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Pro-Lie groups, some background

Definition 1.1 (Hofmann–Morris).

A projective limit of finite-dimensional Lie groups is called a
pro-Lie group.

[Lie group will always mean a finite-dimensional real Lie group.]

In other words, a topological group G is a pro-Lie group if it is
topologically isomorphic to a closed subgroup of an arbitrary
product of Lie groups.

Equivalently, G is a pro-Lie group if and only if it satisfies the
following two conditions:

(i) every neighborhood of the identity in G contains a normal
subgroup N such that G/N is a Lie group;

(ii) G is complete.
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Pro-Lie groups, some background
The class pLG of pro-Lie groups contains:

(i) all Lie groups;

(ii) all compact topological groups;

(iii) all connected locally compact groups;

(iv) all locally compact Abelian groups.

The class of pro-Lie groups is much wider than it appears in
(i)–(iv):

Theorem 1.2.
The class pLG has the following permanence properties:

(i) a closed subgroup of a group in pLG is in pLG;

(ii) the class pLG is closed with respect to taking projective
limits, so an arbitrary product of groups in pLG is in pLG;

(iii) if N is a closed normal subgroup of a pro-Lie group G , then
the quotient group G/N is a pro-Lie group provided that
either N locally compact, or N is Polish, or N is almost
connected and G/N is complete.
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Pro-Lie groups, some background

Warning: The quotient group G/N in (iii) can fail to be complete.
However the completion of G/N is always a pro-Lie group!

Corollary 1.3.

All discrete groups, arbitrary products Π of discrete groups, and all
closed subgroups of Π (i.e. pro-discrete groups) are pro-Lie groups.

Example 1.4.

Every infinite-dimensional Banach space B is not a pro-Lie group.

Indeed, let U = {x ∈ B : ||x || < 1}, where || · || is the norm on B.
The unit ball U does not contain non-trivial subgroups, while B
has infinite dimension.
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Almost connected pro-Lie groups

A challenging open problem:

Problem 2.1 (Hofmann–Morris).

Let G be an arbitrary pro-Lie group and G0 the connected
component of G . Is the quotient group G/G0 complete (and
therefore a pro-Lie group)?

Basic definition:

Definition 2.2 (Hofmann–Morris).

A topological group G is almost connected if G/G0 is a compact
group, where G0 is the connected component of G .

Thus all compact groups and all connected groups are almost
connected.
In the sequel we focus on almost connected pro-Lie groups.
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Almost connected pro-Lie groups

A topological group G is called ω-narrow if it can be covered by
countably many translates of each neighborhood of the identity.

Clearly every Lindelöf group is ω-narrow. The class of ω-narrow
groups is closed under taking arbitrary products, continuous
homomorphic images and arbitrary subgroups.

Lemma 2.3.
Every almost connected pro-Lie group is ω-narrow.

Hint: ω-narrowness is a three space property:

If N E G and both N and G/N are ω-narrow =⇒ G is ω-narrow.

Clearly every compact group is ω-narrow. So it suffices to verify
that every connected pro-Lie group is ω-narrow. The latter follows
from the fact that every connected locally compact group is
σ-compact and, hence, ω-narrow.
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Almost connected pro-Lie groups

Our aim is to find more topological (or mixed
topological-algebraic) properties of almost connected pro-Lie
groups. Here are several natural questions:

Problem 2.4.
Let G be an arbitrary almost connected pro-Lie group.

(a) Does G have countable cellularity? [top]

(b) Does G have the Baire property? [top]

(c) Does t(G ) ≤ ω imply that G is separable metrizable? [top]

(d) Is it true that G is separable provided w(G ) ≤ 2ω? [top]

(e) Is G R-factorizable? [top+alg]

It turns out that the answer to all of (a)–(e) is “Yes”.
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Almost connected pro-Lie groups

A deep fact from the structure theory for almost connected pro-Lie
groups:

Theorem 2.5 (Hofmann–Morris).

Let G be an arbitrary almost connected pro-Lie group. Then G
contains a compact subgroup C such that G is homeomorphic to
the product C × Rκ, for some cardinal κ. If G is abelian, then it is
topologically isomorphic to C × Rκ.

Therefore, in the abelian case, the affirmative answer to items
(a)–(e) of Problem 2.4 is relatively easy. The same remains valid
for (a)–(d) in the general case, since all the properties in (a)–(d)
are purely topological.
Therefore the only difficulty is to prove the following:

(e) Every almost connected pro-Lie group is R-factorizable.

Let us see some details.
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R-factorizable groups

Definition 2.6.
A topological group G is R-factorizable if for every continuous
real-valued function f on G , one can find a continuous
homomorphism ϕ : G → H onto a second countable topological
group H and a continuous function h on H satisfying f = h ◦ ϕ.

The class of R-factorizable groups contains:

(a) all Lindelöf groups;

(b) arbitrary subgroups of σ-compact groups;

(c) arbitrary products of σ-compact groups and dense subgroups
of these products.

In particular, every precompact group is R-factorizable.

Fact 2.7.
Every R-factorizable group is ω-narrow. The converse is false.
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R-factorizable groups

Every separable topological group is ω-narrow, but there exists a
separable topological group which fails to be R-factorizable
(Reznichenko and Sipacheva).

Thus, ω-narrow 6=⇒ R-factorizable.

What about the implication

ω-narrow & pro-Lie =⇒ R-factorizable?

Example 2.8 (Tkachenko, 2001).

There exists an ω-narrow pro-discrete (hence pro-Lie) abelian
group G which fails to be R-factorizable.

In fact, G is a closed subgroup of Qω1 , where the latter group is
endowed with the ω-box topology (and the group Q of rationals is
discrete). The projections of G to countable subproducts are
countable, which guarantees that G is ω-narrow.
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Main results

We say that a space X is ω-cellular if every family γ of Gδ-sets in
X contains a countable subfamily µ such that

⋃
µ is dense in

⋃
γ.

It is clear that every ω-cellular space has countable cellularity, but
the property of being ω-cellular is considerably stronger than
countable cellularity.

Theorem 2.9 (Leiderman–Tk., 2015).

Let a topological group H be a continuous homomorphic image of
an almost connected pro-Lie group G . Then the following hold:

(a) the group H is R-factorizable;

(b) the space H is ω-cellular;

(c) The Hewitt–Nachbin completion of H, υH, is again an
R-factorizable and ω-cellular topological group containing H
as a (dense) topological subgroup.
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Some proofs

We present briefly some arguments towards the proof of
Theorem 2.9. Here is an important ingredient:

Theorem 2.10 (“CONTINUOUS IMAGES”–Tk., 2015).

Let X =
∏

i∈I Xi be a product space, where each Xi is a regular
Lindelöf Σ-space and f : X → G a continuous mapping of X onto
a regular paratopological group G . Then the group G is
R-factorizable, ω-cellular, and the Hewitt–Nachbin completion υG
of the group G is again a paratopological group containing G as a
dense subgroup. Furthermore, the group υG is R-factorizable and
ω-cellular.

A paratopological group is a group with topology such that
multiplication on the group is jointly continuous (but inversion can
be discontinuous). The Sorgenfrey line with the usual topology
and addition of the reals is a standard example of a paratopological
group with discontinuous inversion.
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Some proofs

Theorem 2.9 (Leiderman–Tk., 2015).
Let a Hausdorff topological group H be a continuous homomorphic
image of an almost connected pro-Lie group G .

Then the group H
is R-factorizable, ω-cellular, and the Hewitt–Nachbin completion of
H, say, υH is again an R-factorizable and ω-cellular topological
group containing H as a (dense) topological subgroup.

———————————————————————————–
Proof. 1) By a Hofmann–Morris theorem (Theorem 2.5), G is
homeomorphic to a product C × Rκ, where C is a compact group
and κ is a cardinal. So H is a continuous image of C × Rκ.

2) Clearly C and R are Lindelöf Σ-spaces, so H is a continuous
image of a product of Lindelöf Σ-spaces. Evidently H is regular.
By the Continuous Images theorem, the groups G and υG are
R-factorizable and ω-cellular.

3) Since the dense subgroup G of the paratopological group υG is
a topological group, so is υG (a result due to Iván Sánchez).
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Main results
How much of the Structure Theory of almost connected
pro-Lie groups do we really need?

Theorem 2.11 (Leiderman–Tk., 2015).

Let G be a topological group and K a compact invariant subgroup
of G such that the quotient group G/K is homeomorphic to the
product C ×

∏
i∈I Hi , where C is a compact group and each Hi is

a topological group with a countable network. Then:

(a) the group G is R-factorizable;

(b) the space G is ω-cellular;

(c) the closure of every Gδ,Σ-set in G is a zero-set, i.e. G is an
Efimov space.

In other words, every extension of a topological group H
homeomorphic with C ×

∏
i∈I Hi by a compact group has the

above properties (a)–(c). Hence an extension of an almost
connected pro-Lie group by a compact group has properties
(a)–(c).
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Convergence properties of pro-Lie groups
An arbitrary union of Gδ-sets is called a Gδ,Σ-set.

It is known that
for a Gδ,Σ-subset B of an arbitrary product Π of second countable
spaces, the closure and sequential closure of B in Π coincide
(Efimov, 1965, for the special case Π = {0, 1}κ).

Since every almost connected connected pro-Lie group H is
homeomorphic to C × Rκ (C is a compact group), the following
result is quite natural:

Theorem 2.14 (Leiderman–Tk., 2015).

Let H be an almost connected pro-Lie group. Then, for every
Gδ,Σ-set B in H and every point x ∈ B, the set B contains a
sequence converging to x . In other words, the closure of B and the
sequential closure of B in H coincide.

Two ingredients of the proof:

(1) A reduction to “countable weight” case, making use of
Theorem 2.9 (almost connected pro-Lie groups are ω-cellular);

(2) continuous cross-sections.
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Convergence properties of pro-Lie groups

Continuous cross-sections:

Theorem 2.15 (Bello–Chasco–Doḿınguez–Tk., 2015).

Let K be a compact invariant subgroup of a topological group X
and p : X → X/K the quotient homomorphism. If Y is a
zero-dimensional compact subspace of X/K , then there exists a
continuous mapping s : Y → X satisfying p ◦ s = IdY .

The mapping s is a continuous cross-section for p on Y .

We apply the above theorem with Y being a convergent sequence
(with its limit).
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More on pro-Lie groups

A topological group G homeomorphic to a connected pro-Lie
group can fail to be a pro-Lie group — it suffices to take
homeomorphic groups Rω and L2, the standard separable Hilbert
space considered as a commutative topological group.

Nevertheless we have the next curious fact:

Theorem 2.16.
If a topological group G is homeomorphic to an almost connected
pro-Lie group, then:

(a) G is R-factorizable;

(b) G is complete.

Item (a) follows from Theorem 2.9, while the proof of (b) is
non-trivial and requires some techniques presented in our joint
work with A. Leiderman:

Lattices of homomorphisms and pro-Lie groups, arXiv:1605.05279.
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Open problems

The previous theorem gives rise to many problems some of which
are listed here:

Problem 3.1.
Let G and H be homeomorphic topological groups and assume
that G has one of the following properties:

(a) ω-narrowness;

(b) completeness;

(c) R-factorizability.

Does H have the same property? What if G has (a) and (b)?
Does (c) for G imply (a) for H?

In fact, Problem 3.1 has been inspired by (or should be
attributed to) Alexander V. Arhangel’skii.

LAST MINUTE NOTE: The answer to (a) and (b) of Problem 3.1
is ‘NO’ [Taras Banakh].
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