, such a point cannot be ‘reached’ by any countable subset of its complement.
Many weak P-sets

- That space is extremally disconnected, and every countable subset has nowhere dense closure, so it is not separable.
- We let every node in the Aronszajn tree that we used before correspond to a ‘compatible’ remote point in the Stone space of a certain subalgebra of M_{ω_1}.
- A remote point of a space X is a point $p \in \beta X \setminus X$ such that $p \notin \text{cl}_{\beta X} A$, for any nowhere dense subset A of X.
- So a remote point of X cannot be ‘reached’ by any nowhere dense subset of X.
- So in the Stone space of our measure algebra, such a point cannot be ‘reached’ by any countable subset of its complement.
- It is known by the work of van Douwen and Chae and Smith that any nonspeudocompact space of countable π-weight has a remote point.
Many weak P-sets

- That space is extremally disconnected, and every countable subset has nowhere dense closure, so it is not separable.
- We let every node in the Aronszajn tree that we used before correspond to a ‘compatible’ remote point in the Stone space of a certain subalgebra of M_{ω_1}.
- A remote point of a space X is a point $p \in \beta X \setminus X$ such that $p \notin \text{cl}_{\beta X} A$, for any nowhere dense subset A of X.
- So a remote point of X cannot be ‘reached’ by any nowhere dense subset of X.
- So in the Stone space of our measure algebra, such a point cannot be ‘reached’ by any countable subset of its complement.
- It is known by the work of van Douwen and Chae and Smith that any nonspeudocompact space of countable π-weight has a remote point.
- We cannot apply that result, but in the case of measure algebras there is an easy way out.
To see this, let X be any compact space, λ a Radon probability measure on X, with the property that $\lambda(A) = 0$ for any nowhere dense $A \subseteq X$. We claim that $\mathbb{N} \times X$ has a remote point.
To see this, let X be any compact space, λ a Radon probability measure on X, with the property that $\lambda(A) = 0$ for any nowhere dense $A \subseteq X$. We claim that $\mathbb{N} \times X$ has a remote point.

Alan and I and possibly others knew about this around 1980, but did not write it down since it is simple and we did not have an ‘application’ for it.
To see this, let X be any compact space, λ a Radon probability measure on X, with the property that $\lambda(A) = 0$ for any nowhere dense $A \subseteq X$. We claim that $\mathbb{N} \times X$ has a remote point.

\[\lambda(F_i) \geq 1 - 2^{-i} \quad \cdots \quad \lambda(F_j) \geq 1 - 2^{-3} \quad \cdots \]

Alan and I and possibly others knew about this around 1980, but did not we write it down since it is simple and we did not have an ‘application’ for it.

Now we do! *Never forget a good result!*
To see this, let X be any compact space, λ a Radon probability measure on X, with the property that $\lambda(A) = 0$ for any nowhere dense $A \subseteq X$. We claim that $\mathbb{N} \times X$ has a remote point.

Alan and I and possibly others knew about this around 1980, but did not write it down since it is simple and we did not have an ‘application’ for it.

Now we do! Never forget a good result!

These are the main ingredients for the (quite involved) proof of the theorem.
Theorem (Dow and vM (2020))

There is a copy X of \mathbb{N}^* in \mathbb{N}^* having the following properties:

1. There is a countable subset E contained in $\mathbb{N}^* \setminus X$ such that the closure of E contains X,

2. for every countable discrete subset F in $\mathbb{N}^* \setminus X$, the closure of F misses X.

Klaas Pieter Hart and myself just completed an update on, and expansion of, our paper Open problems on $\beta\omega$ in the book Open Problems in Topology. See https://arxiv.org/abs/2205.11204. We invite comments, corrections, more problems, ...
Theorem (Dow and vM (2020))

There is a copy X of \mathbb{N}^* in \mathbb{N}^* having the following properties:

1. There is a countable subset E contained in $\mathbb{N}^* \setminus X$ such that the closure of E contains X,

2. For every countable discrete subset F in $\mathbb{N}^* \setminus X$, the closure of F misses X.

Many weak P-sets

Theorem (Dow and vM (2020))

There is a copy X of \mathbb{N}^* in \mathbb{N}^* having the following properties:

1. There is a countable subset E contained in $\mathbb{N}^* \setminus X$ such that the closure of E contains X,

2. for every countable discrete subset F in $\mathbb{N}^* \setminus X$, the closure of F misses X.

- We invite comments, corrections, more problems, ...
Many weak P-sets

THANK YOU!