More on the structure theory of compact subsets of the first Baire class

Stevo Todorcevic

Prague, July 28, 2016

Outline

Outline

- Compact sets of the first Baire class

Outline

- Compact sets of the first Baire class
- Baire-class-1 and dual balls of Banach spaces

Outline

- Compact sets of the first Baire class
- Baire-class-1 and dual balls of Banach spaces
- Topological properties of BC1-compacta

Outline

- Compact sets of the first Baire class
- Baire-class-1 and dual balls of Banach spaces
- Topological properties of BC1-compacta
- G_{δ}-points

Outline

- Compact sets of the first Baire class
- Baire-class-1 and dual balls of Banach spaces
- Topological properties of BC1-compacta
- G_{δ}-points
- Dense metrizable subspaces

Outline

- Compact sets of the first Baire class
- Baire-class-1 and dual balls of Banach spaces
- Topological properties of BC1-compacta
- G_{δ}-points
- Dense metrizable subspaces
- The slit interval, the duplicate, and the Cantor space

Outline

- Compact sets of the first Baire class
- Baire-class-1 and dual balls of Banach spaces
- Topological properties of BC1-compacta
- G_{δ}-points
- Dense metrizable subspaces
- The slit interval, the duplicate, and the Cantor space
- Separable compacta of the first Baire class

Outline

- Compact sets of the first Baire class
- Baire-class-1 and dual balls of Banach spaces
- Topological properties of BC1-compacta
- G_{δ}-points
- Dense metrizable subspaces
- The slit interval, the duplicate, and the Cantor space
- Separable compacta of the first Baire class
- Basis problem for separable compacta

Outline

- Compact sets of the first Baire class
- Baire-class-1 and dual balls of Banach spaces
- Topological properties of BC1-compacta
- G_{δ}-points
- Dense metrizable subspaces
- The slit interval, the duplicate, and the Cantor space
- Separable compacta of the first Baire class
- Basis problem for separable compacta
- Open degrees and cozero degrees

Outline

- Compact sets of the first Baire class
- Baire-class-1 and dual balls of Banach spaces
- Topological properties of BC1-compacta
- G_{δ}-points
- Dense metrizable subspaces
- The slit interval, the duplicate, and the Cantor space
- Separable compacta of the first Baire class
- Basis problem for separable compacta
- Open degrees and cozero degrees
- Applications

Compact sets of the first Baire class

Given a Polish space X, we let $\mathcal{B}_{1}(X)$ denote the collection of Baire-class-1 functions on X with the topology induced from \mathbb{R}^{X}.

Compact sets of the first Baire class

Given a Polish space X, we let $\mathcal{B}_{1}(X)$ denote the collection of Baire-class-1 functions on X with the topology induced from \mathbb{R}^{X}. We are interested in compact subspaces of $\mathcal{B}_{1}(X)$.
Let BC1 denote this class of compacta.

Compact sets of the first Baire class

Given a Polish space X, we let $\mathcal{B}_{1}(X)$ denote the collection of Baire-class-1 functions on X with the topology induced from \mathbb{R}^{X}. We are interested in compact subspaces of $\mathcal{B}_{1}(X)$.
Let BC1 denote this class of compacta.
Theorem (Rosethal 1977, Odell-Rosenthal 1979)
Let E be a separable Banach space.

- $\ell_{1} \nrightarrow E$ iff $B_{E^{* *}} \subseteq \mathcal{B}_{1}\left(B_{E^{*}}\right)$.
- $\ell_{1} \nrightarrow E$ iff B_{E} is sequentially dense in $B_{E^{* *}}$.

Compact sets of the first Baire class

Given a Polish space X, we let $\mathcal{B}_{1}(X)$ denote the collection of Baire-class-1 functions on X with the topology induced from \mathbb{R}^{X}. We are interested in compact subspaces of $\mathcal{B}_{1}(X)$.
Let BC1 denote this class of compacta.
Theorem (Rosethal 1977, Odell-Rosenthal 1979)
Let E be a separable Banach space.

- $\ell_{1} \nrightarrow E$ iff $B_{E^{* *}} \subseteq \mathcal{B}_{1}\left(B_{E^{*}}\right)$.
- $\ell_{1} \nrightarrow E$ iff B_{E} is sequentially dense in $B_{E^{* *}}$.

Example

- If E is a separable Banach space such that $\ell_{1} \nrightarrow E$ then $B_{E^{* *}}$ is a separable compact set of the first Baire class.

Compact sets of the first Baire class

Given a Polish space X, we let $\mathcal{B}_{1}(X)$ denote the collection of Baire-class-1 functions on X with the topology induced from \mathbb{R}^{X}. We are interested in compact subspaces of $\mathcal{B}_{1}(X)$.
Let BC1 denote this class of compacta.
Theorem (Rosethal 1977, Odell-Rosenthal 1979)
Let E be a separable Banach space.

- $\ell_{1} \nrightarrow E$ iff $B_{E^{* *}} \subseteq \mathcal{B}_{1}\left(B_{E^{*}}\right)$.
- $\ell_{1} \nrightarrow E$ iff B_{E} is sequentially dense in $B_{E^{* *}}$.

Example

- If E is a separable Banach space such that $\ell_{1} \nrightarrow E$ then $B_{E^{* *}}$ is a separable compact set of the first Baire class.
- The Helly space of monotone maps from $[0,1]$ into $[0,1]$ is another separable compact convex set of the first Baire class. Note that Helly space is moreover first countable.

Topological properties

Theorem (Rosenthal, 1977)
Every compact set of the first Baire class is countably tight and sequentially compact.

Topological properties

Theorem (Rosenthal, 1977)
Every compact set of the first Baire class is countably tight and sequentially compact.

Theorem (Bourgain-Fremlin-Talagrand 1978)
Every compact set of the first Baire class has the Fréchet-Urysohn property

Topological properties

Theorem (Rosenthal, 1977)
Every compact set of the first Baire class is countably tight and sequentially compact.

Theorem (Bourgain-Fremlin-Talagrand 1978)
Every compact set of the first Baire class has the Fréchet-Urysohn property

Theorem (Bourgain 1978)
Every compact set K of the first Baire class has a G_{δ}-point

Topological properties

Theorem (Rosenthal, 1977)
Every compact set of the first Baire class is countably tight and sequentially compact.

Theorem (Bourgain-Fremlin-Talagrand 1978)
Every compact set of the first Baire class has the Fréchet-Urysohn property

Theorem (Bourgain 1978)
Every compact set K of the first Baire class has a G_{δ}-point
Question (Bourgain 1978)
Is the set of G_{δ}-points comeager in K ?

Topological properties

Theorem (Rosenthal, 1977)
Every compact set of the first Baire class is countably tight and sequentially compact.

Theorem (Bourgain-Fremlin-Talagrand 1978)
Every compact set of the first Baire class has the Fréchet-Urysohn property

Theorem (Bourgain 1978)
Every compact set K of the first Baire class has a G_{δ}-point
Question (Bourgain 1978)
Is the set of G_{δ}-points comeager in K ?
Theorem (T., 1999)
Every compact set of the first Baire class has a dense metrizable subspace.

Basis problem for BC1-compacta

Question
Is there a finite list \mathcal{C} of BC1-compacta that determines the class
of metrizable compacta?

Basis problem for BC1-compacta

Question

Is there a finite list \mathcal{C} of BC1-compacta that determines the class
of metrizable compacta?
Here determines refers to the specific condition:
A BC1-compactum is metrizable iff it contains no copy of any space from \mathcal{C}.

Basis problem for BC1-compacta

Question

Is there a finite list \mathcal{C} of BC1-compacta that determines the class of metrizable compacta?
Here determines refers to the specific condition:
A BC1-compactum is metrizable iff it contains no copy of any space from \mathcal{C}.
Example

- The split interval $S(I)$ is a BC1-compactum which contains no uncountable metrizable subspace.

Basis problem for BC1-compacta

Question

Is there a finite list \mathcal{C} of BC1-compacta that determines the class of metrizable compacta?
Here determines refers to the specific condition:
A BC1-compactum is metrizable iff it contains no copy of any space from \mathcal{C}.
Example

- The split interval $S(I)$ is a BC1-compactum which contains no uncountable metrizable subspace.
- The Alexandrov duplicate $D(I)$ of the unit interval I is an example of a first countable non-metrizable BC1-compactum.

Basis problem for BC1-compacta

Question

Is there a finite list \mathcal{C} of BC1-compacta that determines the class of metrizable compacta?
Here determines refers to the specific condition:
A BC1-compactum is metrizable iff it contains no copy of any space from \mathcal{C}.
Example

- The split interval $S(I)$ is a BC1-compactum which contains no uncountable metrizable subspace.
- The Alexandrov duplicate $D(I)$ of the unit interval I is an example of a first countable non-metrizable BC1-compactum.
- The Cantor tree compactum $C\left(2^{<\mathbb{N}}\right)=2^{<\mathbb{N}} \cup 2^{\mathbb{N}} \cup\{\infty\}$ is a non-metrizable BC1-compactum with the point at infinity as the single non G_{δ}-point
G_{δ} points and the Cantor tree compactum

G_{δ} points and the Cantor tree compactum

Theorem (T., 1999)
Suppose that K is a BC1-compactum, D a dense subset of K, and that x is a non- G_{δ}-point of K. Then there is a topological embedding

$$
\Phi: 2^{<\mathbb{N}} \cup 2^{\mathbb{N}} \cup\{\infty\} \rightarrow K
$$

of the Cantor tree space $C\left(2^{<\mathbb{N}}\right)$ into K such that

$$
\Phi\left[2^{<\mathbb{N}}\right] \subseteq D \text { and } \Phi(\infty)=x .
$$

G_{δ} points and the Cantor tree compactum

Theorem (T., 1999)
Suppose that K is a BC1-compactum, D a dense subset of K, and that x is a non- G_{δ}-point of K. Then there is a topological embedding

$$
\Phi: 2^{<\mathbb{N}} \cup 2^{\mathbb{N}} \cup\{\infty\} \rightarrow K
$$

of the Cantor tree space $C\left(2^{<\mathbb{N}}\right)$ into K such that

$$
\Phi\left[2^{<\mathbb{N}}\right] \subseteq D \text { and } \Phi(\infty)=x
$$

Theorem
A BC1-compactum is first countable iff it contains no $C\left(2^{<\mathbb{N}}\right)$.

G_{δ} points and the Cantor tree compactum

Theorem (T., 1999)
Suppose that K is a BC1-compactum, D a dense subset of K, and that x is a non $-G_{\delta}$-point of K. Then there is a topological embedding

$$
\Phi: 2^{<\mathbb{N}} \cup 2^{\mathbb{N}} \cup\{\infty\} \rightarrow K
$$

of the Cantor tree space $C\left(2^{<\mathbb{N}}\right)$ into K such that

$$
\Phi\left[2^{<\mathbb{N}}\right] \subseteq D \text { and } \Phi(\infty)=x
$$

Theorem
A BC1-compactum is first countable iff it contains no $C\left(2^{<\mathbb{N}}\right)$.
Application:

G_{δ} points and the Cantor tree compactum

Theorem (T., 1999)
Suppose that K is a BC1-compactum, D a dense subset of K, and that x is a non- G_{δ}-point of K. Then there is a topological embedding

$$
\Phi: 2^{<\mathbb{N}} \cup 2^{\mathbb{N}} \cup\{\infty\} \rightarrow K
$$

of the Cantor tree space $C\left(2^{<\mathbb{N}}\right)$ into K such that

$$
\Phi\left[2^{<\mathbb{N}}\right] \subseteq D \text { and } \Phi(\infty)=x
$$

Theorem
A BC1-compactum is first countable iff it contains no $C\left(2^{<\mathbb{N}}\right)$.
Application:
Theorem (Argyros-Dodos-Kanellopoulos 2008)
Every dual Banach space has a separable quotient.

Separable BC1-compacta

Theorem (T., 1999)
Every separable nonmetrizable BC1-compactum contains a topological copy of one of the three compacta

$$
S\left(2^{\mathbb{N}}\right), D_{\mathrm{sep}}\left(2^{\mathbb{N}}\right), C\left(2^{<\mathbb{N}}\right)
$$

where $D_{\text {sep }}\left(2^{\mathbb{N}}\right)$ is the natural separable version of the Alexandrov duplicate of the Cantor set.

Separable BC1-compacta

Theorem (T., 1999)
Every separable nonmetrizable BC1-compactum contains a topological copy of one of the three compacta

$$
S\left(2^{\mathbb{N}}\right), D_{\mathrm{sep}}\left(2^{\mathbb{N}}\right), C\left(2^{<\mathbb{N}}\right)
$$

where $D_{\text {sep }}\left(2^{\mathbb{N}}\right)$ is the natural separable version of the Alexandrov duplicate of the Cantor set.

Question
Can one characterize some natural classes of separable BC1-compacta using some of the three basic compacta?

Separable BC1-compacta

Theorem (T., 1999)
Every separable nonmetrizable BC1-compactum contains a topological copy of one of the three compacta

$$
S\left(2^{\mathbb{N}}\right), D_{\mathrm{sep}}\left(2^{\mathbb{N}}\right), C\left(2^{<\mathbb{N}}\right)
$$

where $D_{\text {sep }}\left(2^{\mathbb{N}}\right)$ is the natural separable version of the Alexandrov duplicate of the Cantor set.

Question
Can one characterize some natural classes of separable BC1-compacta using some of the three basic compacta?

Theorem (T., 1999)
Every hereditarily separable non-metrizable BC1-compactum contains $S\left(2^{\mathbb{N}}\right)$.

Open degrees

Definition

Fix a compactum K. The open degree of K, if it exists, is the least positive integer n for which we can find a countable family \mathcal{F} of open subsets of K such that for every one-to-one $(n+1)$-sequence $x_{0}, \ldots, x_{n} \in K$ there exist $V_{0}, \ldots, V_{n} \in \mathcal{F}$ such that:

- $x_{i} \in V_{i}$ for all $i \leq n$,
- $\bigcap_{0}^{n} V_{i}=\emptyset$.

Put odeg $(K)=\infty$ if such n does not exist.

Open degrees

Definition

Fix a compactum K. The open degree of K, if it exists, is the least positive integer n for which we can find a countable family \mathcal{F} of open subsets of K such that for every one-to-one $(n+1)$-sequence $x_{0}, \ldots, x_{n} \in K$ there exist $V_{0}, \ldots, V_{n} \in \mathcal{F}$ such that:

- $x_{i} \in V_{i}$ for all $i \leq n$,
- $\bigcap_{0}^{n} V_{i}=\emptyset$.

Put $\operatorname{odeg}(K)=\infty$ if such n does not exist.
Example
$\operatorname{odeg}\left(S\left(2^{\mathbb{N}}\right)\right)=\operatorname{odeg}\left(D\left(2^{\mathbb{N}}\right)\right)=\operatorname{odeg}\left(C\left(2^{<\mathbb{N}}\right)\right)=2$.

Open degrees

Definition

Fix a compactum K. The open degree of K, if it exists, is the least positive integer n for which we can find a countable family \mathcal{F} of open subsets of K such that for every one-to-one
$(n+1)$-sequence
$x_{0}, \ldots, x_{n} \in K$ there exist $V_{0}, \ldots, V_{n} \in \mathcal{F}$ such that:

- $x_{i} \in V_{i}$ for all $i \leq n$,
- $\bigcap_{0}^{n} V_{i}=\emptyset$.

Put odeg $(K)=\infty$ if such n does not exist.
Example
$\operatorname{odeg}\left(S\left(2^{\mathbb{N}}\right)\right)=\operatorname{odeg}\left(D\left(2^{\mathbb{N}}\right)\right)=\operatorname{odeg}\left(C\left(2^{<\mathbb{N}}\right)\right)=2$.
Proposition
$\operatorname{odeg}(K)=1$ iff K is metrizable.

Co-zero degrees

Definition

For a compactum K, the co-zero degree of K, if it exists, is the least positive integer n for which we can find a countable family \mathcal{F} of open F_{σ}-subsets of K such that for every one-to-one ($n+1$)-sequence
$x_{0}, \ldots, x_{n} \in K$ there exist $V_{0}, \ldots, V_{n} \in \mathcal{F}$ such that:

- $x_{i} \in V_{i}$ for all $i \leq n$,
- $\bigcap_{0}^{n} V_{i}=\emptyset$.

Put $\operatorname{cozdeg}(K)=\infty$ if such n does not exist.

Co-zero degrees

Definition

For a compactum K, the co-zero degree of K, if it exists, is the least positive integer n for which we can find a countable family \mathcal{F} of open F_{σ}-subsets of K such that for every one-to-one ($n+1$)-sequence
$x_{0}, \ldots, x_{n} \in K$ there exist $V_{0}, \ldots, V_{n} \in \mathcal{F}$ such that:

- $x_{i} \in V_{i}$ for all $i \leq n$,
- $\bigcap_{0}^{n} V_{i}=\emptyset$.

Put $\operatorname{cozdeg}(K)=\infty$ if such n does not exist.
Example
$\operatorname{cozdeg}\left(S\left(2^{\mathbb{N}}\right)\right)=\operatorname{cozdeg}\left(D\left(2^{\mathbb{N}}\right)\right)=2$ but $\operatorname{cozdeg}\left(C\left(2^{<\mathbb{N}}\right)\right)=\infty$.

Proposition

$\operatorname{cozdeg}(K) \leq n$ iff there is a continuous map $f: K \rightarrow M$ from K into some metric space M such that $\left|f^{-1}(x)\right| \leq n$ for all $x \in M$.

Proposition

$\operatorname{cozdeg}(K) \leq n$ iff there is a continuous map $f: K \rightarrow M$ from K into some metric space M such that $\left|f^{-1}(x)\right| \leq n$ for all $x \in M$.

Theorem (T., 1999)
Let K be a separable BC1-compactum. Then either

- K contains a discrete subspace of cardinality continuum, or

Proposition

$\operatorname{cozdeg}(K) \leq n$ iff there is a continuous map $f: K \rightarrow M$ from K into some metric space M such that $\left|f^{-1}(x)\right| \leq n$ for all $x \in M$.

Theorem (T., 1999)
Let K be a separable BC1-compactum. Then either

- K contains a discrete subspace of cardinality continuum, or
- there is a continuous map $f: K \rightarrow M$ from K into some metric space M such that $\left|f^{-1}(x)\right| \leq 2$ for all $x \in M$,

Proposition

$\operatorname{cozdeg}(K) \leq n$ iff there is a continuous map $f: K \rightarrow M$ from K into some metric space M such that $\left|f^{-1}(x)\right| \leq n$ for all $x \in M$.

Theorem (T., 1999)
Let K be a separable BC1-compactum. Then either

- K contains a discrete subspace of cardinality continuum, or
- there is a continuous map $f: K \rightarrow M$ from K into some metric space M such that $\left|f^{-1}(x)\right| \leq 2$ for all $x \in M$, i.e., $\operatorname{cozdeg}(K) \leq 2$.

An array of basis problems

An array of basis problems

Proposition
A BC1-compactum K is non-metrizable iff $\operatorname{odeg}(K) \geq 2$.

An array of basis problems

Proposition
A BC1-compactum K is non-metrizable iff $\operatorname{odeg}(K) \geq 2$.
Corollary
The class of separable BC1-compacta of open degree at least 2 has the 3-element basis

$$
S\left(2^{\mathbb{N}}\right), D_{\mathrm{sep}}\left(2^{\mathbb{N}}\right), C\left(2^{<\mathbb{N}}\right)
$$

An array of basis problems

Proposition

A BC1-compactum K is non-metrizable iff odeg $(K) \geq 2$.
Corollary
The class of separable BC1-compacta of open degree at least 2 has the 3-element basis

$$
S\left(2^{\mathbb{N}}\right), D_{\mathrm{sep}}\left(2^{\mathbb{N}}\right), C\left(2^{<\mathbb{N}}\right)
$$

Question
Can a similar basis result be proved for other open degrees?

An array of basis problems

Proposition

A BC1-compactum K is non-metrizable iff $\operatorname{odeg}(K) \geq 2$.
Corollary
The class of separable BC1-compacta of open degree at least 2 has the 3-element basis

$$
S\left(2^{\mathbb{N}}\right), D_{\mathrm{sep}}\left(2^{\mathbb{N}}\right), C\left(2^{<\mathbb{N}}\right)
$$

Question
Can a similar basis result be proved for other open degrees?
Question
Are there any basis results for co-zero degrees?

A new finite basis theorem

A new finite basis theorem

Theorem (Aviles-T., 2015)
For every positive integer n, the class of BC1-compacta of open degree $\geq n$ has a finite basis that can be described explicitly.

A new finite basis theorem

Theorem (Aviles-T., 2015)
For every positive integer n, the class of BC1-compacta of open degree $\geq n$ has a finite basis that can be described explicitly.

Example

- The class of BC1-compacta of open degree ≥ 2 has a 3-element basis.

A new finite basis theorem

Theorem (Aviles-T., 2015)
For every positive integer n, the class of BC1-compacta of open degree $\geq n$ has a finite basis that can be described explicitly.

Example

- The class of BC1-compacta of open degree ≥ 2 has a 3-element basis.
- The class of BC1-compacta of open degree ≥ 3 has a 4-element basis.

A new finite basis theorem

Theorem (Aviles-T., 2015)
For every positive integer n, the class of BC1-compacta of open degree $\geq n$ has a finite basis that can be described explicitly.

Example

- The class of BC1-compacta of open degree ≥ 2 has a 3-element basis.
- The class of BC1-compacta of open degree ≥ 3 has a 4-element basis.
- The class of BC1-compacta of open degree ≥ 4 has a 8-element basis.

A new finite basis theorem

Theorem (Aviles-T., 2015)

For every positive integer n, the class of BC1-compacta of open degree $\geq n$ has a finite basis that can be described explicitly.

Example

- The class of BC1-compacta of open degree ≥ 2 has a 3-element basis.
- The class of BC1-compacta of open degree ≥ 3 has a 4-element basis.
- The class of BC1-compacta of open degree ≥ 4 has a 8-element basis.

Problem

Investigate the topological properties of the basic compacta and the corresponding classes of compacta they determine.

Some applications

Some applications

Theorem (Aviles-T., 2015)
Let K be a BC1-compactum. Then
K is scattered iff $S\left(2^{\mathbb{N}}\right) \nrightarrow K$ and $2^{\mathbb{N}} \nrightarrow K$.

Some applications

Theorem (Aviles-T., 2015)
Let K be a BC1-compactum. Then
K is scattered iff $S\left(2^{\mathbb{N}}\right) \nrightarrow K$ and $2^{\mathbb{N}} \nrightarrow K$.
Theorem (Aviles-T., 2015)
Suppose K is a BC1-compactum and that

$$
f: K \rightarrow S\left(2^{\mathbb{N}}\right)
$$

is a continuous onto map. Then there is $K_{0} \subseteq K$ homeomorphic to $S\left(2^{\mathbb{N}}\right)$ such that
$f \upharpoonright K_{0}$ is one-to-one.

Details from the proof of the finite basis theorem

Details from the proof of the finite basis theorem

Definition

A topological space X is bi-sequential if for every ultrafilter \mathcal{U} on X converging to a point $x \in X$ there is a sequence A_{n} of elements of \mathcal{U} converging to x.

Details from the proof of the finite basis theorem

Definition

A topological space X is bi-sequential if for every ultrafilter \mathcal{U} on X converging to a point $x \in X$ there is a sequence A_{n} of elements of \mathcal{U} converging to x.

Theorem (Pol 1984, Debs 1987)
Every BC1-compactum is bi-sequential.

Details from the proof of the finite basis theorem

Definition

A topological space X is bi-sequential if for every ultrafilter \mathcal{U} on X converging to a point $x \in X$ there is a sequence A_{n} of elements of \mathcal{U} converging to x.

Theorem (Pol 1984, Debs 1987)
Every BC1-compactum is bi-sequential.
Corollary (Knaust 1991)
Every BC1-compactum has the weak diagonal sequence property, i.e., if x_{n} is a sequence of elements of K converging to a point $x \in K$ and if for every n, we have a sequence x_{n}^{m} converging to x_{n} then there is infinite $N \subseteq \omega$ and for each $n \in N$ an infinite set $M_{n} \subseteq \omega$ such that

$$
\left\{x_{n}^{m}: n \in N, m \in M_{n}\right\} \rightarrow x
$$

Extension Theorem

Extension Theorem

Theorem
Suppose that K_{0} and K_{1} are two bi-sequential spaces and that D_{0} is a dense subset of K_{0}.

Extension Theorem

Theorem
Suppose that K_{0} and K_{1} are two bi-sequential spaces and that D_{0} is a dense subset of K_{0}. Suppose

$$
f: K_{0} \rightarrow K_{1}
$$

has the property that sequences in D_{0} that converge to the same point in K_{0} are map to sequences that converge to the same pint in K_{1}.

Extension Theorem

Theorem
Suppose that K_{0} and K_{1} are two bi-sequential spaces and that D_{0} is a dense subset of K_{0}. Suppose

$$
f: K_{0} \rightarrow K_{1}
$$

has the property that sequences in D_{0} that converge to the same point in K_{0} are map to sequences that converge to the same pint in K_{1}.
Then f extends to a continuous function

$$
\bar{f}: K_{0} \rightarrow K_{1} .
$$

Trees and open degrees

Trees and open degrees

Lemma

Let K be a separable BC1-compactum of open degree $\geq m$ and let D be a countable dense subset of K. Then there is a one-to one mapping

$$
f: m^{<\mathbb{N}} \rightarrow D
$$

such that

$$
\overline{\{f(t): t \frown i \sqsubseteq z\}} \cap \overline{\{f(t): t \frown j \sqsubseteq z\}}=\emptyset
$$

for all $i<j<m$.

Trees and open degrees

Lemma

Let K be a separable BC1-compactum of open degree $\geq m$ and let D be a countable dense subset of K. Then there is a one-to one mapping

$$
f: m^{<\mathbb{N}} \rightarrow D
$$

such that

$$
\overline{\{f(t): t \frown i \sqsubseteq z\}} \cap \overline{\{f(t): t \frown j \sqsubseteq z\}}=\emptyset
$$

for all $i<j<m$.
Remark
So, in order to apply the Extension Theorem we need to:

Trees and open degrees

Lemma

Let K be a separable BC1-compactum of open degree $\geq m$ and let
D be a countable dense subset of K. Then there is a one-to one mapping

$$
f: m^{<\mathbb{N}} \rightarrow D
$$

such that

$$
\overline{\{f(t): t \frown i \sqsubseteq z\}} \cap \overline{\{f(t): t \frown j \sqsubseteq z\}}=\emptyset
$$

for all $i<j<m$.

Remark

So, in order to apply the Extension Theorem we need to:

- assign BC1-compacta to trees of the form $m^{<\mathbb{N}}$,

Trees and open degrees

Lemma

Let K be a separable BC1-compactum of open degree $\geq m$ and let
D be a countable dense subset of K. Then there is a one-to one mapping

$$
f: m^{<\mathbb{N}} \rightarrow D
$$

such that

$$
\overline{\{f(t): t \frown i \sqsubseteq z\}} \cap \overline{\{f(t): t \frown j \sqsubseteq z\}}=\emptyset
$$

for all $i<j<m$.

Remark

So, in order to apply the Extension Theorem we need to:

- assign BC1-compacta to trees of the form $m^{<\mathbb{N}}$,
- develop the corresponding Ramsey-theory on trees.

A Ramsey theorem for trees $m^{<\mathbb{N}}$

A Ramsey theorem for trees $m^{<\mathbb{N}}$

Let \sqsubseteq denote the usual end-extension ordering of the tree $m^{<\mathbb{N}}$

A Ramsey theorem for trees $m^{<\mathbb{N}}$

Let \sqsubseteq denote the usual end-extension ordering of the tree $m^{<\mathbb{N}}$ and \prec its ω-ordering (first by the ordering of lenghts and then by the lexicographical ordering).

A Ramsey theorem for trees $m^{<\mathbb{N}}$

Let \sqsubseteq denote the usual end-extension ordering of the tree $m^{<\mathbb{N}}$ and \prec its ω-ordering (first by the ordering of lenghts and then by the lexicographical ordering).

$$
\langle\langle A\rangle\rangle=\{s \wedge t: s, t \in A\} \text { is the meet-closure of } A \subseteq m^{<\mathbb{N}} .
$$

A Ramsey theorem for trees $m^{<\mathbb{N}}$

Let \sqsubseteq denote the usual end-extension ordering of the tree $m^{<\mathbb{N}}$ and \prec its ω-ordering (first by the ordering of lenghts and then by the lexicographical ordering).
$\langle\langle A\rangle\rangle=\{s \wedge t: s, t \in A\}$ is the meet-closure of $A \subseteq m^{<\mathbb{N}}$.
If $r=s \wedge t \notin\{s, t\}$ then $r \frown i \sqsubseteq s$ and $r \frown j \sqsubseteq t$ for distinct $i, j \in m$. In that case, we define the incidence as $\operatorname{inc}(s, t)=(i, j)$.

A Ramsey theorem for trees $m^{<\mathbb{N}}$

Let \sqsubseteq denote the usual end-extension ordering of the tree $m^{<\mathbb{N}}$ and \prec its ω-ordering (first by the ordering of lenghts and then by the lexicographical ordering).
$\langle\langle A\rangle\rangle=\{s \wedge t: s, t \in A\}$ is the meet-closure of $A \subseteq m^{<\mathbb{N}}$. If $r=s \wedge t \notin\{s, t\}$ then $r \frown i \sqsubseteq s$ and $r \frown j \sqsubseteq t$ for distinct $i, j \in m$. In that case, we define the incidence as $\operatorname{inc}(s, t)=(i, j)$.
Definition
Sets $A, B \subset m^{<\omega}$ are equivalent, $A \approx B$, if there is a bijection $f:\langle\langle A\rangle\rangle \rightarrow\langle\langle B\rangle\rangle$ such that for every $t, s \in\langle\langle A\rangle\rangle$

A Ramsey theorem for trees $m^{<\mathbb{N}}$

Let \sqsubseteq denote the usual end-extension ordering of the tree $m^{<\mathbb{N}}$ and \prec its ω-ordering (first by the ordering of lenghts and then by the lexicographical ordering).
$\langle\langle A\rangle\rangle=\{s \wedge t: s, t \in A\}$ is the meet-closure of $A \subseteq m^{<\mathbb{N}}$. If $r=s \wedge t \notin\{s, t\}$ then $r \frown i \sqsubseteq s$ and $r \frown j \sqsubseteq t$ for distinct $i, j \in m$. In that case, we define the incidence as $\operatorname{inc}(s, t)=(i, j)$.
Definition
Sets $A, B \subset m^{<\omega}$ are equivalent, $A \approx B$, if there is a bijection $f:\langle\langle A\rangle\rangle \rightarrow\langle\langle B\rangle\rangle$ such that for every $t, s \in\langle\langle A\rangle\rangle$

- $a \in A$ iff $f(a) \in B$

A Ramsey theorem for trees $m^{<\mathbb{N}}$

Let \sqsubseteq denote the usual end-extension ordering of the tree $m^{<\mathbb{N}}$ and \prec its ω-ordering (first by the ordering of lenghts and then by the lexicographical ordering).
$\langle\langle A\rangle\rangle=\{s \wedge t: s, t \in A\}$ is the meet-closure of $A \subseteq m^{<\mathbb{N}}$. If $r=s \wedge t \notin\{s, t\}$ then $r \frown i \sqsubseteq s$ and $r \frown j \sqsubseteq t$ for distinct $i, j \in m$. In that case, we define the incidence as $\operatorname{inc}(s, t)=(i, j)$.
Definition
Sets $A, B \subset m^{<\omega}$ are equivalent, $A \approx B$, if there is a bijection $f:\langle\langle A\rangle\rangle \rightarrow\langle\langle B\rangle\rangle$ such that for every $t, s \in\langle\langle A\rangle\rangle$

- $a \in A$ iff $f(a) \in B$
- $f(t \wedge s)=f(t) \wedge f(s)$

A Ramsey theorem for trees $m^{<\mathbb{N}}$

Let \sqsubseteq denote the usual end-extension ordering of the tree $m^{<\mathbb{N}}$ and \prec its ω-ordering (first by the ordering of lenghts and then by the lexicographical ordering).
$\langle\langle A\rangle\rangle=\{s \wedge t: s, t \in A\}$ is the meet-closure of $A \subseteq m^{<\mathbb{N}}$. If $r=s \wedge t \notin\{s, t\}$ then $r \frown i \sqsubseteq s$ and $r \frown j \sqsubseteq t$ for distinct $i, j \in m$. In that case, we define the incidence as $\operatorname{inc}(s, t)=(i, j)$.
Definition
Sets $A, B \subset m^{<\omega}$ are equivalent, $A \approx B$, if there is a bijection $f:\langle\langle A\rangle\rangle \rightarrow\langle\langle B\rangle\rangle$ such that for every $t, s \in\langle\langle A\rangle\rangle$

- $a \in A$ iff $f(a) \in B$
- $f(t \wedge s)=f(t) \wedge f(s)$
- $f(t) \prec f(s)$ if and only if $t \prec s$

A Ramsey theorem for trees $m^{<\mathbb{N}}$

Let \sqsubseteq denote the usual end-extension ordering of the tree $m^{<\mathbb{N}}$ and \prec its ω-ordering (first by the ordering of lenghts and then by the lexicographical ordering).
$\langle\langle A\rangle\rangle=\{s \wedge t: s, t \in A\}$ is the meet-closure of $A \subseteq m^{<\mathbb{N}}$. If $r=s \wedge t \notin\{s, t\}$ then $r \frown i \sqsubseteq s$ and $r \frown j \sqsubseteq t$ for distinct $i, j \in m$. In that case, we define the incidence as $\operatorname{inc}(s, t)=(i, j)$.
Definition
Sets $A, B \subset m^{<\omega}$ are equivalent, $A \approx B$, if there is a bijection $f:\langle\langle A\rangle\rangle \rightarrow\langle\langle B\rangle\rangle$ such that for every $t, s \in\langle\langle A\rangle\rangle$

- $a \in A$ iff $f(a) \in B$
- $f(t \wedge s)=f(t) \wedge f(s)$
- $f(t) \prec f(s)$ if and only if $t \prec s$
- If $i \in m$ is such that $t \frown i \sqsubseteq s$, then $f(t) \frown i \sqsubseteq f(s)$.

A Ramsey theorem for trees $m^{<\mathbb{N}}$

Let \sqsubseteq denote the usual end-extension ordering of the tree $m^{<\mathbb{N}}$ and \prec its ω-ordering (first by the ordering of lenghts and then by the lexicographical ordering).
$\langle\langle A\rangle\rangle=\{s \wedge t: s, t \in A\}$ is the meet-closure of $A \subseteq m^{<\mathbb{N}}$. If $r=s \wedge t \notin\{s, t\}$ then $r \frown i \sqsubseteq s$ and $r \frown j \sqsubseteq t$ for distinct $i, j \in m$. In that case, we define the incidence as $\operatorname{inc}(s, t)=(i, j)$.
Definition
Sets $A, B \subset m^{<\omega}$ are equivalent, $A \approx B$, if there is a bijection $f:\langle\langle A\rangle\rangle \rightarrow\langle\langle B\rangle\rangle$ such that for every $t, s \in\langle\langle A\rangle\rangle$

- $a \in A$ iff $f(a) \in B$
- $f(t \wedge s)=f(t) \wedge f(s)$
- $f(t) \prec f(s)$ if and only if $t \prec s$
- If $i \in m$ is such that $t \subset i \sqsubseteq s$, then $f(t) \frown i \sqsubseteq f(s)$.

An (i, j)-comb is a subset $A \subseteq m^{<\omega}$ such that

$$
A \approx\{(j),(i i j),(i i i i j),(i i i i i i j), \ldots\}
$$

A basic Ramsey tool

A basic Ramsey tool

Theorem
Fix a set $A_{0} \subseteq m^{<\mathbb{N}}$, and a partition

$$
\left\{A \subseteq m^{<\mathbb{N}}: A \approx A_{0}\right\}=P_{1} \cup \cdots \cup P_{k}
$$

into finitely many sets with the property of Baire. Then there exists a subtree $T \subseteq m^{<\mathbb{N}}$ equivalent to $m^{<\mathbb{N}}$ such that the family $\left\{A \subseteq T: A \approx A_{0}\right\}$ is contained in a single piece of the partition.

A basic Ramsey tool

Theorem
Fix a set $A_{0} \subseteq m^{<\mathbb{N}}$, and a partition

$$
\left\{A \subseteq m^{<\mathbb{N}}: A \approx A_{0}\right\}=P_{1} \cup \cdots \cup P_{k}
$$

into finitely many sets with the property of Baire. Then there exists a subtree $T \subseteq m^{<\mathbb{N}}$ equivalent to $m^{<\mathbb{N}}$ such that the family $\left\{A \subseteq T: A \approx A_{0}\right\}$ is contained in a single piece of the partition.

Remark

So if there are BC1-compactifications of $m^{<\mathbb{N}}$ (taken with its discrete topology) in which all combs of the tree $m^{<\mathbb{N}}$ are convergent,

A basic Ramsey tool

Theorem
Fix a set $A_{0} \subseteq m^{<\mathbb{N}}$, and a partition

$$
\left\{A \subseteq m^{<\mathbb{N}}: A \approx A_{0}\right\}=P_{1} \cup \cdots \cup P_{k}
$$

into finitely many sets with the property of Baire. Then there exists a subtree $T \subseteq m^{<\mathbb{N}}$ equivalent to $m^{<\mathbb{N}}$ such that the family $\left\{A \subseteq T: A \approx A_{0}\right\}$ is contained in a single piece of the partition.

Remark

So if there are BC1-compactifications of $m^{<\mathbb{N}}$ (taken with its discrete topology) in which all combs of the tree $m^{<\mathbb{N}}$ are convergent, we are halfway to proving the basis theorem.

A basic Ramsey tool

Theorem
Fix a set $A_{0} \subseteq m^{<\mathbb{N}}$, and a partition

$$
\left\{A \subseteq m^{<\mathbb{N}}: A \approx A_{0}\right\}=P_{1} \cup \cdots \cup P_{k}
$$

into finitely many sets with the property of Baire. Then there exists a subtree $T \subseteq m^{<\mathbb{N}}$ equivalent to $m^{<\mathbb{N}}$ such that the family $\left\{A \subseteq T: A \approx A_{0}\right\}$ is contained in a single piece of the partition.

Remark

So if there are BC1-compactifications of $m^{<\mathbb{N}}$ (taken with its discrete topology) in which all combs of the tree $m^{<\mathbb{N}}$ are convergent, we are halfway to proving the basis theorem.
The finite basis is to be found in the class of all such compactifications of $m^{<\mathbb{N}}$.

BC1-compactifications of $m^{<\mathbb{N}}$

Given a partition \mathfrak{P} of $m \times m$, define the Polish space $X_{\mathfrak{P}}:=m^{<\omega} \cup m^{\omega} \times \mathfrak{P}$ as follows:

BC1-compactifications of $m^{<\mathbb{N}}$

Given a partition \mathfrak{P} of $m \times m$, define the Polish space $X_{\mathfrak{P}}:=m^{<\omega} \cup m^{\omega} \times \mathfrak{P}$ as follows:

- $m^{<\mathbb{N}}$ is considered as a countable discrete space,

BC1-compactifications of $m^{<\mathbb{N}}$

Given a partition \mathfrak{P} of $m \times m$, define the Polish space $X_{\mathfrak{P}}:=m^{<\omega} \cup m^{\omega} \times \mathfrak{P}$ as follows:

- $m^{<\mathbb{N}}$ is considered as a countable discrete space,
- $m^{\mathbb{N}}$ is considered with its product topology,

BC1-compactifications of $m<\mathbb{N}$

Given a partition \mathfrak{P} of $m \times m$, define the Polish space $X_{\mathfrak{P}}:=m^{<\omega} \cup m^{\omega} \times \mathfrak{P}$ as follows:

- $m^{<\mathbb{N}}$ is considered as a countable discrete space,
- $m^{\mathbb{N}}$ is considered with its product topology,
- \mathfrak{P} is considered as a finite discrete space,

BC1-compactifications of $m^{<\mathbb{N}}$

Given a partition \mathfrak{P} of $m \times m$, define the Polish space $X_{\mathfrak{P}}:=m^{<\omega} \cup m^{\omega} \times \mathfrak{P}$ as follows:

- $m^{<\mathbb{N}}$ is considered as a countable discrete space,
- $m^{\mathbb{N}}$ is considered with its product topology,
- \mathfrak{P} is considered as a finite discrete space,
- $m^{\mathbb{N}} \times \mathfrak{P}$ is given the product topology,

BC1-compactifications of $m<\mathbb{N}$

Given a partition \mathfrak{P} of $m \times m$, define the Polish space $X_{\mathfrak{P}}:=m^{<\omega} \cup m^{\omega} \times \mathfrak{P}$ as follows:

- $m^{<\mathbb{N}}$ is considered as a countable discrete space,
- $m^{\mathbb{N}}$ is considered with its product topology,
- \mathfrak{P} is considered as a finite discrete space,
- $m^{\mathbb{N}} \times \mathfrak{P}$ is given the product topology,
- $X_{\mathfrak{F}}=m^{<\mathbb{N}} \cup m^{\mathbb{N}} \times \mathfrak{P}$ is given the disjoint sum topology.

BC1-compactifications of $m<\mathbb{N}$

Given a partition \mathfrak{P} of $m \times m$, define the Polish space $X_{\mathfrak{P}}:=m^{<\omega} \cup m^{\omega} \times \mathfrak{P}$ as follows:

- $m^{<\mathbb{N}}$ is considered as a countable discrete space,
- $m^{\mathbb{N}}$ is considered with its product topology,
- \mathfrak{P} is considered as a finite discrete space,
- $m^{\mathbb{N}} \times \mathfrak{P}$ is given the product topology,
- $X_{\mathfrak{P}}=m^{<\mathbb{N}} \cup m^{\mathbb{N}} \times \mathfrak{P}$ is given the disjoint sum topology.

For $s \in m^{<\mathbb{N}}$ let $\mathbf{f}_{s}: X_{\mathfrak{P}} \rightarrow\{0,1\}$ be given by

BC1-compactifications of $m^{<\mathbb{N}}$

Given a partition \mathfrak{P} of $m \times m$, define the Polish space $X_{\mathfrak{P}}:=m^{<\omega} \cup m^{\omega} \times \mathfrak{P}$ as follows:

- $m^{<\mathbb{N}}$ is considered as a countable discrete space,
- $m^{\mathbb{N}}$ is considered with its product topology,
- \mathfrak{P} is considered as a finite discrete space,
- $m^{\mathbb{N}} \times \mathfrak{P}$ is given the product topology,
- $X_{\mathfrak{P}}=m^{<\mathbb{N}} \cup m^{\mathbb{N}} \times \mathfrak{P}$ is given the disjoint sum topology.

For $s \in m^{<\mathbb{N}}$ let $\mathbf{f}_{s}: X_{\mathfrak{F}} \rightarrow\{0,1\}$ be given by

$$
\begin{gathered}
\mathbf{f}_{s}(t)=\left\{\begin{array}{l}
1 \text { if } t \leq s \\
0 \text { otherwise }
\end{array}\right. \\
\mathbf{f}_{s}(y, Q)=\left\{\begin{array}{l}
1 \text { if } \operatorname{inc}(y, s) \in Q \\
0 \text { if } \operatorname{inc}(y, s) \notin Q
\end{array} \quad \text { for }(y, Q) \in m^{<\omega} \times \mathfrak{P}\right.
\end{gathered}
$$

Definition

The compact space $K_{1}(\mathfrak{P})$ is the pointwise closure of $\left\{\mathbf{f}_{s}: s \in m^{<\mathbb{N}}\right\}$ in $\{0,1\}^{X_{\mathfrak{F}}}$.

Definition

The compact space $K_{1}(\mathfrak{P})$ is the pointwise closure of $\left\{\mathbf{f}_{s}: s \in m^{<\mathbb{N}}\right\}$ in $\{0,1\}^{X_{\mathfrak{F}}}$.
To describe the points of $K_{1}(\mathfrak{P})$, for every $(x, P) \in m^{\mathbb{N}} \times \mathfrak{P}$, we attach a function $\mathbf{f}_{(x, P)}: X_{\mathfrak{F}} \rightarrow\{0,1\}$ given by

Definition

The compact space $K_{1}(\mathfrak{P})$ is the pointwise closure of $\left\{\mathbf{f}_{s}: s \in m^{<\mathbb{N}}\right\}$ in $\{0,1\}^{X_{\mathfrak{F}}}$.
To describe the points of $K_{1}(\mathfrak{P})$, for every $(x, P) \in m^{\mathbb{N}} \times \mathfrak{P}$, we attach a function $\mathbf{f}_{(x, P)}: X_{\mathfrak{F}} \rightarrow\{0,1\}$ given by

$$
\begin{gathered}
\mathbf{f}_{(x, P)}(t)=\left\{\begin{array}{l}
1 \text { if } t \leq x \\
0 \text { otherwise }
\end{array} \quad \text { for } t \in m^{<\mathbb{N}}\right. \\
\mathbf{f}_{(x, P)}(y, Q)=\left\{\begin{array}{l}
1 \text { if } x=y, P=Q \\
0 \text { if } x=y, P \neq Q \\
1 \text { if } x \neq y, \operatorname{inc}(y, x) \in Q \\
0 \text { if } x \neq y, \operatorname{inc}(y, x) \notin Q
\end{array} \quad \text { for }(y, Q) \in m^{\mathbb{N}} \times \mathfrak{P}\right.
\end{gathered}
$$

Proposition

For $(i, j) \in P \in \mathfrak{P}$:

Proposition

For $(i, j) \in P \in \mathfrak{P}$:

- If $\left\{s_{0}, s_{1}, \ldots\right\} \subset m^{<\omega}$ is an (i, j)-sequence over $x \in m^{\mathbb{N}}$ (i.e., enumeration of an (i, j)-comb converging to x), then

$$
\lim _{k} \mathbf{f}_{s_{k}}=\mathbf{f}_{(x, P)}
$$

Proposition

For $(i, j) \in P \in \mathfrak{P}$:

- If $\left\{s_{0}, s_{1}, \ldots\right\} \subset m^{<\omega}$ is an (i, j)-sequence over $x \in m^{\mathbb{N}}$ (i.e., enumeration of an (i, j)-comb converging to x), then

$$
\lim _{k} \mathbf{f}_{s_{k}}=\mathbf{f}_{(x, P)} .
$$

- If $\left\{x_{0}, x_{1}, \ldots\right\} \subset m^{\omega}$ is an (i, j)-sequence over $x \in m^{\mathbb{N}}$, and we choose any $P_{k} \in \mathfrak{P}$, then

$$
\lim _{k} \mathbf{f}_{\left(x_{k}, P_{k}\right)}=\mathbf{f}_{(x, P)}
$$

Proposition

For $(i, j) \in P \in \mathfrak{P}$:

- If $\left\{s_{0}, s_{1}, \ldots\right\} \subset m^{<\omega}$ is an (i, j)-sequence over $x \in m^{\mathbb{N}}$ (i.e., enumeration of an (i, j)-comb converging to x), then

$$
\lim _{k} \mathbf{f}_{s_{k}}=\mathbf{f}_{(x, P)} .
$$

- If $\left\{x_{0}, x_{1}, \ldots\right\} \subset m^{\omega}$ is an (i, j)-sequence over $x \in m^{\mathbb{N}}$, and we choose any $P_{k} \in \mathfrak{P}$, then

$$
\lim _{k} \mathbf{f}_{\left(x_{k}, P_{k}\right)}=\mathbf{f}_{(x, P)}
$$

Proposition

$$
K_{1}(\mathfrak{P})=\left\{\mathbf{f}_{s}: s \in m^{<\mathbb{N}}\right\} \cup\left\{\mathbf{f}_{(x, P)}:(x, P) \in m^{\mathbb{N}} \times \mathfrak{P}\right\} .
$$

The points \mathbf{f}_{s} are isolated and the points $\mathbf{f}_{(x . P)}$ are G_{δ}-points, so $K_{1}(\mathfrak{P})$ is a first-countable space.

Proposition

If the subtree $T \subseteq m^{<\mathbb{N}}$ is equivalent to $m^{<\mathbb{N}}$, then the closure of $\left\{f_{t}: t \in T\right\}$ is naturally homeomorphic to the whole space $K_{1}(\mathfrak{P})$.

Proposition

If the subtree $T \subseteq m^{<\mathbb{N}}$ is equivalent to $m^{<\mathbb{N}}$, then the closure of $\left\{f_{t}: t \in T\right\}$ is naturally homeomorphic to the whole space $K_{1}(\mathfrak{P})$.

Example

When $m=2$, we have the following two natural partitions of 2×2 and the corresponding separable BC1-compacta:

Proposition

If the subtree $T \subseteq m^{<\mathbb{N}}$ is equivalent to $m^{<\mathbb{N}}$, then the closure of $\left\{f_{t}: t \in T\right\}$ is naturally homeomorphic to the whole space $K_{1}(\mathfrak{P})$.

Example

When $m=2$, we have the following two natural partitions of 2×2 and the corresponding separable BC1-compacta:

- Let $\mathfrak{P}_{2}^{0}=\{\{(0,0),(1,1),(1,0)\},\{(0,1)\}\}$ Then the space $K_{1}\left(\mathfrak{P}_{2}^{0}\right)$ both contains and is contained in the split interval.

Proposition

If the subtree $T \subseteq m^{<\mathbb{N}}$ is equivalent to $m^{<\mathbb{N}}$, then the closure of $\left\{f_{t}: t \in T\right\}$ is naturally homeomorphic to the whole space $K_{1}(\mathfrak{P})$.

Example

When $m=2$, we have the following two natural partitions of 2×2 and the corresponding separable BC1-compacta:

- Let $\mathfrak{P}_{2}^{0}=\{\{(0,0),(1,1),(1,0)\},\{(0,1)\}\}$ Then the space $K_{1}\left(\mathfrak{P}_{2}^{0}\right)$ both contains and is contained in the split interval.
- Let $\mathfrak{P}_{2}^{1}=\{\{(0,0)\},\{(0,1),(1,0),(1,1)\}\}$. Then

$$
\left\{\mathbf{f}_{(x, P)}: x \in 2^{\omega}, P \in \mathfrak{P}_{2}^{1}\right\}
$$

is homeomorphic to the Alexandrov duplicate of the Cantor set and $K_{1}\left(\mathfrak{P}_{2}^{1}\right)$ is its separable extension.

Recognizing classical spaces

Recognizing classical spaces

Lemma

$K_{1}(\mathfrak{P})$ contains a homeomorphic copy of the Cantor set if and only if there exist $i \neq j$ such that (i, j) and (j, i) live in the same piece of the partition.

Recognizing classical spaces

Lemma

$K_{1}(\mathfrak{P})$ contains a homeomorphic copy of the Cantor set if and only if there exist $i \neq j$ such that (i, j) and (j, i) live in the same piece of the partition.

Lemma
If $g:\{0,1\}^{2} \rightarrow\{0,1\}$ is such that $g(0,1) \neq g(1,0)$ and $\mathfrak{P}_{g} \neq\{\{(0,0),(1,0)\},\{(1,1),(0,1)\}\}$, then $K_{1}\left(\mathfrak{P}_{g}\right)$ is homeomorphic to a subspace of the split interval.

Recognizing classical spaces

Lemma

$K_{1}(\mathfrak{P})$ contains a homeomorphic copy of the Cantor set if and only if there exist $i \neq j$ such that (i, j) and (j, i) live in the same piece of the partition.

Lemma
If $g:\{0,1\}^{2} \rightarrow\{0,1\}$ is such that $g(0,1) \neq g(1,0)$ and $\mathfrak{P}_{g} \neq\{\{(0,0),(1,0)\},\{(1,1),(0,1)\}\}$, then $K_{1}\left(\mathfrak{P}_{g}\right)$ is
homeomorphic to a subspace of the split interval.

Lemma

$K_{1}(\mathfrak{P})$ contains a homeomorphic copy of the split interval if and only if there exist $i \neq j$ such that (i, j) and (j, i) live in different pieces of the partition \mathfrak{P}.

Recognizing classical spaces

Lemma

$K_{1}(\mathfrak{P})$ contains a homeomorphic copy of the Cantor set if and only if there exist $i \neq j$ such that (i, j) and (j, i) live in the same piece of the partition.

Lemma
If $g:\{0,1\}^{2} \rightarrow\{0,1\}$ is such that $g(0,1) \neq g(1,0)$ and $\mathfrak{P}_{g} \neq\{\{(0,0),(1,0)\},\{(1,1),(0,1)\}\}$, then $K_{1}\left(\mathfrak{P}_{g}\right)$ is
homeomorphic to a subspace of the split interval.

Lemma

$K_{1}(\mathfrak{P})$ contains a homeomorphic copy of the split interval if and only if there exist $i \neq j$ such that (i, j) and (j, i) live in different pieces of the partition \mathfrak{P}.

Theorem

Let K be a Rosenthal compact space that is not scattered. Then
K contains either a homeomorphic copy of the Cantor set or a homeomorphic copy of the split interval.

Non first countable examples

Non first countable examples

Fix a family \mathfrak{Q} of disjoint subsets of $m=\{0,1, \ldots, m-1\}$ and let

$$
X_{\mathfrak{Q}}:=m^{<\mathbb{N}} \cup m^{\mathbb{N}} \times \mathfrak{Q}
$$

be the corresponding Polish space.

Non first countable examples

Fix a family \mathfrak{Q} of disjoint subsets of $m=\{0,1, \ldots, m-1\}$ and let

$$
X_{\mathfrak{Q}}:=m^{<\mathbb{N}} \cup m^{\mathbb{N}} \times \mathfrak{Q}
$$

be the corresponding Polish space.
For $s \in m^{<\omega}$, let $\mathbf{g}_{s}: X_{\mathfrak{Q}} \rightarrow\{0,1\}$ be given by

$$
\mathbf{g}_{s}(t)=\left\{\begin{array}{l}
1 \text { if } t=s \\
0 \text { otherwise }
\end{array} \quad \text { for } t \in m^{<\omega}\right.
$$

$\mathbf{g}_{s}(y, Q)=\left\{\begin{array}{l}1 \text { if } \operatorname{inc}(y, s)=(i, i) \text { for some } i \in Q \quad \text { for } \quad(y, Q) \in m^{\omega} \times \mathscr{L} \\ 0 \text { otherwise }\end{array}\right.$

Non first countable examples

Fix a family \mathfrak{Q} of disjoint subsets of $m=\{0,1, \ldots, m-1\}$ and let

$$
X_{\mathfrak{Q}}:=m^{<\mathbb{N}} \cup m^{\mathbb{N}} \times \mathfrak{Q}
$$

be the corresponding Polish space.
For $s \in m^{<\omega}$, let $\mathbf{g}_{s}: X_{\mathfrak{Q}} \rightarrow\{0,1\}$ be given by

$$
\mathbf{g}_{s}(t)=\left\{\begin{array}{l}
1 \text { if } t=s \\
0 \text { otherwise }
\end{array} \quad \text { for } t \in m^{<\omega}\right.
$$

$\mathbf{g}_{s}(y, Q)=\left\{\begin{array}{l}1 \text { if } \operatorname{inc}(y, s)=(i, i) \text { for some } i \in Q \quad \text { for }(y, Q) \in m^{\omega} \times \mathcal{D} \\ 0 \text { otherwise }\end{array}\right.$

Definition

The compact space $K_{\infty}(\mathfrak{Q})$ is the pointwise closure of the functions $\left\{\mathbf{g}_{s}: s \in m^{<\mathbb{N}}\right\}$ in $\{0,1\}^{X_{\mathfrak{I}}}$.

Let $\mathbf{g}_{\infty}: X_{\mathfrak{Q}} \rightarrow\{0,1\}$ be constantly equal to 0 function.

Let $\mathbf{g}_{\infty}: X_{\mathfrak{Q}} \rightarrow\{0,1\}$ be constantly equal to 0 function. For $(x, P) \in m^{\omega} \times \mathfrak{Q}$, let

$$
\mathbf{g}_{(x, P)}: X_{\mathfrak{Q}} \rightarrow\{0,1\}
$$

is 0 at all points except at (x, P), where it takes value 1 .

Let $\mathbf{g}_{\infty}: X_{\mathfrak{Q}} \rightarrow\{0,1\}$ be constantly equal to 0 function.
For $(x, P) \in m^{\omega} \times \mathfrak{Q}$, let

$$
\mathbf{g}_{(x, P)}: X_{\mathfrak{Q}} \rightarrow\{0,1\}
$$

is 0 at all points except at (x, P), where it takes value 1 .

Proposition

Fix $i, j \in m$, and $\left\{s_{0}, s_{1}, \ldots\right\} \subset m^{<\mathbb{N}}$ an (i, j)-sequence over $x \in m^{\mathbb{N}}$.

Let $\mathbf{g}_{\infty}: X_{\mathfrak{Q}} \rightarrow\{0,1\}$ be constantly equal to 0 function.
For $(x, P) \in m^{\omega} \times \mathfrak{Q}$, let

$$
\mathbf{g}_{(x, P)}: X_{\mathfrak{Q}} \rightarrow\{0,1\}
$$

is 0 at all points except at (x, P), where it takes value 1 .
Proposition
Fix $i, j \in m$, and $\left\{s_{0}, s_{1}, \ldots\right\} \subset m^{<\mathbb{N}}$ an (i, j)-sequence over $x \in m^{\mathbb{N}}$.

- If $i=j \in P \in \mathfrak{Q}$, then $\lim _{k} \mathbf{g}_{s_{k}}=\mathbf{g}_{(x, P)}$.

Let $\mathbf{g}_{\infty}: X_{\mathfrak{Q}} \rightarrow\{0,1\}$ be constantly equal to 0 function.
For $(x, P) \in m^{\omega} \times \mathfrak{Q}$, let

$$
\mathbf{g}_{(x, P)}: X_{\mathfrak{Q}} \rightarrow\{0,1\}
$$

is 0 at all points except at (x, P), where it takes value 1 .

Proposition

Fix $i, j \in m$, and $\left\{s_{0}, s_{1}, \ldots\right\} \subset m^{<\mathbb{N}}$ an (i, j)-sequence over $x \in m^{\mathbb{N}}$.

- If $i=j \in P \in \mathfrak{Q}$, then $\lim _{k} \mathbf{g}_{s_{k}}=\mathbf{g}_{(x, P)}$.
- If either $i \neq j$ or $i=j \notin \bigcup \mathfrak{Q}$, then $\lim _{k} \mathbf{g}_{s_{k}}=\mathbf{g}_{\infty}$.

On the other hand, the only accumulation point of the set $\left\{\mathbf{g}_{(x, P)}: x \in m^{\mathbb{N}}, P \in \mathfrak{Q}\right\}$ is \mathbf{g}_{∞}.

Let $\mathbf{g}_{\infty}: X_{\mathfrak{Q}} \rightarrow\{0,1\}$ be constantly equal to 0 function.
For $(x, P) \in m^{\omega} \times \mathfrak{Q}$, let

$$
\mathbf{g}_{(x, P)}: X_{\mathfrak{Q}} \rightarrow\{0,1\}
$$

is 0 at all points except at (x, P), where it takes value 1 .
Proposition
Fix $i, j \in m$, and $\left\{s_{0}, s_{1}, \ldots\right\} \subset m^{<\mathbb{N}}$ an (i, j)-sequence over $x \in m^{\mathbb{N}}$.

- If $i=j \in P \in \mathfrak{Q}$, then $\lim _{k} \mathbf{g}_{s_{k}}=\mathbf{g}_{(x, P)}$.
- If either $i \neq j$ or $i=j \notin \bigcup \mathfrak{Q}$, then $\lim _{k} \mathbf{g}_{s_{k}}=\mathbf{g}_{\infty}$.

On the other hand, the only accumulation point of the set $\left\{\mathbf{g}_{(x, P)}: x \in m^{\mathbb{N}}, P \in \mathfrak{Q}\right\}$ is \mathbf{g}_{∞}.

Corollary
$K_{\infty}(\mathfrak{Q})$ is a separable BC1-compactum.

Topological description of $K_{\infty}(\mathfrak{Q})$

Topological description of $K_{\infty}(\mathfrak{Q})$

Proposition

The function $X_{\mathfrak{Q}} \cup\{\infty\} \rightarrow K_{\infty}(\mathfrak{Q})$ given by $\xi \mapsto \mathbf{g}_{\xi}$ is a bijection.
Thus,

$$
K_{\infty}(\mathfrak{P})=\left\{\mathbf{g}_{s}: s \in m^{<\omega}\right\} \cup\left\{\mathbf{g}_{(x, P)}:(x, P) \in m^{\mathbb{N}} \times \mathfrak{Q}\right\} \cup\left\{\mathbf{g}_{\infty}\right\}
$$

This is a scattered space of height 3, whose Cantor-Bendixson derivates are

$$
\begin{aligned}
K_{\infty}(\mathfrak{P})^{\prime} & =\left\{\mathbf{g}_{(x, P)}:(x, P) \in m^{\mathbb{N}} \times \mathfrak{Q}\right\} \cup\left\{\mathbf{g}_{\infty}\right\} \\
K_{\infty}(\mathfrak{P})^{\prime \prime} & =\left\{\mathbf{g}_{\infty}\right\}
\end{aligned}
$$

Thus, the points \mathbf{g}_{s} are isolated in $K_{\infty}(\mathfrak{Q})$, the points $\mathbf{g}_{(x . P)}$ are G_{δ}-points, but if $\mathfrak{Q} \neq \emptyset$, then \mathbf{g}_{∞} is not a G_{δ}-point of $K_{\infty}(\mathfrak{Q})$.

Topological description of $K_{\infty}(\mathfrak{Q})$

Proposition

The function $X_{\mathfrak{Q}} \cup\{\infty\} \rightarrow K_{\infty}(\mathfrak{Q})$ given by $\xi \mapsto \mathbf{g}_{\xi}$ is a bijection. Thus,

$$
K_{\infty}(\mathfrak{P})=\left\{\mathbf{g}_{s}: s \in m^{<\omega}\right\} \cup\left\{\mathbf{g}_{(x, P)}:(x, P) \in m^{\mathbb{N}} \times \mathfrak{Q}\right\} \cup\left\{\mathbf{g}_{\infty}\right\}
$$

This is a scattered space of height 3, whose Cantor-Bendixson derivates are

$$
\begin{aligned}
K_{\infty}(\mathfrak{P})^{\prime} & =\left\{\mathbf{g}_{(x, P)}:(x, P) \in m^{\mathbb{N}} \times \mathfrak{Q}\right\} \cup\left\{\mathbf{g}_{\infty}\right\} \\
K_{\infty}(\mathfrak{P})^{\prime \prime} & =\left\{\mathbf{g}_{\infty}\right\}
\end{aligned}
$$

Thus, the points \mathbf{g}_{s} are isolated in $K_{\infty}(\mathfrak{Q})$, the points $\mathbf{g}_{(x . P)}$ are G_{δ}-points, but if $\mathfrak{Q} \neq \emptyset$, then \mathbf{g}_{∞} is not a G_{δ}-point of $K_{\infty}(\mathfrak{Q})$.

Example
Let $m=2$ and $\mathfrak{D}_{2}=\{\{0,1\}\}$. Then $K_{\infty}\left(\mathfrak{D}_{2}\right)$ is homeomorphic to the Cantor tree compactum $C\left(2^{<\mathbb{N}}\right)$.

Comparing the two open degrees

Comparing the two open degrees

Theorem
$\operatorname{odeg}\left(K_{1}(\mathfrak{P})\right)=|\mathfrak{P}|$ and $\operatorname{odeg}\left(K_{\infty}(\mathfrak{Q})\right)=|\mathfrak{Q}|+1$.

Comparing the two open degrees

Theorem
$\operatorname{odeg}\left(K_{1}(\mathfrak{P})\right)=|\mathfrak{P}|$ and $\operatorname{odeg}\left(K_{\infty}(\mathfrak{Q})\right)=|\mathfrak{Q}|+1$.
Corollary
$\operatorname{odeg}\left(S\left(2^{\mathbb{N}}\right)\right)=\operatorname{odeg}\left(D\left(2^{\mathbb{N}}\right)\right)=2$ and $\operatorname{odeg}\left(C\left(2^{<\mathbb{N}}\right)\right)=1$.

Comparing the two open degrees

Theorem
$\operatorname{odeg}\left(K_{1}(\mathfrak{P})\right)=|\mathfrak{P}|$ and $\operatorname{odeg}\left(K_{\infty}(\mathfrak{Q})\right)=|\mathfrak{Q}|+1$.
Corollary
$\operatorname{odeg}\left(S\left(2^{\mathbb{N}}\right)\right)=\operatorname{odeg}\left(D\left(2^{\mathbb{N}}\right)\right)=2$ and $\operatorname{odeg}\left(C\left(2^{<\mathbb{N}}\right)\right)=1$.
Proposition
$\operatorname{cozdeg}\left(C\left(2^{<\mathbb{N}}\right)\right)=\infty$.

Comparing the two open degrees

Theorem
$\operatorname{odeg}\left(K_{1}(\mathfrak{P})\right)=|\mathfrak{P}|$ and $\operatorname{odeg}\left(K_{\infty}(\mathfrak{Q})\right)=|\mathfrak{Q}|+1$.
Corollary
$\operatorname{odeg}\left(S\left(2^{\mathbb{N}}\right)\right)=\operatorname{odeg}\left(D\left(2^{\mathbb{N}}\right)\right)=2$ and $\operatorname{odeg}\left(C\left(2^{<\mathbb{N}}\right)\right)=1$.
Proposition
$\operatorname{cozdeg}\left(C\left(2^{<\mathbb{N}}\right)\right)=\infty$.
Proposition
For every positive integer m there is a first countable BC1-compactum K such that $\operatorname{odeg}(K)=2$ but $\operatorname{cozdeg}(K)=m$.

Pre-metric compacta of degree n

Pre-metric compacta of degree n

Proposition

$\operatorname{cozdeg}(K) \leq n$ iff there is a continuous map $f: K \rightarrow M$ into some metric space M such that $\left|f^{-1}(x)\right| \leq n$ for all $x \in M$.

Pre-metric compacta of degree n

Proposition

$\operatorname{cozdeg}(K) \leq n$ iff there is a continuous map $f: K \rightarrow M$ into some metric space M such that $\left|f^{-1}(x)\right| \leq n$ for all $x \in M$.

Theorem (T., 1999)
Let K be a separable BC1-compactum such that cozdeg $(K) \leq 2$. Then at least one of the following three conditions must hold:

Pre-metric compacta of degree n

Proposition

$\operatorname{cozdeg}(K) \leq n$ iff there is a continuous map $f: K \rightarrow M$ into some metric space M such that $\left|f^{-1}(x)\right| \leq n$ for all $x \in M$.

Theorem (T., 1999)
Let K be a separable BC1-compactum such that cozdeg $(K) \leq 2$.
Then at least one of the following three conditions must hold:

- K is metrizable.

Pre-metric compacta of degree n

Proposition

$\operatorname{cozdeg}(K) \leq n$ iff there is a continuous map $f: K \rightarrow M$ into some metric space M such that $\left|f^{-1}(x)\right| \leq n$ for all $x \in M$.

Theorem (T., 1999)
Let K be a separable BC1-compactum such that cozdeg $(K) \leq 2$.
Then at least one of the following three conditions must hold:

- K is metrizable.
- K contains a homeomorphic copy of $S\left(2^{\mathbb{N}}\right)$.

Pre-metric compacta of degree n

Proposition

$\operatorname{cozdeg}(K) \leq n$ iff there is a continuous map $f: K \rightarrow M$ into some metric space M such that $\left|f^{-1}(x)\right| \leq n$ for all $x \in M$.

Theorem (T., 1999)
Let K be a separable BC1-compactum such that $\operatorname{cozdeg}(K) \leq 2$.
Then at least one of the following three conditions must hold:

- K is metrizable.
- K contains a homeomorphic copy of $S\left(2^{\mathbb{N}}\right)$.
- K contains a homeomorphic copy of $D\left(2^{\mathbb{N}}\right)$.

Pre-metric compacta of degree n

Proposition

$\operatorname{cozdeg}(K) \leq n$ iff there is a continuous map $f: K \rightarrow M$ into some metric space M such that $\left|f^{-1}(x)\right| \leq n$ for all $x \in M$.

Theorem (T., 1999)
Let K be a separable BC1-compactum such that cozdeg $(K) \leq 2$.
Then at least one of the following three conditions must hold:

- K is metrizable.
- K contains a homeomorphic copy of $S\left(2^{\mathbb{N}}\right)$.
- K contains a homeomorphic copy of $D\left(2^{\mathbb{N}}\right)$.

Question

Is there a similar basis result for BC1-compacta K such that $\operatorname{cozdeg}(K) \leq n$?

The n-split interval

The n-split interval

Definition

Given a perfect subset P of the unit interval I and an integer $n \geq 2$, let $S_{n}(P)$ be the set $P \times\{0,1, \ldots, n-1\}$ with the topology where the points of $P \times\{2,3, \ldots, n-1\}$ are isolated and where the neighbourhoods of points $(x, 0)$ and $(x, 1)$ have respectively the following forms:

$$
\begin{aligned}
&](y, 1),(x, 0)] \cup] y, x[\times\{2,3, \ldots, n-1\} \text { for } y<x \\
& {[(x, 1),(y, 0)[\cup] x, y[\times\{2,3, \ldots, n-1\}) \text { for } y>x .}
\end{aligned}
$$

The n-split interval

Definition

Given a perfect subset P of the unit interval I and an integer $n \geq 2$, let $S_{n}(P)$ be the set $P \times\{0,1, \ldots, n-1\}$ with the topology where the points of $P \times\{2,3, \ldots, n-1\}$ are isolated and where the neighbourhoods of points $(x, 0)$ and $(x, 1)$ have respectively the following forms:

$$
\begin{aligned}
&](y, 1),(x, 0)] \cup] y, x[\times\{2,3, \ldots, n-1\} \text { for } y<x, \\
& {[(x, 1),(y, 0)[\cup] x, y[\times\{2,3, \ldots, n-1\}) \text { for } y>x .}
\end{aligned}
$$

Proposition

For every integer $n \geq 2$, the space $S_{n}(I)$ is a BC1-compactum such that $\operatorname{cozdeg}\left(S_{n}(I)\right)=n$

The n-plicate

Definition

For a given topological space Z and integer $n \geq 2$, by $D_{n}(Z)$ we denote the space on $Z \times\{0,1, \ldots, n-1\}$ in which all points of $Z \times\{1,2, \ldots, n-1\}$ are isolated and the neighbourhoods of points $(z, 0)$ have the form

$$
U \times\{0,1, \ldots, n-1\} \backslash\{z\} \times\{0,1, \ldots, n-1\}
$$

where U is an arbitrary neighbourhood of z in Z.

The n-plicate

Definition

For a given topological space Z and integer $n \geq 2$, by $D_{n}(Z)$ we denote the space on $Z \times\{0,1, \ldots, n-1\}$ in which all points of $Z \times\{1,2, \ldots, n-1\}$ are isolated and the neighbourhoods of points $(z, 0)$ have the form

$$
U \times\{0,1, \ldots, n-1\} \backslash\{z\} \times\{0,1, \ldots, n-1\}
$$

where U is an arbitrary neighbourhood of z in Z.

Proposition

For every integer $n \geq 2$, the space $D_{n}\left(2^{\mathbb{N}}\right)$ is a BC1-compactum such that $\operatorname{cozdeg}\left(D_{n}\left(2^{\mathbb{N}}\right)\right)=n$.

Basis result for the co-zero degree

Basis result for the co-zero degree

Theorem (Aviles-Poveda-T., 2015)
Let K be a separable BC1-compactum such that $\operatorname{cozdeg}(K) \leq n$ for some integer $n \geq 2$.

Basis result for the co-zero degree

Theorem (Aviles-Poveda-T., 2015)
Let K be a separable BC1-compactum such that $\operatorname{cozdeg}(K) \leq n$ for some integer $n \geq 2$.
Then at aleast one of the following conditions must hold:

Basis result for the co-zero degree

Theorem (Aviles-Poveda-T., 2015)
Let K be a separable BC1-compactum such that $\operatorname{cozdeg}(K) \leq n$ for some integer $n \geq 2$.
Then at aleast one of the following conditions must hold:

- cozdeg $(K) \leq n$.

Basis result for the co-zero degree

Theorem (Aviles-Poveda-T., 2015)
Let K be a separable BC1-compactum such that $\operatorname{cozdeg}(K) \leq n$ for some integer $n \geq 2$.
Then at aleast one of the following conditions must hold:

- $\operatorname{cozdeg}(K) \leq n$.
- K contains a topological copy of $S_{n}\left(2^{\mathbb{N}}\right)$.

Basis result for the co-zero degree

Theorem (Aviles-Poveda-T., 2015)
Let K be a separable BC1-compactum such that $\operatorname{cozdeg}(K) \leq n$ for some integer $n \geq 2$.
Then at aleast one of the following conditions must hold:

- $\operatorname{cozdeg}(K) \leq n$.
- K contains a topological copy of $S_{n}\left(2^{\mathbb{N}}\right)$.
- K contains a topological copy of $D_{n}\left(2^{\mathbb{N}}\right)$.

