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I -ultrafilters (J. E. Baumgartner 1995)
Let I be a familly of ”small” subsets of some set X , i.e. I is closed
for taking subsets and all finite subsets of X belong to I . We say
that an ultrafilter u (on ω) is an I -ultrafilter if for each function
f : ω → X there exists a set U ∈ u such that f [U] ∈ I .
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Ordinal ultrafilters (J. E. Baumgartner 1995) If X = ω1 and Jα is
a family of sets of order type less than α then we obtain
Jα-ultrafilters. Proper Jα-ultrafilters are such Jα-ultrafilters
which are not Jβ-ultrafilters for any β < α. The class of proper Jα
ultrafilters we denote by J∗α.

Theorem (Baumgartner)

If an ultrafilter u is J∗α-ultrafilter then α is indecomposable, i.e.
α = ωβ for some ordinal number β.

So, in fact, we consider a hierarchy of J∗ωα-ultrafilters.
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Level ultrafilters (J. E. Baumgartner 1995) Now let X = R with
a standard topology, and consider families Lα of sets which
derivative of rank α is empty. Proper Lα-ultrafilters are such
Lα-ultrafilters that are not Lβ-ultrafilters for any β < α. This way
we obtain a hierarchy of level ultrafilters.

Let (X , τ) be any topological space, we consider families L
(X ,τ)
α of

sets which derivative of rank α (in (X , τ)) is empty. Proper

L
(X ,τ)
α -ultrafilters are such L

(X ,τ)
α -ultrafilters that are not

L
(X ,τ)
β -ultrafilters for any β < α. This way we obtain a hierarchy of

level (X , τ) ultrafilters.

Observation

Proper Jωα-ultrafilters are preciselly proper L
(ω1,ord)
α -ultrafilters.
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If (un)n<ω is a sequence of filters on ω and v is a filter on ω then
the Frolick sum = limite = contour on the sequence (un)
with respect to v is:∑

v

un = lim
v

un =

∫
v

un =
⋃
V∈v

⋂
n∈V

un

(Dolecki, Mynard 2002) Monotone sequential contours of rank
1 are exactly Fréchet filters on infinite subsets of ω; If monotone
sequential contours off ranks less then α are already defined, than
u is a monotone sequential contours of rank α if u =

∑
Fr un,

where (un)n<ω is a discrete sequence of monotone sequential
contours such that: r(un) ≤ r(un+1) and limn<ω(r(un) + 1) = α.
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Define classes Pα of P-hierarchy for α < ω1 as follows: u ∈ Pα if
there is no monotone sequential contour cα of rank α such that
cα ⊂ u, and for each β < α there exists a monotone sequential
contour cβ of rank β such that cβ ⊂ u.

Recall that (Seq,Fr) is a topological space on the set of finite
sequences of natural numbers with a maximal topology for which
(recursively): if v ∈ Seq then {v_n : n < ω} \ U(v) is finite for
each neighborhood U(v) of v .

Observation

Pα-ultrafilters are preciselly proper L
(Seq,Fr)
α -ultrafilters.
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Let (X , τ) be a topological space, we say that (X , τ) is the
Countable - Countable space (C-C space) if for each countable
A ⊂ X if Cantor-Bandixson rank of A is countable, then cl(A) is
also countable.

We say that a topological spaces has the Convergence
Neighborhood Sequence property (is CNS) if for each sequence
(xn) in X , for each sequence (Un) of neighbourhoods of elements
of (xn) there exist a convergence sequence (yn) and sequences
(U ′n), (Vn) of neighborhoods of elements xn and yn respectively,
such that (Vn) is pairwise disjoint and there is a sequence (hn) of
homeomorphisms such that U ′n ⊂ U, hn : U ′n → Vn and
hn(xn) = yn.
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Theorem

Let (X , τ) be a topological space, then there exists CNS-extension
CNS(X , τ) of (X , τ) which preserve C-C, non C-C, sequentiality
and Ti -axiom for i ∈ {1, 2, 3, 4}. Such extension is not unique.

Remark

Real line (with standard topology), Seq with a topology generated
by Fréchet filter and ω1 with order topology satisfy C-C and CNS.
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Example

Take ω and A - a MAD on ω. We define topology on X1 = ω ∪ A
by the base of naighborhoods in each point. If x ∈ ω then {x} is
open, if x ∈ A then a neighborhood of x is x with any co-finite set
on x ⊂ ω. This is sequential, T2 and non C-C space, which by the
previous Theorem may be extend to CNS.
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Theorem (redefined, Baumgartner 1995)

If proper Jω2 ultrafilters exist, then for each countable ordinal α
the class of proper Jωα+1-ultrafilters is nonempty.

Theorem

Let (X , τ) be a sequential, C-C, CNS space. If proper L
(X ,τ)
2

ultrafilter exists, then for each countable ordinal α the class of
proper L

(X ,τ)
α+1 -ultrafilters is non empty.
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Theorem (Baumgartner, 1995)

Let u be a proper Jωα+2 ultrafilter then there is a function
f : ω → ω such that f (u) is a proper Jω2 ultrafilter

Theorem

Let (X , τ) be a sequential, C-C and CNS space. If u is a proper

L
(X ,τ)
α+2 ultrafilter then there exists a function f : ω → ω such that

f (u) is a proper L
(X ,τ)
2 ultrafilter.
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Example

Let X be a disjoint sum of three infinite countable sets X1, X2 and
X3. Let τ be a maximal topology for which the base of
neighbourhood system has the following properties
1) if x ∈ X1 then {x} is open,
2) if x ∈ X2 then X1 \ U(x) is finite for each neibouthood U(x) of
x,
2) if x ∈ X3 then (X1 ∪ X2) \ U(x) is finite for each neibouthood
U(x) of x.

Note that each free ultrafilter is a proper L
(X ,τ)
3 -ultrafilter.

Theorem (Laflamme 1996) (MAσ−centr)

There is proper Jωω+1-ultrafilter all of whose
RK-predecessors are proper Jωω+1-ultrafilters.
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We say that the class K of ultrafilters is closed under sums if for
each sequence (on) of filters from the class K , for each filter
o ∈ K , the sum

∑
o on is in the class K .

Theorem (Baumgartner 1995)

The class of ordinal ultrafiltes is closed under sums

Theorem

Let (X , τ) be a sequential, C-C, CNS space, then he class of level
(X , τ) ultrafiltes is closed under sums

.

Andrzej Starosolski Topological approch to ”nontopological” ultrafilters.



We say that the class K of ultrafilters is closed under sums if for
each sequence (on) of filters from the class K , for each filter
o ∈ K , the sum

∑
o on is in the class K .

Theorem (Baumgartner 1995)

The class of ordinal ultrafiltes is closed under sums

Theorem

Let (X , τ) be a sequential, C-C, CNS space, then he class of level
(X , τ) ultrafiltes is closed under sums

.

Andrzej Starosolski Topological approch to ”nontopological” ultrafilters.



We say that the class K of ultrafilters is closed under sums if for
each sequence (on) of filters from the class K , for each filter
o ∈ K , the sum

∑
o on is in the class K .

Theorem (Baumgartner 1995)

The class of ordinal ultrafiltes is closed under sums

Theorem

Let (X , τ) be a sequential, C-C, CNS space, then he class of level
(X , τ) ultrafiltes is closed under sums

.

Andrzej Starosolski Topological approch to ”nontopological” ultrafilters.



Questions:
(Baumgartner) If α is limite, is the class of proper Jωα ultrafilters
nonempty(even under some set theoretical assumptiom)?
Is there (under some set theoretical assumption) an element of
P-hierarchy which is not an ordinal ultrafilter?
(Baumgartner, later Shelah) Is there a model with no ordinal
ultrafilters?
Is there a model with no P-hierarchy?

For which topological spaces proper L
(X ,τ)
2 ultrafilters are P-points?
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Thank You for your attention
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