

Paul Gartside joint work with Hector Barriga-Acosta

TOPOSYM — July, 2022

What are *D*-spaces? What are they good for? Key open problems?

D-Space Definition

Let $X = (X, \tau)$ be a (Tychonoff) space.

Definition A neighbornet is a map $U: X \rightarrow \tau$ such that x is in U(x) for every x.

Definition

A space X is D if for every neighbornet U there is a closed discrete subset E such that $U(E) := \bigcup \{U(x) : x \in E\} = X$.

Compact \Rightarrow *D* metrizable \Rightarrow *D* ω_1 is not *D*

What are **D**-spaces Good For?

Theorem (Grothendieck)

Let X be compact. Then every countably compact subset of $C_p(X)$ is compact.

 $C_p(X) = \text{all cts } f : X \to \mathbb{R}$, pointwise topology countably compact \iff closed discrete subsets are finite

Theorem (Buzyakova) If X compact then $C_p(X)$ is hereditarily D.

Lemma Let Y be a D-space. Then: Y countably compact \Rightarrow compact & L(Y) = e(Y). countably compact \iff closed discrete subsets are finite $e(Y) \le \kappa \iff$ every closed discrete subset has size $\le \kappa$ $L(Y) \le \kappa \iff$ every open cover has a subcover of size $\le \kappa$

Lemma Let Y be a D-space. Then: Y countably compact \Rightarrow compact & L(Y) = e(Y).

Theorem (Gruenhage) If X Lindelöf Σ then $C_p(X)$ is hereditarily D. What Else do we Know about **D**?

There are various results of the type:

if X has тніs *structure then X is D*.

And also:

Theorem Let X be a D-space. Then X is irreducible: every open cover has a minimal open refinement.

Daniel Soukup $\exists X \text{ not } D$, but all closed subsets irreducible. Built using Shelah's club guessing. But *nothing* in the converse direction:

Question Is X a D-space if: Lindelöf, or hereditarily Lindelöf, or paracompact, or meta-Lindelöf?

Are paracompact spaces D?

What are Box and Nabla Products? When are they normal or paracompact? THE Box Product Problem

Definitions

Let $(X_n)_n$ be spaces.

The box product, $\Box_n X_n$, is $\prod_n X_n$ with topology generated by open boxes: $\prod_n U_n$ ($\forall n \ U_n$ open). Write $\Box X^{\omega}$ for $\Box_n X_n$ where $\forall n \ X_n = X$.

Let =* be mod finite equivalence on $\prod_n X_n$. The nabla product, $\nabla_n X_n$, is $(\Box_n X_n) / =^*$. Write ∇X^{ω} for $\nabla_n X_n$ where $\forall n X_n = X$.

Question When are box or nabla products paracompact? normal?

Question (The Box Product Problem (1940s)) Is $\Box [0, 1]^{\omega}$ paracompact?

 $\Box = \Box_n X_n$ and $\nabla = \nabla_n X_n$.

Box and nabla products are typically *not* paracompact if at least one factor is not compact

(ZFC) If all factors are compact but 'large' then \Box and ∇ need not be paracompact

When all factors are compact the quotient map \Box to ∇ is closed with σ -compact fibres

Hence \Box is paracompact iff ∇ is paracompact

Consistently box and nabla products of compact metrizable spaces are paracompact

(CH) Box and nabla products of compact scattered spaces are paracompact

 $\Box = \Box_n X_n$ and $\nabla = \nabla_n X_n$.

 \star (ZFC) If all factors are compact but 'large' then \Box and ∇ need not be paracompact

When all factors are compact the quotient map \Box to ∇ is closed with σ -compact fibres

Hence \Box is paracompact iff ∇ is paracompact

Consistently box and nabla products of compact metrizable spaces are paracompact

(CH) Box and nabla products of compact scattered spaces are paracompact

 $\Box = \Box_n X_n$ and $\nabla = \nabla_n X_n$.

- (ZFC) If all factors are compact but 'large' then \Box and ∇ need not be paracompact
- When all factors are compact the quotient map \Box to ∇ is \star closed with σ -compact fibres

Hence \Box is paracompact iff ∇ is paracompact

- Consistently box and nabla products of compact metrizable spaces are paracompact

(CH) Box and nabla products of compact scattered spaces are paracompact

 $\Box = \Box_n X_n$ and $\nabla = \nabla_n X_n$.

- (ZFC) If all factors are compact but 'large' then \Box and ∇ need not be paracompact
 - When all factors are compact the quotient map \Box to ∇ is closed with σ -compact fibres

Hence \Box is paracompact iff ∇ is paracompact

Consistently box and nabla products of compact metrizable spaces are paracompact

(CH) Box and nabla products of compact scattered spaces are paracompact

 $\Box = \Box_n X_n$ and $\nabla = \nabla_n X_n$.

- (ZFC) If all factors are compact but 'large' then \Box and ∇ need not be paracompact
 - When all factors are compact the quotient map \Box to ∇ is closed with σ -compact fibres

Hence \Box is paracompact iff ∇ is paracompact

Consistently box and nabla products of compact metrizable spaces are paracompact

(CH) Box and nabla products of compact scattered spaces are paracompact

We lack:

Consistent examples – to match the consistent theorems ZFC theorems – to balance the ZFC examples

When are box or nabla products *D*-spaces?

Special interest:

theorems in ZFC, and when we know \Box or ∇ is paracompact

Scattered spaces,

of compact not D, 'small' or 'nice' spaces

Summary - Scattered Spaces

Theorem Let X be hereditarily paracompact and scattered. Then $\Box X^{\omega}$ and ∇X^{ω} are hereditarily D.

Theorem Let X be scattered of finite height. Then $\Box X^{\omega}$ and ∇X^{ω} are hereditarily D.

Theorem Let $(X_n)_n$ be scattered spaces with bounded finite scattered height. Then $\Box_n X_n$ and $\nabla_n X_n$ are hereditarily D.

Example

There is a sequence $(X_n)_n$ of spaces where X_n is scattered of height n, but $\nabla_n X_n$ is not D.

Topological Partial Orders

A partial order, \leq , on space *X* is topological if down-sets, $\downarrow x := \{y : y \leq x\}$, are open.

Proposition

Let X have a topological partial order \leq .

(1) If every up-set, $\uparrow x$, is D then X is D.

(2) If every up-set is hereditarily D then X is hereditarily D.

Example

Let *X* be scattered. Define $x \preceq_{sc} y$ iff x = y or ht(x) < ht(y). Then \preceq_{sc} is topological.

Hereditarily Paracompact and Scattered

Lemma

For every hereditarily paracompact scattered space X there is a topological partial order \preceq_X such that every up-set, $\uparrow x$, is finite

Theorem Let X be hereditarily paracompact and scattered. Then $\Box X^{\omega}$ and ∇X^{ω} are hereditarily D.

Consider the product partial order, \preceq^{ω}_{χ} . Down-set is product of down-sets... hence open. Up-set is product of up-sets... hence discrete, and so *D*.

Finite Scattered Height

Theorem Let X be scattered of finite height. Then $\Box X^{\omega}$ and ∇X^{ω} are hereditarily D

Consider the product partial order, \preceq^{ω}_{sc} . Proceed by induction on scattered height.

Liang-Xue Peng: $\Box X^{\omega}$ is *D* if *X* is scattered of finite height.

Theorem Let $(X_n)_n$ be scattered spaces with bounded finite scattered height. Then $\Box_n X_n$ and $\nabla_n X_n$ are hereditarily D.

Example

There is a sequence $(X_n)_n$ of spaces where X_n is scattered of height n, but $\nabla_n X_n$ is not D.

Lemma If X is the increasing union of X_n 's then X_δ embeds as a closed set in $\nabla_n X_n$.

Example

There is a *P*-space *X* which is the increasing union of subspaces X_n where each X_n is scattered of height *n*, but *X* is not *D*.

The example is built from a 'base' space *B*. $B = \{0, 1\}^{\beth_{\omega_1}}$ with $< \beth_{\omega_1}$ boxes!

Box of Compact Not **D**

We have two examples of...

Example

There are compact *X* such that $\Box X^{\omega}$ (and ∇X^{ω}) is not *D*.

Specifically, $X = \{0, 1\}^{c^+}$ works.

A modified version of our scattered example above embeds as a closed set in ∇ .

Summary - 'Small' Spaces, Consistently

Theorem (Model Hypothesis) The nabla product of first countable spaces of size $\leq c$ is hereditarily D. Hence, the box product of compact, first countable spaces is D.

The *Model Hypothesis*: For some κ , $H(\mathfrak{c})$ is the increasing union of H_{α} 's, for $\alpha < \kappa$, where each H_{α} is an elementary submodel of $(H(\mathfrak{c}), \in)$ and each $H_{\alpha} \cap \omega^{\omega}$ is not \leq^* -cofinal.

Theorem ($\mathfrak{d} = \omega_1$)

(a) If X has weight ≤ ω₁ then ∇X^ω is hereditarily D.
(b) If X is compact and has weight ≤ ω₁ then □X^ω is D.

Theorem

Let X be a metrizable space. Then ∇X^{ω} is hereditarily D. If X has weight no more than \mathfrak{d} then $\Box X^{\omega}$ is hereditarily D.

Theorem

Let X be a first countable space with weight no more than \mathfrak{d} and strictly less than \aleph_{ω} . Then ∇X^{ω} is hereditarily D.

Conclusions and Reference

- \star Box and nabla products of compacta need not be D
- ★ In all cases we (consistently) know a box or nabla product is paracompact we now know it is D (often hereditarily)
- ★ For a wide variety of spaces their box and nabla products are *D* (often hereditarily) in **ZFC**

Question

Is the box product of compact scattered spaces D? Are nabla products of compact scattered spaces hereditarily D? At least true under (CH)?

Box and Nabla Products that are D-Spaces

Hector A. Barriga-Acosta, Paul M. Gartside arXiv:2111.10482 https://arxiv.org/abs/2111.10482