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Compact sets of the first Baire class
Given a Polish space X , we let B1(X ) denote the collection of
Baire-class-1 functions on X with the topology induced from RX .

We are interested in compact subspaces of B1(X ).
Let BC1 denote this class of compacta.

Theorem (Rosethal 1977, Odell-Rosenthal 1979)

Let E be a separable Banach space.

I `1 6↪→ E iff BE∗∗ ⊆ B1(BE∗).

I `1 6↪→ E iff BE is sequentially dense in BE∗∗ .

Example

I If E is a separable Banach space such that `1 6↪→ E then BE∗∗

is a separable compact set of the first Baire class.

I The Helly space of monotone maps from [0, 1] into [0, 1] is
another separable compact convex set of the first Baire class.
Note that Helly space is moreover first countable.
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Topological properties

Theorem (Rosenthal, 1977)

Every compact set of the first Baire class is countably tight and
sequentially compact.

Theorem (Bourgain-Fremlin-Talagrand 1978)

Every compact set of the first Baire class has the
Fréchet-Urysohn property

Theorem (Bourgain 1978)

Every compact set K of the first Baire class has a Gδ-point

Question (Bourgain 1978)

Is the set of Gδ-points comeager in K?

Theorem (T., 1999)

Every compact set of the first Baire class has a dense metrizable
subspace.
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Basis problem for BC1-compacta

Question
Is there a finite list C of BC1-compacta that determines the class
of metrizable compacta?

Here determines refers to the specific condition:
A BC1-compactum is metrizable iff it contains no copy of any
space from C.

Example

I The split interval S(I ) is a BC1-compactum which contains
no uncountable metrizable subspace.

I The Alexandrov duplicate D(I ) of the unit interval I is an
example of a first countable non-metrizable
BC1-compactum.

I The Cantor tree compactum C (2<N) = 2<N ∪ 2N ∪ {∞} is
a non-metrizable BC1-compactum with the point at infinity as
the single non Gδ-point
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Gδ points and the Cantor tree compactum

Theorem (T., 1999)

Suppose that K is a BC1-compactum, D a dense subset of K, and
that x is a non-Gδ-point of K. Then there is a topological
embedding

Φ : 2<N ∪ 2N ∪ {∞} → K

of the Cantor tree space C (2<N) into K such that

Φ[2<N] ⊆ D and Φ(∞) = x .

Theorem
A BC1-compactum is first countable iff it contains no C (2<N).

Application:

Theorem (Argyros-Dodos-Kanellopoulos 2008)

Every dual Banach space has a separable quotient.
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Separable BC1-compacta

Theorem (T., 1999)

Every separable nonmetrizable BC1-compactum contains a
topological copy of one of the three compacta

S(2N),Dsep(2N),C (2<N).

where Dsep(2N) is the natural separable version of the Alexandrov
duplicate of the Cantor set.

Question
Can one characterize some natural classes of separable
BC1-compacta using some of the three basic compacta?

Theorem (T., 1999)

Every hereditarily separable non-metrizable BC1-compactum
contains S(2N).
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Open degrees

Definition
Fix a compactum K . The open degree of K, if it exists, is the
least positive integer n for which we can find a countable family F
of open subsets of K such that for every one-to-one
(n + 1)-sequence
x0, ..., xn ∈ K there exist V0, ...,Vn ∈ F such that:

I xi ∈ Vi for all i ≤ n,

I
⋂n

0 Vi = ∅.
Put odeg(K ) =∞ if such n does not exist.

Example

odeg(S(2N)) = odeg(D(2N)) = odeg(C (2<N)) = 2.

Proposition

odeg(K ) = 1 iff K is metrizable.
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Co-zero degrees

Definition
For a compactum K , the co-zero degree of K, if it exists, is the
least positive integer n for which we can find a countable family F
of open Fσ-subsets of K such that
for every one-to-one (n + 1)-sequence
x0, ..., xn ∈ K there exist V0, ...,Vn ∈ F such that:

I xi ∈ Vi for all i ≤ n,

I
⋂n

0 Vi = ∅.
Put cozdeg(K ) =∞ if such n does not exist.

Example

cozdeg(S(2N)) = cozdeg(D(2N)) = 2 but cozdeg(C (2<N)) =∞.
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Proposition

cozdeg(K ) ≤ n iff there is a continuous map f : K → M from K
into some metric space M such that |f −1(x)| ≤ n for all x ∈ M.

Theorem (T., 1999)

Let K be a separable BC1-compactum. Then either

I K contains a discrete subspace of cardinality continuum,
or

I there is a continuous map f : K → M from K into some
metric space M such that |f −1(x)| ≤ 2 for all x ∈ M,
i.e., cozdeg(K ) ≤ 2.
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An array of basis problems

Proposition

A BC1-compactum K is non-metrizable iff odeg(K ) ≥ 2.

Corollary

The class of separable BC1-compacta of open degree at least 2 has
the 3-element basis

S(2N),Dsep(2N),C (2<N).

Question
Can a similar basis result be proved for other open degrees?

Question
Are there any basis results for co-zero degrees?
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A new finite basis theorem

Theorem (Aviles-T., 2015)

For every positive integer n, the class of BC1-compacta of open
degree ≥ n has a finite basis that can be described explicitly.

Example

I The class of BC1-compacta of open degree ≥ 2 has a
3-element basis.

I The class of BC1-compacta of open degree ≥ 3 has a
4-element basis.

I The class of BC1-compacta of open degree ≥ 4 has a
8-element basis.

Problem
Investigate the topological properties of the basic compacta and
the corresponding classes of compacta they determine.
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is a continuous onto map. Then there is K0 ⊆ K homeomorphic to
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f � K0 is one-to-one.
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Details from the proof of the finite basis theorem

Definition
A topological space X is bi-sequential if for every ultrafilter U on
X converging to a point x ∈ X there is a sequence An of elements
of U converging to x.

Theorem (Pol 1984, Debs 1987)

Every BC1-compactum is bi-sequential.

Corollary (Knaust 1991)

Every BC1-compactum has the weak diagonal sequence
property, i.e., if xn is a sequence of elements of K converging to a
point x ∈ K and if for every n, we have a sequence xmn converging
to xn then there is infinite N ⊆ ω and for each n ∈ N an infinite
set Mn ⊆ ω such that

{xmn : n ∈ N,m ∈ Mn} → x .
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Extension Theorem

Theorem
Suppose that K0 and K1 are two bi-sequential spaces and that D0

is a dense subset of K0. Suppose

f : K0 → K1

has the property that sequences in D0 that converge to the same
point in K0 are map to sequences that converge to the same pint
in K1.
Then f extends to a continuous function

f̄ : K0 → K1.
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Trees and open degrees

Lemma
Let K be a separable BC1-compactum of open degree ≥ m and let
D be a countable dense subset of K. Then there is a one-to one
mapping

f : m<N → D

such that

{f (t) : t _ i v z} ∩ {f (t) : t _ j v z} = ∅

for all i < j < m.

Remark
So, in order to apply the Extension Theorem we need to:

I assign BC1-compacta to trees of the form m<N,

I develop the corresponding Ramsey-theory on trees.
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A Ramsey theorem for trees m<N

Let v denote the usual end-extension ordering of the tree m<N

and ≺ its ω-ordering (first by the ordering of lenghts and then by
the lexicographical ordering).
〈〈A〉〉 = {s ∧ t : s, t ∈ A} is the meet-closure of A ⊆ m<N.
If r = s ∧ t 6∈ {s, t} then r_i v s and r_j v t for distinct
i , j ∈ m. In that case, we define the incidence as inc(s, t) = (i , j).

Definition
Sets A,B ⊂ m<ω are equivalent, A ≈ B, if there is a bijection
f : 〈〈A〉〉 → 〈〈B〉〉 such that for every t, s ∈ 〈〈A〉〉
I a ∈ A iff f (a) ∈ B

I f (t ∧ s) = f (t) ∧ f (s)

I f (t) ≺ f (s) if and only if t ≺ s

I If i ∈ m is such that t_i v s, then f (t)_i v f (s).

An (i , j)-comb is a subset A ⊆ m<ω such that

A ≈ {(j), (iij), (iiiij), (iiiiiij), . . .}.
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A basic Ramsey tool

Theorem
Fix a set A0 ⊆ m<N, and a partition

{A ⊆ m<N : A ≈ A0} = P1 ∪ · · · ∪ Pk

into finitely many sets with the property of Baire. Then there
exists a subtree T ⊆ m<N equivalent to m<N such that the family
{A ⊆ T : A ≈ A0} is contained in a single piece of the partition.

Remark
So if there are BC1-compactifications of m<N ( taken with its
discrete topology) in which all combs of the tree m<N are
convergent, we are halfway to proving the basis theorem.
The finite basis is to be found in the class of all such
compactifications of m<N.
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BC1-compactifications of m<N

Given a partition P of m ×m, define the Polish space
XP := m<ω ∪mω ×P as follows:

I m<N is considered as a countable discrete space,

I mN is considered with its product topology,

I P is considered as a finite discrete space,

I mN ×P is given the product topology,

I XP = m<N ∪mN ×P is given the disjoint sum topology.

For s ∈ m<N let fs : XP → {0, 1} be given by

fs(t) =

{
1 if t ≤ s

0 otherwise
for t ∈ m<ω,

fs(y ,Q) =

{
1 if inc(y , s) ∈ Q

0 if inc(y , s) 6∈ Q
for (y ,Q) ∈ mω ×P
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Definition
The compact space K1(P) is the pointwise closure of
{fs : s ∈ m<N} in {0, 1}XP .

To describe the points of K1(P), for every (x ,P) ∈ mN ×P, we
attach a function f(x ,P) : XP → {0, 1} given by

f(x ,P)(t) =

{
1 if t ≤ x

0 otherwise
for t ∈ m<N

f(x ,P)(y ,Q) =


1 if x = y , P = Q

0 if x = y , P 6= Q

1 if x 6= y , inc(y , x) ∈ Q

0 if x 6= y , inc(y , x) 6∈ Q

for (y ,Q) ∈ mN ×P
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Proposition

For (i , j) ∈ P ∈ P :

I If {s0, s1, . . .} ⊂ m<ω is an (i , j)-sequence over x ∈ mN

(i.e., enumeration of an (i , j)-comb converging to x), then

lim
k

fsk = f(x ,P).

I If {x0, x1, . . .} ⊂ mω is an (i , j)-sequence over x ∈ mN, and we
choose any Pk ∈ P, then

lim
k

f(xk ,Pk ) = f(x ,P).

Proposition

K1(P) = {fs : s ∈ m<N} ∪ {f(x ,P) : (x ,P) ∈ mN ×P}.

The points fs are isolated and the points f(x .P) are Gδ-points, so
K1(P) is a first-countable space.
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Proposition

If the subtree T ⊆ m<N is equivalent to m<N, then the closure of
{ft : t ∈ T} is naturally homeomorphic to the whole space K1(P).

Example

When m = 2, we have the following two natural partitions of 2× 2
and the corresponding separable BC1-compacta:

I Let P0
2 = {{(0, 0), (1, 1), (1, 0)}, {(0, 1)}} Then the space

K1(P0
2) both contains and is contained in the split interval.

I Let P1
2 = {{(0, 0)}, {(0, 1), (1, 0), (1, 1)}}. Then

{f(x ,P) : x ∈ 2ω,P ∈ P1
2}

is homeomorphic to the Alexandrov duplicate of the Cantor
set and K1(P1

2) is its separable extension.
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Recognizing classical spaces

Lemma
K1(P) contains a homeomorphic copy of the Cantor set if and only
if there exist i 6= j such that (i , j) and (j , i) live in the same piece
of the partition.

Lemma
If g : {0, 1}2 → {0, 1} is such that g(0, 1) 6= g(1, 0) and
Pg 6= {{(0, 0), (1, 0)}, {(1, 1), (0, 1)}}, then K1(Pg ) is
homeomorphic to a subspace of the split interval.

Lemma
K1(P) contains a homeomorphic copy of the split interval if and
only if there exist i 6= j such that (i , j) and (j , i) live in different
pieces of the partition P.

Theorem
Let K be a Rosenthal compact space that is not scattered. Then
K contains either a homeomorphic copy of the Cantor set or a
homeomorphic copy of the split interval.
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Non first countable examples

Fix a family Q of disjoint subsets of m = {0, 1, . . . ,m − 1} and let

XQ := m<N ∪mN ×Q

be the corresponding Polish space.
For s ∈ m<ω, let gs : XQ → {0, 1} be given by

gs(t) =

{
1 if t = s

0 otherwise
for t ∈ m<ω,

gs(y ,Q) =

{
1 if inc(y , s) = (i , i) for some i ∈ Q

0 otherwise
for (y ,Q) ∈ mω×Q

Definition
The compact space K∞(Q) is the pointwise closure of the
functions {gs : s ∈ m<N} in {0, 1}XQ .
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Let g∞ : XQ → {0, 1} be constantly equal to 0 function.

For (x ,P) ∈ mω ×Q, let

g(x ,P) : XQ → {0, 1}

is 0 at all points except at (x ,P), where it takes value 1.

Proposition

Fix i , j ∈ m, and {s0, s1, . . .} ⊂ m<N an (i , j)-sequence over
x ∈ mN.

I If i = j ∈ P ∈ Q, then limk gsk = g(x ,P).

I If either i 6= j or i = j 6∈
⋃
Q, then limk gsk = g∞.

On the other hand, the only accumulation point of the set
{g(x ,P) : x ∈ mN,P ∈ Q} is g∞.

Corollary

K∞(Q) is a separable BC1-compactum.
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Topological description of K∞(Q)

Proposition

The function XQ ∪ {∞} → K∞(Q) given by ξ 7→ gξ is a bijection.
Thus,

K∞(P) = {gs : s ∈ m<ω} ∪ {g(x ,P) : (x ,P) ∈ mN ×Q} ∪ {g∞}.

This is a scattered space of height 3, whose Cantor-Bendixson
derivates are

K∞(P)′ = {g(x ,P) : (x ,P) ∈ mN ×Q} ∪ {g∞}
K∞(P)′′ = {g∞}

Thus, the points gs are isolated in K∞(Q), the points g(x .P) are
Gδ-points, but if Q 6= ∅, then g∞ is not a Gδ-point of K∞(Q).

Example

Let m = 2 and D2 = {{0, 1}}. Then K∞(D2) is homeomorphic to
the Cantor tree compactum C (2<N).
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K∞(P)′ = {g(x ,P) : (x ,P) ∈ mN ×Q} ∪ {g∞}
K∞(P)′′ = {g∞}

Thus, the points gs are isolated in K∞(Q), the points g(x .P) are
Gδ-points, but if Q 6= ∅, then g∞ is not a Gδ-point of K∞(Q).

Example

Let m = 2 and D2 = {{0, 1}}. Then K∞(D2) is homeomorphic to
the Cantor tree compactum C (2<N).



Comparing the two open degrees

Theorem
odeg(K1(P)) = |P| and odeg(K∞(Q)) = |Q|+ 1.

Corollary

odeg(S(2N)) = odeg(D(2N)) = 2 and odeg(C (2<N)) = 1.

Proposition

cozdeg(C (2<N)) =∞.

Proposition

For every positive integer m there is a first countable
BC1-compactum K such that odeg(K ) = 2 but cozdeg(K ) = m.
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Pre-metric compacta of degree n

Proposition

cozdeg(K ) ≤ n iff there is a continuous map f : K → M into some
metric space M such that |f −1(x)| ≤ n for all x ∈ M.

Theorem (T., 1999)

Let K be a separable BC1-compactum such that cozdeg(K ) ≤ 2.
Then at least one of the following three conditions must hold:

I K is metrizable.

I K contains a homeomorphic copy of S(2N).

I K contains a homeomorphic copy of D(2N).

Question
Is there a similar basis result for BC1-compacta K such that
cozdeg(K ) ≤ n?
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The n-split interval

Definition
Given a perfect subset P of the unit interval I and an integer
n ≥ 2, let Sn(P) be the set P × {0, 1, ..., n − 1} with the topology
where the points of P × {2, 3, ..., n− 1} are isolated and where the
neighbourhoods of points (x , 0) and (x , 1) have respectively the
following forms:

](y , 1), (x , 0)] ∪]y , x [×{2, 3, ..., n − 1} for y < x ,

[(x , 1), (y , 0)[ ∪]x , y [×{2, 3, ..., n − 1}) for y > x .

Proposition

For every integer n ≥ 2, the space Sn(I ) is a BC1-compactum such
that cozdeg(Sn(I )) = n
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The n-plicate

Definition
For a given topological space Z and integer n ≥ 2, by Dn(Z ) we
denote the space on Z × {0, 1, ..., n − 1} in which all points of
Z × {1, 2, ..., n − 1} are isolated and the neighbourhoods of points
(z , 0) have the form

U × {0, 1, ..., n − 1} \ {z} × {0, 1, ..., n − 1},

where U is an arbitrary neighbourhood of z in Z .

Proposition

For every integer n ≥ 2, the space Dn(2N) is a BC1-compactum
such that cozdeg(Dn(2N)) = n.
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Basis result for the co-zero degree

Theorem (Aviles-Poveda-T., 2015)

Let K be a separable BC1-compactum such that cozdeg(K ) ≤ n
for some integer n ≥ 2.
Then at aleast one of the following conditions must hold:

I cozdeg(K ) ≤ n.

I K contains a topological copy of Sn(2N).

I K contains a topological copy of Dn(2N).



Basis result for the co-zero degree

Theorem (Aviles-Poveda-T., 2015)

Let K be a separable BC1-compactum such that cozdeg(K ) ≤ n
for some integer n ≥ 2.

Then at aleast one of the following conditions must hold:

I cozdeg(K ) ≤ n.

I K contains a topological copy of Sn(2N).

I K contains a topological copy of Dn(2N).



Basis result for the co-zero degree

Theorem (Aviles-Poveda-T., 2015)

Let K be a separable BC1-compactum such that cozdeg(K ) ≤ n
for some integer n ≥ 2.
Then at aleast one of the following conditions must hold:

I cozdeg(K ) ≤ n.

I K contains a topological copy of Sn(2N).

I K contains a topological copy of Dn(2N).



Basis result for the co-zero degree

Theorem (Aviles-Poveda-T., 2015)

Let K be a separable BC1-compactum such that cozdeg(K ) ≤ n
for some integer n ≥ 2.
Then at aleast one of the following conditions must hold:

I cozdeg(K ) ≤ n.

I K contains a topological copy of Sn(2N).

I K contains a topological copy of Dn(2N).



Basis result for the co-zero degree

Theorem (Aviles-Poveda-T., 2015)

Let K be a separable BC1-compactum such that cozdeg(K ) ≤ n
for some integer n ≥ 2.
Then at aleast one of the following conditions must hold:

I cozdeg(K ) ≤ n.

I K contains a topological copy of Sn(2N).

I K contains a topological copy of Dn(2N).



Basis result for the co-zero degree

Theorem (Aviles-Poveda-T., 2015)

Let K be a separable BC1-compactum such that cozdeg(K ) ≤ n
for some integer n ≥ 2.
Then at aleast one of the following conditions must hold:

I cozdeg(K ) ≤ n.

I K contains a topological copy of Sn(2N).

I K contains a topological copy of Dn(2N).


