Topological approch to "nontopological" ultrafilters.

Andrzej Starosolski

Institute of Mathematics, Silesian University of Technology

TOPOSYM, Prague 2016

I-ultrafilters (J. E. Baumgartner 1995)

Let *I* be a familly of "small" subsets of some set *X*, i.e. *I* is closed for taking subsets and all finite subsets of *X* belong to *I*. We say that an ultrafilter *u* (on ω) is an *I*-ultrafilter if for each function $f: \omega \to X$ there exists a set $U \in u$ such that $f[U] \in I$. **Ordinal ultrafilters** (J. E. Baumgartner 1995) If $X = \omega_1$ and J_α is a family of sets of order type less than α then we obtain J_α -ultrafilters. **Proper** J_α -**ultrafilters** are such J_α -ultrafilters which are not J_β -ultrafilters for any $\beta < \alpha$. The class of proper J_α ultrafilters we denote by J_α^* .

Theorem (Baumgartner)

If an ultrafilter u is J^*_{α} -ultrafilter then α is indecomposable, i.e. $\alpha = \omega^{\beta}$ for some ordinal number β .

So, in fact, we consider a hierarchy of $J^*_{\omega^{\alpha}}$ -ultrafilters.

通 ト イ ヨ ト イ ヨ ト

Ordinal ultrafilters (J. E. Baumgartner 1995) If $X = \omega_1$ and J_α is a family of sets of order type less than α then we obtain J_α -ultrafilters. **Proper** J_α -**ultrafilters** are such J_α -ultrafilters which are not J_β -ultrafilters for any $\beta < \alpha$. The class of proper J_α ultrafilters we denote by J_α^* .

Theorem (Baumgartner)

If an ultrafilter u is J^*_{α} -ultrafilter then α is indecomposable, i.e. $\alpha = \omega^{\beta}$ for some ordinal number β .

So, in fact, we consider a hierarchy of $J^*_{\omega^{\alpha}}$ -ultrafilters.

Ordinal ultrafilters (J. E. Baumgartner 1995) If $X = \omega_1$ and J_α is a family of sets of order type less than α then we obtain J_α -ultrafilters. **Proper** J_α -**ultrafilters** are such J_α -ultrafilters which are not J_β -ultrafilters for any $\beta < \alpha$. The class of proper J_α ultrafilters we denote by J_α^* .

Theorem (Baumgartner)

If an ultrafilter u is J^*_{α} -ultrafilter then α is indecomposable, i.e. $\alpha = \omega^{\beta}$ for some ordinal number β .

So, in fact, we consider a hierarchy of $J^*_{\omega^{\alpha}}$ -ultrafilters.

Level ultrafilters (J. E. Baumgartner 1995) Now let $X = \mathbb{R}$ with a standard topology, and consider families L_{α} of sets which derivative of rank α is empty. Proper L_{α} -ultrafilters are such L_{α} -ultrafilters that are not L_{β} -ultrafilters for any $\beta < \alpha$. This way we obtain a hierarchy of level ultrafilters.

Let (X, τ) be any topological space, we consider families $L_{\alpha}^{(X,\tau)}$ of sets which derivative of rank α (in (X, τ)) is empty. Proper $L_{\alpha}^{(X,\tau)}$ -ultrafilters are such $L_{\alpha}^{(X,\tau)}$ -ultrafilters that are not $L_{\beta}^{(X,\tau)}$ -ultrafilters for any $\beta < \alpha$. This way we obtain a hierarchy of level (X, τ) ultrafilters.

Observation

Proper $J_{\omega^{\alpha}}$ -ultrafilters are preciselly proper $L_{\alpha}^{(\omega_1, \text{ord})}$ -ultrafilters.

同 ト イヨ ト イヨ ト

Level ultrafilters (J. E. Baumgartner 1995) Now let $X = \mathbb{R}$ with a standard topology, and consider families L_{α} of sets which derivative of rank α is empty. Proper L_{α} -ultrafilters are such L_{α} -ultrafilters that are not L_{β} -ultrafilters for any $\beta < \alpha$. This way we obtain a hierarchy of level ultrafilters.

Let (X, τ) be any topological space, we consider families $L_{\alpha}^{(X,\tau)}$ of sets which derivative of rank α (in (X, τ)) is empty. Proper $L_{\alpha}^{(X,\tau)}$ -ultrafilters are such $L_{\alpha}^{(X,\tau)}$ -ultrafilters that are not $L_{\beta}^{(X,\tau)}$ -ultrafilters for any $\beta < \alpha$. This way we obtain a hierarchy of level (X, τ) ultrafilters.

Observation

Proper $J_{\omega^{\alpha}}$ -ultrafilters are preciselly proper $L_{\alpha}^{(\omega_1, \text{ord})}$ -ultrafilters.

伺 ト イ ヨ ト イ ヨ ト

Level ultrafilters (J. E. Baumgartner 1995) Now let $X = \mathbb{R}$ with a standard topology, and consider families L_{α} of sets which derivative of rank α is empty. Proper L_{α} -ultrafilters are such L_{α} -ultrafilters that are not L_{β} -ultrafilters for any $\beta < \alpha$. This way we obtain a hierarchy of level ultrafilters.

Let (X, τ) be any topological space, we consider families $L_{\alpha}^{(X,\tau)}$ of sets which derivative of rank α (in (X, τ)) is empty. Proper $L_{\alpha}^{(X,\tau)}$ -ultrafilters are such $L_{\alpha}^{(X,\tau)}$ -ultrafilters that are not $L_{\beta}^{(X,\tau)}$ -ultrafilters for any $\beta < \alpha$. This way we obtain a hierarchy of level (X, τ) ultrafilters.

Observation

Proper $J_{\omega^{\alpha}}$ -ultrafilters are preciselly proper $L_{\alpha}^{(\omega_1, \text{ord})}$ -ultrafilters.

伺下 イヨト イヨト

If $(u_n)_{n < \omega}$ is a sequence of filters on ω and v is a filter on ω then the Frolick sum = limite = contour on the sequence (u_n) with respect to v is:

$$\sum_{v} u_n = \lim_{v} u_n = \int_{v} u_n = \bigcup_{V \in v} \bigcap_{n \in V} u_n$$

(Dolecki, Mynard 2002) **Monotone sequential contours** of rank 1 are exactly Fréchet filters on infinite subsets of ω ; If monotone sequential contours off ranks less then α are already defined, than u is a monotone sequential contours of rank α if $u = \sum_{\text{Fr}} u_n$, where $(u_n)_{n < \omega}$ is a discrete sequence of monotone sequential contours such that: $r(u_n) \leq r(u_{n+1})$ and $\lim_{n < \omega} (r(u_n) + 1) = \alpha$.

If $(u_n)_{n < \omega}$ is a sequence of filters on ω and v is a filter on ω then the Frolick sum = limite = contour on the sequence (u_n) with respect to v is:

$$\sum_{v} u_n = \lim_{v} u_n = \int_{v} u_n = \bigcup_{V \in v} \bigcap_{n \in V} u_n$$

(Dolecki, Mynard 2002) Monotone sequential contours of rank 1 are exactly Fréchet filters on infinite subsets of ω ; If monotone sequential contours off ranks less then α are already defined, than u is a monotone sequential contours of rank α if $u = \sum_{\text{Fr}} u_n$, where $(u_n)_{n < \omega}$ is a discrete sequence of monotone sequential contours such that: $r(u_n) \leq r(u_{n+1})$ and $\lim_{n < \omega} (r(u_n) + 1) = \alpha$.

If $(u_n)_{n < \omega}$ is a sequence of filters on ω and v is a filter on ω then the Frolick sum = limite = contour on the sequence (u_n) with respect to v is:

$$\sum_{v} u_n = \lim_{v} u_n = \int_{v} u_n = \bigcup_{V \in v} \bigcap_{n \in V} u_n$$

(Dolecki, Mynard 2002) **Monotone sequential contours** of rank 1 are exactly Fréchet filters on infinite subsets of ω ; If monotone sequential contours off ranks less then α are already defined, than u is a monotone sequential contours of rank α if $u = \sum_{\text{Fr}} u_n$, where $(u_n)_{n < \omega}$ is a discrete sequence of monotone sequential contours such that: $r(u_n) \leq r(u_{n+1})$ and $\lim_{n < \omega} (r(u_n) + 1) = \alpha$.

Define classes \mathcal{P}_{α} of **P-hierarchy** for $\alpha < \omega_1$ as follows: $u \in \mathcal{P}_{\alpha}$ if there is no monotone sequential contour c_{α} of rank α such that $c_{\alpha} \subset u$, and for each $\beta < \alpha$ there exists a monotone sequential contour c_{β} of rank β such that $c_{\beta} \subset u$.

Recall that (Seq, Fr) is a topological space on the set of finite sequences of natural numbers with a maximal topology for which (recursively): if $v \in Seq$ then $\{v \cap n : n < \omega\} \setminus U(v)$ is finite for each neighborhood U(v) of v.

Observation

 P_{α} -ultrafilters are preciselly proper $L_{\alpha}^{(Seq,Fr)}$ -ultrafilters.

伺 ト イ ヨ ト イ ヨ ト

Define classes \mathcal{P}_{α} of **P-hierarchy** for $\alpha < \omega_1$ as follows: $u \in \mathcal{P}_{\alpha}$ if there is no monotone sequential contour c_{α} of rank α such that $c_{\alpha} \subset u$, and for each $\beta < \alpha$ there exists a monotone sequential contour c_{β} of rank β such that $c_{\beta} \subset u$.

Recall that (Seq, Fr) is a topological space on the set of finite sequences of natural numbers with a maximal topology for which (recursively): if $v \in Seq$ then $\{v^n : n < \omega\} \setminus U(v)$ is finite for each neighborhood U(v) of v.

Observation

 P_{α} -ultrafilters are preciselly proper $L_{\alpha}^{(Seq,Fr)}$ -ultrafilters.

伺 ト イ ヨ ト イ ヨ ト

Define classes \mathcal{P}_{α} of **P-hierarchy** for $\alpha < \omega_1$ as follows: $u \in \mathcal{P}_{\alpha}$ if there is no monotone sequential contour c_{α} of rank α such that $c_{\alpha} \subset u$, and for each $\beta < \alpha$ there exists a monotone sequential contour c_{β} of rank β such that $c_{\beta} \subset u$.

Recall that (Seq, Fr) is a topological space on the set of finite sequences of natural numbers with a maximal topology for which (recursively): if $v \in Seq$ then $\{v^n : n < \omega\} \setminus U(v)$ is finite for each neighborhood U(v) of v.

Observation

 P_{α} -ultrafilters are preciselly proper $L_{\alpha}^{(Seq,Fr)}$ -ultrafilters.

Let (X, τ) be a topological space, we say that (X, τ) is the *Countable - Countable space* (**C-C** space) if for each countable $A \subset X$ if Cantor-Bandixson rank of A is countable, then cl(A) is also countable.

We say that a topological spaces has the *Convergence* Neighborhood Sequence property (is **CNS**) if for each sequence (x_n) in X, for each sequence (U_n) of neighbourhoods of elements of (x_n) there exist a convergence sequence (y_n) and sequences $(U'_n), (V_n)$ of neighborhoods of elements x_n and y_n respectively, such that (V_n) is pairwise disjoint and there is a sequence (h_n) of homeomorphisms such that $U'_n \subset U$, $h_n : U'_n \to V_n$ and $h_n(x_n) = y_n$.

直 ト イヨ ト イヨ ト

Let (X, τ) be a topological space, we say that (X, τ) is the *Countable - Countable space* (**C-C** space) if for each countable $A \subset X$ if Cantor-Bandixson rank of A is countable, then cl(A) is also countable.

We say that a topological spaces has the *Convergence* Neighborhood Sequence property (is **CNS**) if for each sequence (x_n) in X, for each sequence (U_n) of neighbourhoods of elements of (x_n) there exist a convergence sequence (y_n) and sequences $(U'_n), (V_n)$ of neighborhoods of elements x_n and y_n respectively, such that (V_n) is pairwise disjoint and there is a sequence (h_n) of homeomorphisms such that $U'_n \subset U$, $h_n : U'_n \to V_n$ and $h_n(x_n) = y_n$.

伺 ト イ ヨ ト イ ヨ ト

Theorem

Let (X, τ) be a topological space, then there exists CNS-extension $CNS(X, \tau)$ of (X, τ) which preserve C-C, non C-C, sequentiality and T_i -axiom for $i \in \{1, 2, 3, 4\}$. Such extension <u>is not</u> unique.

Remark

Real line (with standard topology), Seq with a topology generated by Fréchet filter and ω_1 with order topology satisfy C-C and CNS.

A 3 3 4

Theorem

Let (X, τ) be a topological space, then there exists CNS-extension $CNS(X, \tau)$ of (X, τ) which preserve C-C, non C-C, sequentiality and T_i -axiom for $i \in \{1, 2, 3, 4\}$. Such extension <u>is not</u> unique.

Remark

Real line (with standard topology), Seq with a topology generated by Fréchet filter and ω_1 with order topology satisfy C-C and CNS.

Example

Take ω and \mathbb{A} - a MAD on ω . We define topology on $X_1 = \omega \cup \mathbb{A}$ by the base of naighborhoods in each point. If $x \in \omega$ then $\{x\}$ is open, if $x \in \mathbb{A}$ then a neighborhood of x is x with any co-finite set on $x \subset \omega$. This is sequential, T_2 and non C-C space, which by the previous Theorem may be extend to CNS.

Theorem (redefined, Baumgartner 1995)

If proper J_{ω^2} ultrafilters exist, then for each countable ordinal α the class of proper $J_{\omega^{\alpha+1}}$ -ultrafilters is nonempty.

Theorem

Let (X, τ) be a sequential, C-C, CNS space. If proper $L_2^{(X,\tau)}$ ultrafilter exists, then for each countable ordinal α the class of proper $L_{\alpha+1}^{(X,\tau)}$ -ultrafilters is non empty.

通 ト イ ヨ ト イ ヨ ト

Theorem (redefined, Baumgartner 1995)

If proper J_{ω^2} ultrafilters exist, then for each countable ordinal α the class of proper $J_{\omega^{\alpha+1}}$ -ultrafilters is nonempty.

Theorem

Let (X, τ) be a sequential, C-C, CNS space. If proper $L_2^{(X,\tau)}$ ultrafilter exists, then for each countable ordinal α the class of proper $L_{\alpha+1}^{(X,\tau)}$ -ultrafilters is non empty.

Theorem (Baumgartner, 1995)

Let u be a proper $J_{\omega^{\alpha+2}}$ ultrafilter then there is a function $f: \omega \to \omega$ such that f(u) is a proper J_{ω^2} ultrafilter

I heorem

Let (X, τ) be a sequential, C-C and CNS space. If u is a proper $L_{\alpha+2}^{(X,\tau)}$ ultrafilter then there exists a function $f: \omega \to \omega$ such that f(u) is a proper $L_2^{(X,\tau)}$ ultrafilter.

Theorem (Baumgartner, 1995)

Let u be a proper $J_{\omega^{\alpha+2}}$ ultrafilter then there is a function $f: \omega \to \omega$ such that f(u) is a proper J_{ω^2} ultrafilter

Theorem

Let (X, τ) be a sequential, C-C and CNS space. If u is a proper $L_{\alpha+2}^{(X,\tau)}$ ultrafilter then there exists a function $f: \omega \to \omega$ such that f(u) is a proper $L_2^{(X,\tau)}$ ultrafilter.

Example

Let X be a disjoint sum of three infinite countable sets X_1 , X_2 and X_3 . Let τ be a maximal topology for which the base of neighbourhood system has the following properties 1) if $x \in X_1$ then $\{x\}$ is open, 2) if $x \in X_2$ then $X_1 \setminus U(x)$ is finite for each neibouthood U(x) of x, 2) if $x \in X_3$ then $(X_1 \cup X_2) \setminus U(x)$ is finite for each neibouthood U(x) of x. Note that each free ultrafilter is a proper $L_3^{(X,\tau)}$ -ultrafilter.

Theorem (Laflamme 1996) $({ m MA}_{\sigma-{ m centr}})$

There is proper $J_{\omega^{\omega+1}}$ -ultrafilter all of whose RK-predecessors are proper $J_{\omega^{\omega+1}}$ -ultrafilters.

・ 同 ト ・ ヨ ト ・ ヨ ト

Example

Let X be a disjoint sum of three infinite countable sets X_1 , X_2 and X_3 . Let τ be a maximal topology for which the base of neighbourhood system has the following properties 1) if $x \in X_1$ then $\{x\}$ is open, 2) if $x \in X_2$ then $X_1 \setminus U(x)$ is finite for each neibouthood U(x) of x, 2) if $x \in X_3$ then $(X_1 \cup X_2) \setminus U(x)$ is finite for each neibouthood U(x) of x. Note that each free ultrafilter is a proper $L_3^{(X,\tau)}$ -ultrafilter.

Theorem (Laflamme 1996) $({ m MA}_{\sigma-{ m centr}})$

There is proper $J_{\omega^{\omega+1}}$ -ultrafilter all of whose RK-predecessors are proper $J_{\omega^{\omega+1}}$ -ultrafilters.

We say that the class K of ultrafilters is closed under sums if for each sequence (o_n) of filters from the class K, for each filter $o \in K$, the sum $\sum_o o_n$ is in the class K.

Theorem (Baumgartner 1995)

The class of ordinal ultrafiltes is closed under sums

Theorem

Let (X, τ) be a sequential, C-C, CNS space, then he class of level (X, τ) ultrafiltes is closed under sums

通 ト イ ヨ ト イ ヨ ト

We say that the class K of ultrafilters is closed under sums if for each sequence (o_n) of filters from the class K, for each filter $o \in K$, the sum $\sum_o o_n$ is in the class K.

Theorem (Baumgartner 1995)

The class of ordinal ultrafiltes is closed under sums

Theorem

Let (X, τ) be a sequential, C-C, CNS space, then he class of level (X, τ) ultrafiltes is closed under sums

- 4 B b 4 B b

We say that the class K of ultrafilters is closed under sums if for each sequence (o_n) of filters from the class K, for each filter $o \in K$, the sum $\sum_o o_n$ is in the class K.

Theorem (Baumgartner 1995)

The class of ordinal ultrafiltes is closed under sums

Theorem

Let (X, τ) be a sequential, C-C, CNS space, then he class of level (X, τ) ultrafiltes is closed under sums

(Baumgartner) If α is limite, is the class of proper $J_{\omega^{\alpha}}$ ultrafilters nonempty(even under some set theoretical assumptiom)?

Is there (under some set theoretical assumption) an element of P-hierarchy which is not an ordinal ultrafilter?

(Baumgartner, later Shelah) Is there a model with no ordinal ultrafilters?

Is there a model with no P-hierarchy?

For which topological spaces proper $L_2^{(X,\tau)}$ ultrafilters are P-points?

(Baumgartner) If α is limite, is the class of proper $J_{\omega^{\alpha}}$ ultrafilters nonempty(even under some set theoretical assumption)?

- Is there (under some set theoretical assumption) an element of P-hierarchy which is not an ordinal ultrafilter?
- (Baumgartner, later Shelah) Is there a model with no ordinal ultrafilters?

Is there a model with no P-hierarchy?

For which topological spaces proper $L_2^{(X, au)}$ ultrafilters are P-points?

(Baumgartner) If α is limite, is the class of proper $J_{\omega^{\alpha}}$ ultrafilters nonempty(even under some set theoretical assumption)? Is there (under some set theoretical assumption) an element of P-hierarchy which is not an ordinal ultrafilter? (Baumgartner, later Shelah) Is there a model with no ordinal ultrafilters?

Is there a model with no P-hierarchy? For which topological spaces proper $L_2^{(X,\tau)}$ ultrafilters are P-points?

(Baumgartner) If α is limite, is the class of proper $J_{\omega^{\alpha}}$ ultrafilters nonempty(even under some set theoretical assumptiom)?

Is there (under some set theoretical assumption) an element of P-hierarchy which is not an ordinal ultrafilter?

(Baumgartner, later Shelah) Is there a model with no ordinal ultrafilters?

Is there a model with no P-hierarchy?

For which topological spaces proper $L_2^{(X,\tau)}$ ultrafilters are P-points?

(Baumgartner) If α is limite, is the class of proper $J_{\omega^{\alpha}}$ ultrafilters nonempty(even under some set theoretical assumptiom)?

Is there (under some set theoretical assumption) an element of P-hierarchy which is not an ordinal ultrafilter?

(Baumgartner, later Shelah) Is there a model with no ordinal ultrafilters?

Is there a model with no P-hierarchy?

For which topological spaces proper $L_2^{(X,\tau)}$ ultrafilters are P-points?

J. E. Baumgartner, Ultrafilters on ω , J. Symb. Log. 60, 2 (1995) 624-639.

S. Dolecki, F. Mynard, Cascades and multifilters, Topology Appl., 104 (2002), 53-65.

C. Laflamme, A few special ordinal ultrafilters, J. Symb. Log. 61, 3 (1996), 920-927.

A. Starosolski, P-hierarchy on $\beta \omega$, J. Symb. Log. 73, 4 (2008), 1202-1214.

-, Ordinal ultrafilters versus P-hierarchy, Central Eur. J. Math.

12, 1 (2014), 84-86

---, Cascades, order and ultrafilters, Ann. Pure Appl. Logic 165, 10 (2014), 1626-1638

・吊り くうり くうり 一つ

Thank You for your attention