More on the structure theory of compact subsets of the first Baire class

Stevo Todorcevic

Prague, July 28, 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Compact sets of the first Baire class

- Compact sets of the first Baire class
- Baire-class-1 and dual balls of Banach spaces

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Compact sets of the first Baire class
- Baire-class-1 and dual balls of Banach spaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Topological properties of BC1-compacta

- Compact sets of the first Baire class
- Baire-class-1 and dual balls of Banach spaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Topological properties of BC1-compacta
- G_{δ} -points

- Compact sets of the first Baire class
- Baire-class-1 and dual balls of Banach spaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Topological properties of BC1-compacta
- G_{δ} -points
- Dense metrizable subspaces

- Compact sets of the first Baire class
- Baire-class-1 and dual balls of Banach spaces
- Topological properties of BC1-compacta
- G_{δ} -points
- Dense metrizable subspaces
- The slit interval, the duplicate, and the Cantor space

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Compact sets of the first Baire class
- Baire-class-1 and dual balls of Banach spaces
- Topological properties of BC1-compacta
- G_{δ} -points
- Dense metrizable subspaces
- ► The slit interval, the duplicate, and the Cantor space

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Separable compacta of the first Baire class

- Compact sets of the first Baire class
- Baire-class-1 and dual balls of Banach spaces
- Topological properties of BC1-compacta
- G_{δ} -points
- Dense metrizable subspaces
- ► The slit interval, the duplicate, and the Cantor space

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Separable compacta of the first Baire class
- Basis problem for separable compacta

- Compact sets of the first Baire class
- Baire-class-1 and dual balls of Banach spaces
- Topological properties of BC1-compacta
- G_{δ} -points
- Dense metrizable subspaces
- ► The slit interval, the duplicate, and the Cantor space

- Separable compacta of the first Baire class
- Basis problem for separable compacta
- Open degrees and cozero degrees

- Compact sets of the first Baire class
- Baire-class-1 and dual balls of Banach spaces
- Topological properties of BC1-compacta
- G_{δ} -points
- Dense metrizable subspaces
- ► The slit interval, the duplicate, and the Cantor space

- Separable compacta of the first Baire class
- Basis problem for separable compacta
- Open degrees and cozero degrees
- Applications

Given a Polish space X, we let $\mathcal{B}_1(X)$ denote the collection of Baire-class-1 functions on X with the topology induced from \mathbb{R}^X .

Given a Polish space X, we let $\mathcal{B}_1(X)$ denote the collection of Baire-class-1 functions on X with the topology induced from \mathbb{R}^X . We are interested in **compact subspaces** of $\mathcal{B}_1(X)$. Let **BC1** denote this class of compacta.

Given a Polish space X, we let $\mathcal{B}_1(X)$ denote the collection of Baire-class-1 functions on X with the topology induced from \mathbb{R}^X . We are interested in **compact subspaces** of $\mathcal{B}_1(X)$. Let **BC1** denote this class of compacta.

Theorem (Rosethal 1977, Odell-Rosenthal 1979)

Let E be a separable Banach space.

- $\ell_1 \not\hookrightarrow E \text{ iff } B_{E^{**}} \subseteq \mathcal{B}_1(B_{E^*}).$
- $\ell_1 \not\hookrightarrow E$ iff B_E is sequentially dense in $B_{E^{**}}$.

Given a Polish space X, we let $\mathcal{B}_1(X)$ denote the collection of Baire-class-1 functions on X with the topology induced from \mathbb{R}^X . We are interested in **compact subspaces** of $\mathcal{B}_1(X)$. Let **BC1** denote this class of compacta.

Theorem (Rosethal 1977, Odell-Rosenthal 1979)

Let E be a separable Banach space.

- $\ell_1 \not\hookrightarrow E \text{ iff } B_{E^{**}} \subseteq \mathcal{B}_1(B_{E^*}).$
- $\ell_1 \not\hookrightarrow E$ iff B_E is sequentially dense in $B_{E^{**}}$.

Example

If E is a separable Banach space such that ℓ₁ ↔ E then B_{E**} is a separable compact set of the first Baire class.

Given a Polish space X, we let $\mathcal{B}_1(X)$ denote the collection of Baire-class-1 functions on X with the topology induced from \mathbb{R}^X . We are interested in **compact subspaces** of $\mathcal{B}_1(X)$. Let **BC1** denote this class of compacta.

Theorem (Rosethal 1977, Odell-Rosenthal 1979)

Let E be a separable Banach space.

- $\ell_1 \not\hookrightarrow E \text{ iff } B_{E^{**}} \subseteq \mathcal{B}_1(B_{E^*}).$
- $\ell_1 \not\hookrightarrow E$ iff B_E is sequentially dense in $B_{E^{**}}$.

Example

- If E is a separable Banach space such that ℓ₁ ↔ E then B_{E**} is a separable compact set of the first Baire class.
- ► The Helly space of monotone maps from [0,1] into [0,1] is another separable compact convex set of the first Baire class. Note that Helly space is moreover first countable.

Theorem (Rosenthal, 1977)

Every compact set of the first Baire class is **countably tight** *and* **sequentially compact**.

Theorem (Rosenthal, 1977)

Every compact set of the first Baire class is **countably tight** *and* **sequentially compact**.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Bourgain-Fremlin-Talagrand 1978) Every compact set of the first Baire class has the Fréchet-Urysohn property

Theorem (Rosenthal, 1977)

Every compact set of the first Baire class is **countably tight** *and* **sequentially compact**.

Theorem (Bourgain-Fremlin-Talagrand 1978)

Every compact set of the first Baire class has the **Fréchet-Urysohn property**

Theorem (Bourgain 1978)

Every compact set K of the first Baire class has a G_{δ} -point

Theorem (Rosenthal, 1977)

Every compact set of the first Baire class is **countably tight** *and* **sequentially compact**.

Theorem (Bourgain-Fremlin-Talagrand 1978) Every compact set of the first Baire class has the Fréchet-Urysohn property

Theorem (Bourgain 1978)

Every compact set K of the first Baire class has a G_{δ} -point

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question (Bourgain 1978)

Is the set of G_{δ} -points comeager in K?

Theorem (Rosenthal, 1977)

Every compact set of the first Baire class is **countably tight** *and* **sequentially compact**.

Theorem (Bourgain-Fremlin-Talagrand 1978) Every compact set of the first Baire class has the Fréchet-Urysohn property

Theorem (Bourgain 1978)

Every compact set K of the first Baire class has a G_{δ} -point

Question (Bourgain 1978)

Is the set of G_{δ} -points comeager in K?

Theorem (T., 1999)

Every compact set of the first Baire class has a dense metrizable subspace.

Question

Is there a finite list C of BC1-compacta that determines the class of metrizable compacta?

Question

Is there a finite list C of BC1-compacta that determines the class of metrizable compacta?

Here **determines** refers to the specific condition: A BC1-compactum is metrizable iff it contains no copy of any space from C.

Question

Is there a finite list C of BC1-compacta that determines the class of metrizable compacta?

Here **determines** refers to the specific condition: A BC1-compactum is metrizable iff it contains no copy of any space from C.

Example

The split interval S(I) is a BC1-compactum which contains no uncountable metrizable subspace.

Question

Is there a finite list C of BC1-compacta that determines the class of metrizable compacta?

Here **determines** refers to the specific condition: A BC1-compactum is metrizable iff it contains no copy of any space from C.

Example

- The split interval S(I) is a BC1-compactum which contains no uncountable metrizable subspace.
- The Alexandrov duplicate D(1) of the unit interval I is an example of a first countable non-metrizable BC1-compactum.

Question

Is there a finite list C of BC1-compact that determines the class of metrizable compacta?

Here **determines** refers to the specific condition: A BC1-compactum is metrizable iff it contains no copy of any space from C.

Example

- The split interval S(I) is a BC1-compactum which contains no uncountable metrizable subspace.
- The Alexandrov duplicate D(1) of the unit interval I is an example of a first countable non-metrizable BC1-compactum.
- The Cantor tree compactum C(2^{<ℕ}) = 2^{<ℕ} ∪ 2^ℕ ∪ {∞} is a non-metrizable BC1-compactum with the point at infinity as the single non G_δ-point

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ■ のへで

Theorem (T., 1999)

Suppose that K is a BC1-compactum, D a dense subset of K, and that x is a non- G_{δ} -point of K. Then there is a topological embedding

 $\Phi: 2^{<\mathbb{N}} \cup 2^{\mathbb{N}} \cup \{\infty\} \to K$

of the Cantor tree space $C(2^{<\mathbb{N}})$ into K such that

 $\Phi[2^{<\mathbb{N}}] \subseteq D \text{ and } \Phi(\infty) = x.$

Theorem (T., 1999)

Suppose that K is a BC1-compactum, D a dense subset of K, and that x is a non- G_{δ} -point of K. Then there is a topological embedding

 $\Phi: 2^{<\mathbb{N}} \cup 2^{\mathbb{N}} \cup \{\infty\} \to K$

of the Cantor tree space $C(2^{<\mathbb{N}})$ into K such that

$$\Phi[2^{<\mathbb{N}}] \subseteq D \text{ and } \Phi(\infty) = x.$$

Theorem

A BC1-compactum is first countable iff it contains no $C(2^{<\mathbb{N}})$.

Theorem (T., 1999)

Suppose that K is a BC1-compactum, D a dense subset of K, and that x is a non- G_{δ} -point of K. Then there is a topological embedding

 $\Phi: 2^{<\mathbb{N}} \cup 2^{\mathbb{N}} \cup \{\infty\} \to K$

of the Cantor tree space $C(2^{<\mathbb{N}})$ into K such that

$$\Phi[2^{<\mathbb{N}}] \subseteq D \text{ and } \Phi(\infty) = x.$$

Theorem

A BC1-compactum is first countable iff it contains no $C(2^{<\mathbb{N}})$.

Application:

Theorem (T., 1999)

Suppose that K is a BC1-compactum, D a dense subset of K, and that x is a non- G_{δ} -point of K. Then there is a topological embedding

 $\Phi: 2^{<\mathbb{N}} \cup 2^{\mathbb{N}} \cup \{\infty\} \to K$

of the Cantor tree space $C(2^{<\mathbb{N}})$ into K such that

$$\Phi[2^{<\mathbb{N}}] \subseteq D \text{ and } \Phi(\infty) = x.$$

Theorem

A BC1-compactum is first countable iff it contains no $C(2^{<\mathbb{N}})$.

Application:

Theorem (Argyros-Dodos-Kanellopoulos 2008) Every dual Banach space has a separable quotient.

Separable BC1-compacta

Theorem (T., 1999)

Every separable **nonmetrizable** *BC1-compactum contains a topological copy of one of the three compacta*

$$S(2^{\mathbb{N}}), D_{\operatorname{sep}}(2^{\mathbb{N}}), C(2^{<\mathbb{N}}).$$

where $D_{sep}(2^{\mathbb{N}})$ is the natural separable version of the Alexandrov duplicate of the Cantor set.

Separable BC1-compacta

Theorem (T., 1999)

Every separable **nonmetrizable** *BC1-compactum contains a topological copy of one of the three compacta*

$$S(2^{\mathbb{N}}), D_{\operatorname{sep}}(2^{\mathbb{N}}), C(2^{<\mathbb{N}}).$$

where $D_{sep}(2^{\mathbb{N}})$ is the natural separable version of the Alexandrov duplicate of the Cantor set.

Question

Can one characterize some natural classes of separable BC1-compacta using some of the three basic compacta?

Separable BC1-compacta

Theorem (T., 1999)

Every separable **nonmetrizable** *BC1-compactum contains a topological copy of one of the three compacta*

$$S(2^{\mathbb{N}}), D_{\operatorname{sep}}(2^{\mathbb{N}}), C(2^{<\mathbb{N}}).$$

where $D_{sep}(2^{\mathbb{N}})$ is the natural separable version of the Alexandrov duplicate of the Cantor set.

Question

Can one characterize some natural classes of separable BC1-compacta using some of the three basic compacta?

Theorem (T., 1999)

Every hereditarily separable non-metrizable BC1-compactum contains $S(2^{\mathbb{N}})$.

Open degrees

Definition

Fix a compactum K. The **open degree** of K, if it exists, is the least positive integer n for which we can find a countable family \mathcal{F} of open subsets of K such that for every one-to-one (n + 1)-sequence $x_0, ..., x_n \in K$ there exist $V_0, ..., V_n \in \mathcal{F}$ such that:

- $x_i \in V_i$ for all $i \leq n$,
- $\blacktriangleright \bigcap_0^n V_i = \emptyset.$

Put $odeg(K) = \infty$ if such n does not exist.
Open degrees

Definition

Fix a compactum K. The **open degree** of K, if it exists, is the least positive integer n for which we can find a countable family \mathcal{F} of open subsets of K such that for every one-to-one (n + 1)-sequence $x_0, ..., x_n \in K$ there exist $V_0, ..., V_n \in \mathcal{F}$ such that:

- $x_i \in V_i$ for all $i \leq n$,
- $\blacktriangleright \bigcap_0^n V_i = \emptyset.$

 $Put \operatorname{odeg}(K) = \infty$ if such n does not exist.

Example

$$\operatorname{odeg}(S(2^{\mathbb{N}})) = \operatorname{odeg}(D(2^{\mathbb{N}})) = \operatorname{odeg}(C(2^{<\mathbb{N}})) = 2.$$

Open degrees

Definition

Fix a compactum K. The **open degree** of K, if it exists, is the least positive integer n for which we can find a countable family \mathcal{F} of open subsets of K such that for every one-to-one (n + 1)-sequence $x_0, ..., x_n \in K$ there exist $V_0, ..., V_n \in \mathcal{F}$ such that:

- $x_i \in V_i$ for all $i \leq n$,
- $\blacktriangleright \bigcap_0^n V_i = \emptyset.$

Put $odeg(K) = \infty$ if such n does not exist.

Example

 $\mathrm{odeg}(S(2^{\mathbb{N}}))=\mathrm{odeg}(D(2^{\mathbb{N}}))=\mathrm{odeg}(C(2^{<\mathbb{N}}))=2.$

Proposition

odeg(K) = 1 iff K is metrizable.

Co-zero degrees

Definition

For a compactum K, the **co-zero degree** of K, if it exists, is the least positive integer n for which we can find a countable family \mathcal{F} of open F_{σ} -subsets of K such that for every one-to-one (n + 1)-sequence $x_0, ..., x_n \in K$ there exist $V_0, ..., V_n \in \mathcal{F}$ such that:

•
$$x_i \in V_i$$
 for all $i \leq n$,

$$\blacktriangleright \bigcap_0^n V_i = \emptyset.$$

 $Put \operatorname{cozdeg}(K) = \infty$ if such n does not exist.

Co-zero degrees

Definition

For a compactum K, the **co-zero degree** of K, if it exists, is the least positive integer n for which we can find a countable family \mathcal{F} of open F_{σ} -subsets of K such that for every one-to-one (n + 1)-sequence $x_0, ..., x_n \in K$ there exist $V_0, ..., V_n \in \mathcal{F}$ such that:

•
$$x_i \in V_i$$
 for all $i \leq n$,

$$\blacktriangleright \bigcap_0^n V_i = \emptyset.$$

 $Put \operatorname{cozdeg}(K) = \infty$ if such n does not exist.

Example

 $\operatorname{cozdeg}(S(2^{\mathbb{N}})) = \operatorname{cozdeg}(D(2^{\mathbb{N}})) = 2 \ but \ \operatorname{cozdeg}(C(2^{<\mathbb{N}})) = \infty.$

 $\operatorname{cozdeg}(K) \leq n$ iff there is a continuous map $f : K \to M$ from K into some metric space M such that $|f^{-1}(x)| \leq n$ for all $x \in M$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 $\operatorname{cozdeg}(K) \leq n$ iff there is a continuous map $f : K \to M$ from K into some metric space M such that $|f^{-1}(x)| \leq n$ for all $x \in M$.

Theorem (T., 1999)

Let K be a separable BC1-compactum. Then either

K contains a discrete subspace of cardinality continuum, or

 $\operatorname{cozdeg}(K) \leq n$ iff there is a continuous map $f : K \to M$ from K into some metric space M such that $|f^{-1}(x)| \leq n$ for all $x \in M$.

Theorem (T., 1999)

Let K be a separable BC1-compactum. Then either

K contains a discrete subspace of cardinality continuum, or

there is a continuous map f : K → M from K into some metric space M such that |f⁻¹(x)| ≤ 2 for all x ∈ M,

 $\operatorname{cozdeg}(K) \leq n$ iff there is a continuous map $f : K \to M$ from K into some metric space M such that $|f^{-1}(x)| \leq n$ for all $x \in M$.

Theorem (T., 1999)

Let K be a separable BC1-compactum. Then either

K contains a discrete subspace of cardinality continuum, or

 there is a continuous map f : K → M from K into some metric space M such that |f⁻¹(x)| ≤ 2 for all x ∈ M, i.e., cozdeg(K) ≤ 2.

Proposition

A BC1-compactum K is non-metrizable iff $odeg(K) \ge 2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proposition

A BC1-compactum K is non-metrizable iff $deg(K) \geq 2$.

Corollary

The class of separable BC1-compacta of open degree at least 2 has the 3-element basis

 $S(2^{\mathbb{N}}), D_{\mathrm{sep}}(2^{\mathbb{N}}), C(2^{<\mathbb{N}}).$

Proposition

A BC1-compactum K is non-metrizable iff $odeg(K) \ge 2$.

Corollary

The class of separable BC1-compacta of open degree at least 2 has the 3-element basis

$$S(2^{\mathbb{N}}), D_{\operatorname{sep}}(2^{\mathbb{N}}), C(2^{<\mathbb{N}}).$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Question

Can a similar basis result be proved for other open degrees?

Proposition

A BC1-compactum K is non-metrizable iff $odeg(K) \ge 2$.

Corollary

The class of separable BC1-compacta of open degree at least 2 has the 3-element basis

$$S(2^{\mathbb{N}}), D_{\operatorname{sep}}(2^{\mathbb{N}}), C(2^{<\mathbb{N}}).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question

Can a similar basis result be proved for other open degrees?

Question

Are there any basis results for co-zero degrees?

Theorem (Aviles-T., 2015)

For every positive integer n, the class of BC1-compacta of open degree \geq n has a finite basis that can be described explicitly.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Aviles-T., 2015)

For every positive integer n, the class of BC1-compacta of open degree \geq n has a finite basis that can be described explicitly.

Example

► The class of BC1-compacta of open degree ≥ 2 has a 3-element basis.

Theorem (Aviles-T., 2015)

For every positive integer n, the class of BC1-compacta of open degree \geq n has a finite basis that can be described explicitly.

Example

- ► The class of BC1-compacta of open degree ≥ 2 has a 3-element basis.
- ► The class of BC1-compacta of open degree ≥ 3 has a 4-element basis.

Theorem (Aviles-T., 2015)

For every positive integer n, the class of BC1-compacta of open degree \geq n has a finite basis that can be described explicitly.

Example

- ► The class of BC1-compacta of open degree ≥ 2 has a 3-element basis.
- ► The class of BC1-compacta of open degree ≥ 3 has a 4-element basis.
- ► The class of BC1-compacta of open degree ≥ 4 has a 8-element basis.

Theorem (Aviles-T., 2015)

For every positive integer n, the class of BC1-compacta of open degree \geq n has a finite basis that can be described explicitly.

Example

- ► The class of BC1-compacta of open degree ≥ 2 has a 3-element basis.
- ► The class of BC1-compacta of open degree ≥ 3 has a 4-element basis.
- ► The class of BC1-compacta of open degree ≥ 4 has a 8-element basis.

Problem

Investigate the topological properties of the basic compacta and the corresponding classes of compacta they determine.

Some applications

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ∽ � � �

Some applications

Theorem (Aviles-T., 2015) Let K be a BC1-compactum. Then

K is scattered iff $S(2^{\mathbb{N}}) \nleftrightarrow K$ and $2^{\mathbb{N}} \nleftrightarrow K$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some applications

Theorem (Aviles-T., 2015) Let K be a BC1-compactum. Then

K is scattered iff $S(2^{\mathbb{N}}) \nleftrightarrow K$ and $2^{\mathbb{N}} \nleftrightarrow K$.

Theorem (Aviles-T., 2015) Suppose K is a BC1-compactum and that

$$f: K \to S(2^{\mathbb{N}})$$

is a continuous onto map. Then there is $K_0\subseteq K$ homeomorphic to $S(2^{\mathbb{N}})$ such that

 $f \upharpoonright K_0$ is one-to-one.

・ロト・(部・・ヨト・ヨー・)へぐ

Definition

A topological space X is **bi-sequential** if for every ultrafilter \mathcal{U} on X converging to a point $x \in X$ there is a sequence A_n of elements of \mathcal{U} converging to x.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

A topological space X is **bi-sequential** if for every ultrafilter \mathcal{U} on X converging to a point $x \in X$ there is a sequence A_n of elements of \mathcal{U} converging to x.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Pol 1984, Debs 1987)

Every BC1-compactum is bi-sequential.

Definition

A topological space X is **bi-sequential** if for every ultrafilter \mathcal{U} on X converging to a point $x \in X$ there is a sequence A_n of elements of \mathcal{U} converging to x.

Theorem (Pol 1984, Debs 1987)

Every BC1-compactum is bi-sequential.

Corollary (Knaust 1991)

Every BC1-compactum has the **weak diagonal sequence property**, *i.e.*, *if* x_n *is a sequence of elements of* K *converging to a point* $x \in K$ *and if for every* n, *we have a sequence* x_n^m *converging to* x_n *then there is infinite* $N \subseteq \omega$ *and for each* $n \in N$ *an infinite set* $M_n \subseteq \omega$ *such that*

$$\{x_n^m:n\in N,m\in M_n\}\to x.$$

Theorem

Suppose that K_0 and K_1 are two bi-sequential spaces and that D_0 is a dense subset of K_0 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

Suppose that K_0 and K_1 are two bi-sequential spaces and that D_0 is a dense subset of K_0 . Suppose

$f: K_0 \to K_1$

has the property that sequences in D_0 that converge to the same point in K_0 are map to sequences that converge to the same pint in K_1 .

Theorem

Suppose that K_0 and K_1 are two bi-sequential spaces and that D_0 is a dense subset of K_0 . Suppose

 $f: K_0 \rightarrow K_1$

has the property that sequences in D_0 that converge to the same point in K_0 are map to sequences that converge to the same pint in K_1 .

Then f extends to a continuous function

$$\overline{f}: K_0 \to K_1.$$

▲ロト ▲圖 → ▲ 国 ト ▲ 国 - - - の Q ()

Lemma

Let K be a separable BC1-compactum of open degree \geq m and let D be a countable dense subset of K. Then there is a one-to one mapping

$$f:m^{<\mathbb{N}}\to D$$

such that

$$\overline{\{f(t):t\frown i\sqsubseteq z\}}\cap\overline{\{f(t):t\frown j\sqsubseteq z\}}=\emptyset$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for all i < j < m.

Lemma

Let K be a separable BC1-compactum of open degree \geq m and let D be a countable dense subset of K. Then there is a one-to one mapping

$$f:m^{<\mathbb{N}}\to D$$

such that

$$\overline{\{f(t):t\frown i\sqsubseteq z\}}\cap\overline{\{f(t):t\frown j\sqsubseteq z\}}=\emptyset$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for all i < j < m.

Remark

So, in order to apply the Extension Theorem we need to:

Lemma

Let K be a separable BC1-compactum of open degree \geq m and let D be a countable dense subset of K. Then there is a one-to one mapping

$$f:m^{<\mathbb{N}}\to D$$

such that

$$\overline{\{f(t):t\frown i\sqsubseteq z\}}\cap\overline{\{f(t):t\frown j\sqsubseteq z\}}=\emptyset$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for all i < j < m.

Remark

So, in order to apply the Extension Theorem we need to:

▶ assign BC1-compacta to trees of the form $m^{<\mathbb{N}}$,

Lemma

Let K be a separable BC1-compactum of open degree \geq m and let D be a countable dense subset of K. Then there is a one-to one mapping

$$f:m^{<\mathbb{N}}\to D$$

such that

$$\overline{\{f(t):t\frown i\sqsubseteq z\}}\cap\overline{\{f(t):t\frown j\sqsubseteq z\}}=\emptyset$$

for all i < j < m.

Remark

So, in order to apply the Extension Theorem we need to:

- ▶ assign BC1-compacta to trees of the form $m^{<\mathbb{N}}$,
- develop the corresponding Ramsey-theory on trees.

A Ramsey theorem for trees $m^{<\mathbb{N}}$
Let \sqsubseteq denote the usual end-extension ordering of the tree $m^{<\mathbb{N}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let \sqsubseteq denote the usual end-extension ordering of the tree $m^{\leq \mathbb{N}}$ and \prec its ω -ordering (first by the ordering of lenghts and then by the lexicographical ordering).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let \sqsubseteq denote the usual end-extension ordering of the tree $m^{\leq \mathbb{N}}$ and \prec its ω -ordering (first by the ordering of lenghts and then by the lexicographical ordering).

 $\langle\langle A \rangle \rangle = \{ s \land t : s, t \in A \}$ is the **meet-closure** of $A \subseteq m^{<\mathbb{N}}$.

Let \sqsubseteq denote the usual end-extension ordering of the tree $m^{<\mathbb{N}}$ and \prec its ω -ordering (first by the ordering of lenghts and then by the lexicographical ordering).

 $\langle \langle A \rangle \rangle = \{ s \land t : s, t \in A \}$ is the **meet-closure** of $A \subseteq m^{<\mathbb{N}}$.

If $r = s \land t \notin \{s, t\}$ then $r^{\frown}i \sqsubseteq s$ and $r^{\frown}j \sqsubseteq t$ for distinct

 $i, j \in m$. In that case, we define **the incidence** as inc(s, t) = (i, j).

Let \sqsubseteq denote the usual end-extension ordering of the tree $m^{<\mathbb{N}}$ and \prec its ω -ordering (first by the ordering of lenghts and then by the lexicographical ordering).

 $\langle\langle A \rangle \rangle = \{ s \land t : s, t \in A \}$ is the **meet-closure** of $A \subseteq m^{<\mathbb{N}}$.

If $r = s \land t \notin \{s, t\}$ then $r \frown i \sqsubseteq s$ and $r \frown j \sqsubseteq t$ for distinct

 $i,j \in m$. In that case, we define **the incidence** as inc(s,t) = (i,j).

(日) (同) (三) (三) (三) (○) (○)

Definition

Sets $A, B \subset m^{<\omega}$ are equivalent, $A \approx B$, if there is a bijection $f : \langle \langle A \rangle \rangle \rightarrow \langle \langle B \rangle \rangle$ such that for every $t, s \in \langle \langle A \rangle \rangle$

Let \sqsubseteq denote the usual end-extension ordering of the tree $m^{<\mathbb{N}}$ and \prec its ω -ordering (first by the ordering of lenghts and then by the lexicographical ordering).

 $\langle \langle A \rangle \rangle = \{ s \land t : s, t \in A \}$ is the **meet-closure** of $A \subseteq m^{<\mathbb{N}}$.

If $r = s \land t \notin \{s, t\}$ then $r \frown i \sqsubseteq s$ and $r \frown j \sqsubseteq t$ for distinct

 $i, j \in m$. In that case, we define **the incidence** as inc(s, t) = (i, j).

Definition

Sets $A, B \subset m^{<\omega}$ are equivalent, $A \approx B$, if there is a bijection $f : \langle \langle A \rangle \rangle \rightarrow \langle \langle B \rangle \rangle$ such that for every $t, s \in \langle \langle A \rangle \rangle$

• $a \in A$ iff $f(a) \in B$

Let \sqsubseteq denote the usual end-extension ordering of the tree $m^{<\mathbb{N}}$ and \prec its ω -ordering (first by the ordering of lenghts and then by the lexicographical ordering).

 $\langle \langle A \rangle \rangle = \{ s \land t : s, t \in A \}$ is the **meet-closure** of $A \subseteq m^{<\mathbb{N}}$.

If $r = s \land t \notin \{s, t\}$ then $r \frown i \sqsubseteq s$ and $r \frown j \sqsubseteq t$ for distinct

 $i, j \in m$. In that case, we define **the incidence** as inc(s, t) = (i, j).

(日) (同) (三) (三) (三) (○) (○)

Definition

Sets $A, B \subset m^{<\omega}$ are equivalent, $A \approx B$, if there is a bijection $f : \langle \langle A \rangle \rangle \rightarrow \langle \langle B \rangle \rangle$ such that for every $t, s \in \langle \langle A \rangle \rangle$

•
$$a \in A$$
 iff $f(a) \in B$

• $f(t \wedge s) = f(t) \wedge f(s)$

Let \sqsubseteq denote the usual end-extension ordering of the tree $m^{<\mathbb{N}}$ and \prec its ω -ordering (first by the ordering of lenghts and then by the lexicographical ordering).

 $\langle \langle A \rangle \rangle = \{ s \land t : s, t \in A \}$ is the **meet-closure** of $A \subseteq m^{<\mathbb{N}}$.

If $r = s \land t \notin \{s, t\}$ then $r \frown i \sqsubseteq s$ and $r \frown j \sqsubseteq t$ for distinct

 $i, j \in m$. In that case, we define **the incidence** as inc(s, t) = (i, j).

Definition

Sets $A, B \subset m^{<\omega}$ are equivalent, $A \approx B$, if there is a bijection $f : \langle \langle A \rangle \rangle \rightarrow \langle \langle B \rangle \rangle$ such that for every $t, s \in \langle \langle A \rangle \rangle$

• $a \in A$ iff $f(a) \in B$

•
$$f(t \wedge s) = f(t) \wedge f(s)$$

•
$$f(t) \prec f(s)$$
 if and only if $t \prec s$

Let \sqsubseteq denote the usual end-extension ordering of the tree $m^{<\mathbb{N}}$ and \prec its ω -ordering (first by the ordering of lenghts and then by the lexicographical ordering).

 $\langle \langle A \rangle \rangle = \{ s \land t : s, t \in A \}$ is the **meet-closure** of $A \subseteq m^{<\mathbb{N}}$.

If $r = s \land t \notin \{s, t\}$ then $r \frown i \sqsubset s$ and $r \frown j \sqsubset t$ for distinct

 $i, j \in m$. In that case, we define **the incidence** as inc(s, t) = (i, j).

Definition

Sets $A, B \subset m^{<\omega}$ are equivalent, $A \approx B$, if there is a bijection $f:\langle\langle A\rangle\rangle \rightarrow \langle\langle B\rangle\rangle$ such that for every $t, s \in \langle\langle A\rangle\rangle$

- \blacktriangleright a \in A iff f(a) \in B
- $f(t \wedge s) = f(t) \wedge f(s)$
- $f(t) \prec f(s)$ if and only if $t \prec s$
- If $i \in m$ is such that $t^{\frown}i \sqsubseteq s$, then $f(t)^{\frown}i \sqsubseteq f(s)$.

(日) (同) (三) (三) (三) (○) (○)

Let \sqsubseteq denote the usual end-extension ordering of the tree $m^{<\mathbb{N}}$ and \prec its ω -ordering (first by the ordering of lenghts and then by the lexicographical ordering).

 $\langle \langle A \rangle \rangle = \{ s \land t : s, t \in A \}$ is the **meet-closure** of $A \subseteq m^{<\mathbb{N}}$.

If $r = s \land t \notin \{s, t\}$ then $r^{\frown}i \sqsubseteq s$ and $r^{\frown}j \sqsubseteq t$ for distinct

 $i, j \in m$. In that case, we define **the incidence** as inc(s, t) = (i, j).

Definition

Sets $A, B \subset m^{<\omega}$ are equivalent, $A \approx B$, if there is a bijection $f: \langle \langle A \rangle \rangle \rightarrow \langle \langle B \rangle \rangle$ such that for every $t, s \in \langle \langle A \rangle \rangle$

 \blacktriangleright a \in A iff f(a) \in B

•
$$f(t \wedge s) = f(t) \wedge f(s)$$

- $f(t) \prec f(s)$ if and only if $t \prec s$
- If $i \in m$ is such that $t^{\frown}i \sqsubseteq s$, then $f(t)^{\frown}i \sqsubseteq f(s)$.

An (i, j)-comb is a subset $A \subseteq m^{<\omega}$ such that

 $A \approx \{(j), (iij), (iiiij), (iiiiiij), \ldots\}.$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Theorem Fix a set $A_0 \subseteq m^{<\mathbb{N}}$, and a partition

$$\{A \subseteq m^{<\mathbb{N}} : A \approx A_0\} = P_1 \cup \cdots \cup P_k$$

into finitely many sets with the property of Baire. Then there exists a subtree $T \subseteq m^{<\mathbb{N}}$ equivalent to $m^{<\mathbb{N}}$ such that the family $\{A \subseteq T : A \approx A_0\}$ is contained in a single piece of the partition.

Theorem Fix a set $A_0 \subseteq m^{<\mathbb{N}}$, and a partition

$$\{A \subseteq m^{<\mathbb{N}} : A \approx A_0\} = P_1 \cup \cdots \cup P_k$$

into finitely many sets with the property of Baire. Then there exists a subtree $T \subseteq m^{<\mathbb{N}}$ equivalent to $m^{<\mathbb{N}}$ such that the family $\{A \subseteq T : A \approx A_0\}$ is contained in a single piece of the partition.

Remark

So if there are BC1-compactifications of $m^{<\mathbb{N}}$ (taken with its discrete topology) in which all combs of the tree $m^{<\mathbb{N}}$ are convergent,

Theorem Fix a set $A_0 \subseteq m^{<\mathbb{N}}$, and a partition

$$\{A \subseteq m^{<\mathbb{N}} : A \approx A_0\} = P_1 \cup \cdots \cup P_k$$

into finitely many sets with the property of Baire. Then there exists a subtree $T \subseteq m^{<\mathbb{N}}$ equivalent to $m^{<\mathbb{N}}$ such that the family $\{A \subseteq T : A \approx A_0\}$ is contained in a single piece of the partition.

Remark

So if there are BC1-compactifications of $m^{<\mathbb{N}}$ (taken with its discrete topology) in which all combs of the tree $m^{<\mathbb{N}}$ are convergent, we are halfway to proving the basis theorem.

Theorem Fix a set $A_0 \subseteq m^{<\mathbb{N}}$, and a partition

$$\{A \subseteq m^{<\mathbb{N}} : A \approx A_0\} = P_1 \cup \cdots \cup P_k$$

into finitely many sets with the property of Baire. Then there exists a subtree $T \subseteq m^{<\mathbb{N}}$ equivalent to $m^{<\mathbb{N}}$ such that the family $\{A \subseteq T : A \approx A_0\}$ is contained in a single piece of the partition.

Remark

So if there are BC1-compactifications of $m^{<\mathbb{N}}$ (taken with its discrete topology) in which all combs of the tree $m^{<\mathbb{N}}$ are convergent, we are halfway to proving the basis theorem. The finite basis is to be found in the class of all such compactifications of $m^{<\mathbb{N}}$.

Given a partition \mathfrak{P} of $m \times m$, define the Polish space $X_{\mathfrak{P}} := m^{<\omega} \cup m^{\omega} \times \mathfrak{P}$ as follows:

Given a partition \mathfrak{P} of $m \times m$, define the Polish space $X_{\mathfrak{P}} := m^{<\omega} \cup m^{\omega} \times \mathfrak{P}$ as follows:

• $m^{<\mathbb{N}}$ is considered as a countable discrete space,

・ロト・日本・モート モー うへぐ

Given a partition \mathfrak{P} of $m \times m$, define the Polish space $X_{\mathfrak{P}} := m^{<\omega} \cup m^{\omega} \times \mathfrak{P}$ as follows:

• $m^{<\mathbb{N}}$ is considered as a countable discrete space,

• $m^{\mathbb{N}}$ is considered with its product topology,

Given a partition \mathfrak{P} of $m \times m$, define the Polish space $X_{\mathfrak{P}} := m^{<\omega} \cup m^{\omega} \times \mathfrak{P}$ as follows:

• $m^{<\mathbb{N}}$ is considered as a countable discrete space,

- $m^{\mathbb{N}}$ is considered with its product topology,
- \blacktriangleright \mathfrak{P} is considered as a finite discrete space,

Given a partition \mathfrak{P} of $m \times m$, define the Polish space $X_{\mathfrak{P}} := m^{<\omega} \cup m^{\omega} \times \mathfrak{P}$ as follows:

• $m^{<\mathbb{N}}$ is considered as a countable discrete space,

- ▶ $m^{\mathbb{N}}$ is considered with its product topology,
- $\blacktriangleright \mathfrak{P}$ is considered as a finite discrete space,
- $m^{\mathbb{N}} imes \mathfrak{P}$ is given the product topology,

Given a partition \mathfrak{P} of $m \times m$, define the Polish space $X_{\mathfrak{P}} := m^{<\omega} \cup m^{\omega} \times \mathfrak{P}$ as follows:

- $m^{<\mathbb{N}}$ is considered as a countable discrete space,
- $m^{\mathbb{N}}$ is considered with its product topology,
- \mathfrak{P} is considered as a finite discrete space,
- $m^{\mathbb{N}} imes \mathfrak{P}$ is given the product topology,
- $X_{\mathfrak{P}} = m^{<\mathbb{N}} \cup m^{\mathbb{N}} imes \mathfrak{P}$ is given the disjoint sum topology.

Given a partition \mathfrak{P} of $m \times m$, define the Polish space $X_{\mathfrak{P}} := m^{<\omega} \cup m^{\omega} \times \mathfrak{P}$ as follows:

- $m^{<\mathbb{N}}$ is considered as a countable discrete space,
- ▶ $m^{\mathbb{N}}$ is considered with its product topology,
- \mathfrak{P} is considered as a finite discrete space,
- $m^{\mathbb{N}} imes \mathfrak{P}$ is given the product topology,
- $X_{\mathfrak{P}} = m^{<\mathbb{N}} \cup m^{\mathbb{N}} imes \mathfrak{P}$ is given the disjoint sum topology.

For $s\in m^{<\mathbb{N}}$ let $\mathbf{f}_s:X_\mathfrak{P} o\{0,1\}$ be given by

Given a partition \mathfrak{P} of $m \times m$, define the Polish space $X_{\mathfrak{P}} := m^{<\omega} \cup m^{\omega} \times \mathfrak{P}$ as follows:

- ▶ $m^{<\mathbb{N}}$ is considered as a countable discrete space,
- $m^{\mathbb{N}}$ is considered with its product topology,
- $\blacktriangleright \mathfrak{P}$ is considered as a finite discrete space,
- $m^{\mathbb{N}} imes\mathfrak{P}$ is given the product topology,
- $X_{\mathfrak{P}} = m^{<\mathbb{N}} \cup m^{\mathbb{N}} imes \mathfrak{P}$ is given the disjoint sum topology.

For $s\in m^{<\mathbb{N}}$ let $\mathbf{f}_s:X_{\mathfrak{P}} o\{0,1\}$ be given by

$$\mathbf{f}_{s}(t) = \begin{cases} 1 \text{ if } t \leq s \\ 0 \text{ otherwise} \end{cases} \quad \text{for } t \in m^{<\omega},$$
$$\mathbf{f}_{s}(y,Q) = \begin{cases} 1 \text{ if } inc(y,s) \in Q \\ 0 \text{ if } inc(y,s) \notin Q \end{cases} \quad \text{for } (y,Q) \in m^{\omega} \times \mathfrak{P} \end{cases}$$

Definition

The compact space $K_1(\mathfrak{P})$ is the pointwise closure of $\{\mathbf{f}_s : s \in m^{<\mathbb{N}}\}$ in $\{0, 1\}^{X_{\mathfrak{P}}}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

The compact space $K_1(\mathfrak{P})$ is the pointwise closure of $\{\mathbf{f}_s : s \in m^{<\mathbb{N}}\}\$ in $\{0, 1\}^{X_{\mathfrak{P}}}$.

To describe the points of $K_1(\mathfrak{P})$, for every $(x, P) \in m^{\mathbb{N}} \times \mathfrak{P}$, we attach a function $\mathbf{f}_{(x,P)} : X_{\mathfrak{P}} \to \{0,1\}$ given by

Definition

The compact space $K_1(\mathfrak{P})$ is the pointwise closure of $\{\mathbf{f}_s : s \in m^{<\mathbb{N}}\}\$ in $\{0,1\}^{X_{\mathfrak{P}}}$.

To describe the points of $K_1(\mathfrak{P})$, for every $(x, P) \in m^{\mathbb{N}} \times \mathfrak{P}$, we attach a function $\mathbf{f}_{(x,P)} : X_{\mathfrak{P}} \to \{0,1\}$ given by

$$\mathbf{f}_{(x,P)}(t) = \begin{cases} 1 \text{ if } t \leq x \\ 0 \text{ otherwise} \end{cases} \quad \text{for } t \in m^{<\mathbb{N}} \\ \mathbf{f}_{(x,P)}(y,Q) = \begin{cases} 1 \text{ if } x = y, \ P = Q \\ 0 \text{ if } x = y, \ P \neq Q \\ 1 \text{ if } x \neq y, \text{ inc}(y,x) \in Q \\ 0 \text{ if } x \neq y, \text{ inc}(y,x) \notin Q \end{cases} \quad \text{for } (y,Q) \in m^{\mathbb{N}} \times \mathfrak{P} \end{cases}$$

Proposition For $(i, j) \in P \in \mathfrak{P}$:

For $(i, j) \in P \in \mathfrak{P}$:

 If {s₀, s₁,...} ⊂ m^{<ω} is an (i,j)-sequence over x ∈ m^N (i.e., enumeration of an (i,j)-comb converging to x), then

$$\lim_k \mathbf{f}_{s_k} = \mathbf{f}_{(x,P)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For $(i, j) \in P \in \mathfrak{P}$:

 If {s₀, s₁,...} ⊂ m^{<ω} is an (i,j)-sequence over x ∈ m^N (i.e., enumeration of an (i,j)-comb converging to x), then

$$\lim_k \mathbf{f}_{s_k} = \mathbf{f}_{(x,P)}.$$

If {x₀, x₁,...} ⊂ m^ω is an (i, j)-sequence over x ∈ m^N, and we choose any P_k ∈ 𝔅, then

$$\lim_k \mathbf{f}_{(x_k,P_k)} = \mathbf{f}_{(x,P)}.$$

For $(i, j) \in P \in \mathfrak{P}$:

 If {s₀, s₁,...} ⊂ m^{<ω} is an (i,j)-sequence over x ∈ m^N (i.e., enumeration of an (i,j)-comb converging to x), then

$$\lim_k \mathbf{f}_{s_k} = \mathbf{f}_{(x,P)}.$$

If {x₀, x₁,...} ⊂ m^ω is an (i, j)-sequence over x ∈ m^N, and we choose any P_k ∈ 𝔅, then

$$\lim_k \mathbf{f}_{(x_k,P_k)} = \mathbf{f}_{(x,P)}.$$

Proposition

$$K_1(\mathfrak{P}) = {\mathbf{f}_s : s \in m^{<\mathbb{N}}} \cup {\mathbf{f}_{(x,P)} : (x,P) \in m^{\mathbb{N}} \times \mathfrak{P}}.$$

The points \mathbf{f}_s are isolated and the points $\mathbf{f}_{(x,P)}$ are G_{δ} -points, so $\mathcal{K}_1(\mathfrak{P})$ is a first-countable space.

If the subtree $T \subseteq m^{<\mathbb{N}}$ is equivalent to $m^{<\mathbb{N}}$, then the closure of $\{f_t : t \in T\}$ is naturally homeomorphic to the whole space $K_1(\mathfrak{P})$.

If the subtree $T \subseteq m^{<\mathbb{N}}$ is equivalent to $m^{<\mathbb{N}}$, then the closure of $\{f_t : t \in T\}$ is naturally homeomorphic to the whole space $K_1(\mathfrak{P})$.

Example

When m = 2, we have the following two natural partitions of 2×2 and the corresponding separable BC1-compacta:

If the subtree $T \subseteq m^{<\mathbb{N}}$ is equivalent to $m^{<\mathbb{N}}$, then the closure of $\{f_t : t \in T\}$ is naturally homeomorphic to the whole space $K_1(\mathfrak{P})$.

Example

When m = 2, we have the following two natural partitions of 2×2 and the corresponding separable BC1-compacta:

Let 𝔅⁰₂ = {{(0,0), (1,1), (1,0)}, {(0,1)}} Then the space K₁(𝔅⁰₂) both contains and is contained in the split interval.

If the subtree $T \subseteq m^{<\mathbb{N}}$ is equivalent to $m^{<\mathbb{N}}$, then the closure of $\{f_t : t \in T\}$ is naturally homeomorphic to the whole space $K_1(\mathfrak{P})$.

Example

When m = 2, we have the following two natural partitions of 2×2 and the corresponding separable BC1-compacta:

- Let 𝔅⁰₂ = {{(0,0), (1,1), (1,0)}, {(0,1)}} Then the space K₁(𝔅⁰₂) both contains and is contained in the split interval.
- Let $\mathfrak{P}_2^1 = \{\{(0,0)\}, \{(0,1), (1,0), (1,1)\}\}$. Then

$$\{\mathbf{f}_{(x,P)}: x \in 2^{\omega}, P \in \mathfrak{P}_2^1\}$$

is homeomorphic to the Alexandrov duplicate of the Cantor set and $K_1(\mathfrak{P}_2^1)$ is its separable extension.

Recognizing classical spaces

▲ロト ▲圖 → ▲ 国 ト ▲ 国 - の Q @

Recognizing classical spaces

Lemma

 $K_1(\mathfrak{P})$ contains a homeomorphic copy of the Cantor set if and only if there exist $i \neq j$ such that (i, j) and (j, i) live in the same piece of the partition.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ
Recognizing classical spaces

Lemma

 $K_1(\mathfrak{P})$ contains a homeomorphic copy of the Cantor set if and only if there exist $i \neq j$ such that (i, j) and (j, i) live in the same piece of the partition.

Lemma

If $g : \{0,1\}^2 \to \{0,1\}$ is such that $g(0,1) \neq g(1,0)$ and $\mathfrak{P}_g \neq \{\{(0,0),(1,0)\},\{(1,1),(0,1)\}\}$, then $K_1(\mathfrak{P}_g)$ is homeomorphic to a subspace of the split interval.

Recognizing classical spaces

Lemma

 $K_1(\mathfrak{P})$ contains a homeomorphic copy of the Cantor set if and only if there exist $i \neq j$ such that (i, j) and (j, i) live in the same piece of the partition.

Lemma

If $g : \{0,1\}^2 \to \{0,1\}$ is such that $g(0,1) \neq g(1,0)$ and $\mathfrak{P}_g \neq \{\{(0,0),(1,0)\},\{(1,1),(0,1)\}\}$, then $K_1(\mathfrak{P}_g)$ is homeomorphic to a subspace of the split interval.

Lemma

 $K_1(\mathfrak{P})$ contains a homeomorphic copy of the split interval if and only if there exist $i \neq j$ such that (i, j) and (j, i) live in different pieces of the partition \mathfrak{P} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recognizing classical spaces

Lemma

 $K_1(\mathfrak{P})$ contains a homeomorphic copy of the Cantor set if and only if there exist $i \neq j$ such that (i, j) and (j, i) live in the same piece of the partition.

Lemma

If $g : \{0,1\}^2 \to \{0,1\}$ is such that $g(0,1) \neq g(1,0)$ and $\mathfrak{P}_g \neq \{\{(0,0),(1,0)\},\{(1,1),(0,1)\}\}$, then $K_1(\mathfrak{P}_g)$ is homeomorphic to a subspace of the split interval.

Lemma

 $K_1(\mathfrak{P})$ contains a homeomorphic copy of the split interval if and only if there exist $i \neq j$ such that (i, j) and (j, i) live in different pieces of the partition \mathfrak{P} .

Theorem

Let K be a Rosenthal compact space that is **not scattered**. Then K contains either a homeomorphic copy of the **Cantor set** or a homeomorphic copy of the **split interval**.

Fix a family $\mathfrak Q$ of disjoint subsets of $m=\{0,1,\ldots,m-1\}$ and let

$$X_{\mathfrak{Q}} := m^{<\mathbb{N}} \cup m^{\mathbb{N}} imes \mathfrak{Q}$$

be the corresponding Polish space.

Fix a family \mathfrak{Q} of disjoint subsets of $m = \{0, 1, \dots, m-1\}$ and let

$$X_{\mathfrak{Q}} := m^{<\mathbb{N}} \cup m^{\mathbb{N}} imes \mathfrak{Q}$$

be the corresponding Polish space. For $s \in m^{<\omega}$, let $\mathbf{g}_s : X_{\mathfrak{Q}} \to \{0,1\}$ be given by

$$\mathbf{g}_s(t) = egin{cases} 1 ext{ if } t = s \ 0 ext{ otherwise} \end{cases} ext{ for } t \in m^{<\omega},$$

 $\mathbf{g}_{s}(y,Q) = \begin{cases} 1 \text{ if } inc(y,s) = (i,i) \text{ for some } i \in Q \\ 0 \text{ otherwise} \end{cases} \quad \text{for } (y,Q) \in m^{\omega} \times \mathfrak{L}$

Fix a family \mathfrak{Q} of disjoint subsets of $m = \{0, 1, \dots, m-1\}$ and let

$$X_{\mathfrak{Q}} := m^{<\mathbb{N}} \cup m^{\mathbb{N}} imes \mathfrak{Q}$$

be the corresponding Polish space. For $s\in m^{<\omega},$ let $\mathbf{g}_s:X_\mathfrak{Q}\to\{0,1\}$ be given by

$$\mathbf{g}_s(t) = egin{cases} 1 ext{ if } t = s \ 0 ext{ otherwise} \end{cases} ext{ for } t \in m^{<\omega},$$

$$\mathbf{g}_s(y,Q) = \begin{cases} 1 \text{ if } inc(y,s) = (i,i) \text{ for some } i \in Q \\ 0 \text{ otherwise} \end{cases} \quad \text{ for } (y,Q) \in m^\omega \times \mathfrak{L}$$

Definition

The compact space $K_{\infty}(\mathfrak{Q})$ is the pointwise closure of the functions $\{\mathbf{g}_s : s \in m^{<\mathbb{N}}\}\$ in $\{0,1\}^{X_{\mathfrak{Q}}}$.

Let $\mathbf{g}_\infty: X_\mathfrak{Q} \to \{0,1\}$ be constantly equal to 0 function.

$$\mathbf{g}_{(x,P)}: X_{\mathfrak{Q}} \rightarrow \{0,1\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

is 0 at all points except at (x, P), where it takes value 1.

$$\mathbf{g}_{(x,P)}: X_{\mathfrak{Q}} \to \{0,1\}$$

is 0 at all points except at (x, P), where it takes value 1.

Proposition

Fix $i, j \in m$, and $\{s_0, s_1, \ldots\} \subset m^{<\mathbb{N}}$ an (i, j)-sequence over $x \in m^{\mathbb{N}}$.

$$\mathbf{g}_{(x,P)}: X_{\mathfrak{Q}} \to \{0,1\}$$

is 0 at all points except at (x, P), where it takes value 1.

Proposition

Fix $i, j \in m$, and $\{s_0, s_1, \ldots\} \subset m^{<\mathbb{N}}$ an (i, j)-sequence over $x \in m^{\mathbb{N}}$.

• If $i = j \in P \in \mathfrak{Q}$, then $\lim_k \mathbf{g}_{s_k} = \mathbf{g}_{(x,P)}$.

$$\mathbf{g}_{(x,P)}: X_{\mathfrak{Q}} \to \{0,1\}$$

is 0 at all points except at (x, P), where it takes value 1.

Proposition

Fix $i, j \in m$, and $\{s_0, s_1, \ldots\} \subset m^{<\mathbb{N}}$ an (i, j)-sequence over $x \in m^{\mathbb{N}}$.

- If $i = j \in P \in \mathfrak{Q}$, then $\lim_k \mathbf{g}_{s_k} = \mathbf{g}_{(x,P)}$.
- If either $i \neq j$ or $i = j \notin \bigcup \mathfrak{Q}$, then $\lim_k \mathbf{g}_{s_k} = \mathbf{g}_{\infty}$.

On the other hand, the only accumulation point of the set $\{\mathbf{g}_{(x,P)} : x \in m^{\mathbb{N}}, P \in \mathfrak{Q}\}$ is \mathbf{g}_{∞} .

$$\mathbf{g}_{(x,P)}: X_{\mathfrak{Q}} \to \{0,1\}$$

is 0 at all points except at (x, P), where it takes value 1.

Proposition

Fix $i, j \in m$, and $\{s_0, s_1, \ldots\} \subset m^{<\mathbb{N}}$ an (i, j)-sequence over $x \in m^{\mathbb{N}}$.

- If $i = j \in P \in \mathfrak{Q}$, then $\lim_k \mathbf{g}_{s_k} = \mathbf{g}_{(x,P)}$.
- If either $i \neq j$ or $i = j \notin \bigcup \mathfrak{Q}$, then $\lim_k \mathbf{g}_{s_k} = \mathbf{g}_{\infty}$.

On the other hand, the only accumulation point of the set $\{\mathbf{g}_{(x,P)} : x \in m^{\mathbb{N}}, P \in \mathfrak{Q}\}$ is \mathbf{g}_{∞} .

Corollary

 $K_{\infty}(\mathfrak{Q})$ is a separable BC1-compactum.

Topological description of $K_{\infty}(\mathfrak{Q})$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Topological description of $K_{\infty}(\mathfrak{Q})$

Proposition

The function $X_{\mathfrak{Q}} \cup \{\infty\} \to K_{\infty}(\mathfrak{Q})$ given by $\xi \mapsto \mathbf{g}_{\xi}$ is a bijection. Thus,

 $\mathcal{K}_{\infty}(\mathfrak{P}) = \{\mathbf{g}_{s} : s \in m^{<\omega}\} \cup \{\mathbf{g}_{(x,P)} : (x,P) \in m^{\mathbb{N}} \times \mathfrak{Q}\} \cup \{\mathbf{g}_{\infty}\}.$

This is a scattered space of height 3, whose Cantor-Bendixson derivates are

$$\begin{split} \mathcal{K}_{\infty}(\mathfrak{P})' &= \{\mathbf{g}_{(x,P)} : (x,P) \in m^{\mathbb{N}} \times \mathfrak{Q}\} \cup \{\mathbf{g}_{\infty}\} \\ \mathcal{K}_{\infty}(\mathfrak{P})'' &= \{\mathbf{g}_{\infty}\} \end{split}$$

Thus, the points \mathbf{g}_s are isolated in $K_{\infty}(\mathfrak{Q})$, the points $\mathbf{g}_{(x,P)}$ are G_{δ} -points, but if $\mathfrak{Q} \neq \emptyset$, then \mathbf{g}_{∞} is not a G_{δ} -point of $K_{\infty}(\mathfrak{Q})$.

Topological description of $\mathcal{K}_{\infty}(\mathfrak{Q})$

Proposition

The function $X_{\mathfrak{Q}} \cup \{\infty\} \to K_{\infty}(\mathfrak{Q})$ given by $\xi \mapsto \mathbf{g}_{\xi}$ is a bijection. Thus,

 $\mathcal{K}_{\infty}(\mathfrak{P}) = \{\mathbf{g}_{s} : s \in m^{<\omega}\} \cup \{\mathbf{g}_{(x,P)} : (x,P) \in m^{\mathbb{N}} \times \mathfrak{Q}\} \cup \{\mathbf{g}_{\infty}\}.$

This is a scattered space of height 3, whose Cantor-Bendixson derivates are

$$\begin{split} \mathcal{K}_{\infty}(\mathfrak{P})' &= \{\mathbf{g}_{(x,P)} : (x,P) \in m^{\mathbb{N}} \times \mathfrak{Q}\} \cup \{\mathbf{g}_{\infty}\} \\ \mathcal{K}_{\infty}(\mathfrak{P})'' &= \{\mathbf{g}_{\infty}\} \end{split}$$

Thus, the points \mathbf{g}_s are isolated in $K_{\infty}(\mathfrak{Q})$, the points $\mathbf{g}_{(x,P)}$ are G_{δ} -points, but if $\mathfrak{Q} \neq \emptyset$, then \mathbf{g}_{∞} is not a G_{δ} -point of $K_{\infty}(\mathfrak{Q})$.

Example

Let m = 2 and $\mathfrak{D}_2 = \{\{0, 1\}\}$. Then $K_{\infty}(\mathfrak{D}_2)$ is homeomorphic to the Cantor tree compactum $C(2^{<\mathbb{N}})$.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

Theorem $\operatorname{odeg}(\mathcal{K}_1(\mathfrak{P})) = |\mathfrak{P}| \text{ and } \operatorname{odeg}(\mathcal{K}_\infty(\mathfrak{Q})) = |\mathfrak{Q}| + 1.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Theorem $\operatorname{odeg}(K_1(\mathfrak{P})) = |\mathfrak{P}| \text{ and } \operatorname{odeg}(K_{\infty}(\mathfrak{Q})) = |\mathfrak{Q}| + 1.$ Corollary $\operatorname{odeg}(S(2^{\mathbb{N}})) = \operatorname{odeg}(D(2^{\mathbb{N}})) = 2 \text{ and } \operatorname{odeg}(C(2^{<\mathbb{N}})) = 1.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem $\operatorname{odeg}(K_1(\mathfrak{P})) = |\mathfrak{P}| \text{ and } \operatorname{odeg}(K_\infty(\mathfrak{Q})) = |\mathfrak{Q}| + 1.$ Corollary $\operatorname{odeg}(S(2^{\mathbb{N}})) = \operatorname{odeg}(D(2^{\mathbb{N}})) = 2 \text{ and } \operatorname{odeg}(C(2^{<\mathbb{N}})) = 1.$ Proposition

 $\operatorname{cozdeg}(C(2^{<\mathbb{N}})) = \infty.$

Theorem $\operatorname{odeg}(\mathcal{K}_1(\mathfrak{P})) = |\mathfrak{P}| \text{ and } \operatorname{odeg}(\mathcal{K}_\infty(\mathfrak{Q})) = |\mathfrak{Q}| + 1.$ Corollary $\operatorname{odeg}(\mathcal{S}(2^{\mathbb{N}})) = \operatorname{odeg}(\mathcal{D}(2^{\mathbb{N}})) = 2 \text{ and } \operatorname{odeg}(\mathcal{C}(2^{<\mathbb{N}})) = 1.$

 $\begin{array}{l} \text{Proposition} \\ \text{cozdeg}(\mathcal{C}(2^{<\mathbb{N}})) = \infty. \end{array}$

Proposition

For every positive integer *m* there is a **first countable** BC1-compactum *K* such that odeg(K) = 2 but cozdeg(K) = m.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Proposition

 $cozdeg(K) \le n$ iff there is a continuous map $f : K \to M$ into some metric space M such that $|f^{-1}(x)| \le n$ for all $x \in M$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

 $cozdeg(K) \le n$ iff there is a continuous map $f : K \to M$ into some metric space M such that $|f^{-1}(x)| \le n$ for all $x \in M$.

Theorem (T., 1999)

Let K be a separable BC1-compactum such that $cozdeg(K) \le 2$. Then at least one of the following three conditions must hold:

Proposition

 $cozdeg(K) \le n$ iff there is a continuous map $f : K \to M$ into some metric space M such that $|f^{-1}(x)| \le n$ for all $x \in M$.

Theorem (T., 1999)

Let K be a separable BC1-compactum such that $cozdeg(K) \le 2$. Then at least one of the following three conditions must hold:

► K is metrizable.

Proposition

 $cozdeg(K) \le n$ iff there is a continuous map $f : K \to M$ into some metric space M such that $|f^{-1}(x)| \le n$ for all $x \in M$.

Theorem (T., 1999)

Let K be a separable BC1-compactum such that $cozdeg(K) \le 2$. Then at least one of the following three conditions must hold:

- K is metrizable.
- K contains a homeomorphic copy of $S(2^{\mathbb{N}})$.

Proposition

 $cozdeg(K) \le n$ iff there is a continuous map $f : K \to M$ into some metric space M such that $|f^{-1}(x)| \le n$ for all $x \in M$.

Theorem (T., 1999)

Let K be a separable BC1-compactum such that $cozdeg(K) \le 2$. Then at least one of the following three conditions must hold:

- K is metrizable.
- K contains a homeomorphic copy of $S(2^{\mathbb{N}})$.
- K contains a homeomorphic copy of $D(2^{\mathbb{N}})$.

Proposition

 $cozdeg(K) \le n$ iff there is a continuous map $f : K \to M$ into some metric space M such that $|f^{-1}(x)| \le n$ for all $x \in M$.

Theorem (T., 1999)

Let K be a separable BC1-compactum such that $cozdeg(K) \le 2$. Then at least one of the following three conditions must hold:

- K is metrizable.
- K contains a homeomorphic copy of $S(2^{\mathbb{N}})$.
- K contains a homeomorphic copy of $D(2^{\mathbb{N}})$.

Question

Is there a similar basis result for BC1-compacta K such that $cozdeg(K) \le n$?

The *n*-split interval

The *n*-split interval

Definition

Given a perfect subset P of the unit interval I and an integer $n \ge 2$, let $S_n(P)$ be the set $P \times \{0, 1, ..., n-1\}$ with the topology where the points of $P \times \{2, 3, ..., n-1\}$ are isolated and where the neighbourhoods of points (x, 0) and (x, 1) have respectively the following forms:

$$](y,1),(x,0)] \cup]y, x[\times \{2,3,...,n-1\} \text{ for } y < x,$$

 $[(x,1),(y,0)[\cup]x, y[\times \{2,3,...,n-1\}) \text{ for } y > x.$

The *n*-split interval

Definition

Given a perfect subset P of the unit interval I and an integer $n \ge 2$, let $S_n(P)$ be the set $P \times \{0, 1, ..., n-1\}$ with the topology where the points of $P \times \{2, 3, ..., n-1\}$ are isolated and where the neighbourhoods of points (x, 0) and (x, 1) have respectively the following forms:

$$](y,1),(x,0)] \cup]y, x[\times \{2,3,...,n-1\}$$
 for $y < x$,
 $[(x,1),(y,0)[\cup]x, y[\times \{2,3,...,n-1\})$ for $y > x$.

Proposition

For every integer $n \ge 2$, the space $S_n(I)$ is a BC1-compactum such that $\operatorname{cozdeg}(S_n(I)) = n$

The *n*-plicate

Definition

For a given topological space Z and integer $n \ge 2$, by $D_n(Z)$ we denote the space on $Z \times \{0, 1, ..., n-1\}$ in which all points of $Z \times \{1, 2, ..., n-1\}$ are isolated and the neighbourhoods of points (z, 0) have the form

$$U \times \{0, 1, ..., n-1\} \setminus \{z\} \times \{0, 1, ..., n-1\},\$$

where U is an arbitrary neighbourhood of z in Z.

The *n*-plicate

Definition

For a given topological space Z and integer $n \ge 2$, by $D_n(Z)$ we denote the space on $Z \times \{0, 1, ..., n-1\}$ in which all points of $Z \times \{1, 2, ..., n-1\}$ are isolated and the neighbourhoods of points (z, 0) have the form

$$U \times \{0, 1, ..., n-1\} \setminus \{z\} \times \{0, 1, ..., n-1\},\$$

where U is an arbitrary neighbourhood of z in Z.

Proposition

For every integer $n \ge 2$, the space $D_n(2^{\mathbb{N}})$ is a BC1-compactum such that $\operatorname{cozdeg}(D_n(2^{\mathbb{N}})) = n$.

Basis result for the co-zero degree

Basis result for the co-zero degree

Theorem (Aviles-Poveda-T., 2015)

Let K be a separable BC1-compactum such that $cozdeg(K) \le n$ for some integer $n \ge 2$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Basis result for the co-zero degree

Theorem (Aviles-Poveda-T., 2015)

Let K be a separable BC1-compactum such that $cozdeg(K) \le n$ for some integer $n \ge 2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Then at aleast one of the following conditions must hold:
Basis result for the co-zero degree

Theorem (Aviles-Poveda-T., 2015)

Let K be a separable BC1-compactum such that $cozdeg(K) \le n$ for some integer $n \ge 2$. Then at closet one of the following conditions must hold:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Then at aleast one of the following conditions must hold:

•
$$\operatorname{cozdeg}(K) \leq n$$
.

Basis result for the co-zero degree

Theorem (Aviles-Poveda-T., 2015)

Let K be a separable BC1-compactum such that $cozdeg(K) \le n$ for some integer $n \ge 2$.

Then at aleast one of the following conditions must hold:

- $\operatorname{cozdeg}(K) \leq n$.
- K contains a topological copy of $S_n(2^N)$.

Basis result for the co-zero degree

Theorem (Aviles-Poveda-T., 2015)

Let K be a separable BC1-compactum such that $cozdeg(K) \le n$ for some integer $n \ge 2$.

Then at aleast one of the following conditions must hold:

- $\operatorname{cozdeg}(K) \leq n$.
- K contains a topological copy of $S_n(2^{\mathbb{N}})$.
- K contains a topological copy of $D_n(2^{\mathbb{N}})$.