Baire classes of affine vector-valued functions

Ondřej Kalenda and Jiří Spurný

Toposym 2016

25th July 2016

If K is a compact Hausdorff space, then:

If K is a compact Hausdorff space, then: $\mathcal{M}^+(K) \dots$ Radon measures on K,

X... a compact convex set in a locally convex (Hausdorff) space. $\mathfrak{A}(X,\mathbb{R})$... affine continuous real functions on *X*.

X... a compact convex set in a locally convex (Hausdorff) space. $\mathfrak{A}(X,\mathbb{R})$... affine continuous real functions on *X*.

If $\mu \in \mathcal{M}^1(X)$, then **barycenter** $r(\mu)$ satisfies $f(r(\mu)) = \int_X f d\mu (= \mu(f)), f \in \mathfrak{A}(X, \mathbb{R}).$

X... a compact convex set in a locally convex (Hausdorff) space. $\mathfrak{A}(X,\mathbb{R})$... affine continuous real functions on *X*.

If $\mu \in \mathcal{M}^1(X)$, then **barycenter** $r(\mu)$ satisfies $f(r(\mu)) = \int_X f \, d\mu \, (= \mu(f)), \, f \in \mathfrak{A}(X, \mathbb{R}).$ Also, μ represents $r(\mu)$.

X... a compact convex set in a locally convex (Hausdorff) space. $\mathfrak{A}(X,\mathbb{R})$... affine continuous real functions on *X*.

If $\mu \in \mathcal{M}^1(X)$, then **barycenter** $r(\mu)$ satisfies $f(r(\mu)) = \int_X f d\mu (= \mu(f)), f \in \mathfrak{A}(X, \mathbb{R})$. Also, μ **represents** $r(\mu)$. The barycenter exists and it is unique.

X... a compact convex set in a locally convex (Hausdorff) space. $\mathfrak{A}(X,\mathbb{R})$... affine continuous real functions on *X*.

If $\mu \in \mathcal{M}^1(X)$, then **barycenter** $r(\mu)$ satisfies $f(r(\mu)) = \int_X f d\mu (= \mu(f)), f \in \mathfrak{A}(X, \mathbb{R}).$ Also, μ **represents** $r(\mu)$. The barycenter exists and it is unique.

If $\mu, \nu \in \mathcal{M}^+(X)$, then $\mu \prec \nu$ if $\mu(k) \leq \nu(k)$ for all k convex continuous.

X... a compact convex set in a locally convex (Hausdorff) space. $\mathfrak{A}(X,\mathbb{R})$... affine continuous real functions on *X*.

If $\mu \in \mathcal{M}^1(X)$, then **barycenter** $r(\mu)$ satisfies $f(r(\mu)) = \int_X f d\mu (= \mu(f)), f \in \mathfrak{A}(X, \mathbb{R}).$ Also, μ **represents** $r(\mu)$. The barycenter exists and it is unique.

If $\mu, \nu \in \mathcal{M}^+(X)$, then $\mu \prec \nu$ if $\mu(k) \leq \nu(k)$ for all k convex continuous. $\mu \in \mathcal{M}^+(X)$ is **maximal** if it is \prec -maximal.

For each $x \in X$ there exists a maximal measure $\mu \in \mathcal{M}^1(X)$ with $r(\mu) = x$.

For each $x \in X$ there exists a maximal measure $\mu \in \mathcal{M}^1(X)$ with $r(\mu) = x$. If X is metrizable, then this measure satisfies $\mu(X \setminus \text{ext } X) = 0$.

For each $x \in X$ there exists a maximal measure $\mu \in \mathcal{M}^1(X)$ with $r(\mu) = x$. If X is metrizable, then this measure satisfies $\mu(X \setminus \text{ext } X) = 0$.

 $x \in \text{ext } X \text{ if and only if}$ $\forall a, b \in X \forall t \in (0, 1): ta + (1 - t)b = x \implies a = b = x.$

For each $x \in X$ there exists a maximal measure $\mu \in \mathcal{M}^1(X)$ with $r(\mu) = x$. If X is metrizable, then this measure satisfies $\mu(X \setminus \text{ext } X) = 0$.

 $x \in \text{ext } X \text{ if and only if}$ $\forall a, b \in X \forall t \in (0, 1): ta + (1 - t)b = x \implies a = b = x.$

Definition

X is a **simplex** if for each $x \in X$ there is only one maximal measure $\mu \in \mathcal{M}^1(X)$ with $r(\mu) = x$.

For each $x \in X$ there exists a maximal measure $\mu \in \mathcal{M}^1(X)$ with $r(\mu) = x$. If X is metrizable, then this measure satisfies $\mu(X \setminus \text{ext } X) = 0$.

 $x \in \text{ext } X \text{ if and only if}$ $\forall a, b \in X \forall t \in (0, 1): ta + (1 - t)b = x \implies a = b = x.$

Definition

X is a **simplex** if for each $x \in X$ there is only one maximal measure $\mu \in \mathcal{M}^1(X)$ with $r(\mu) = x$.

Example

If *K* is a compact space, then $X = \mathcal{M}^1(K)$ is a simplex.

Let $U \subset \mathbb{R}^d$ be open and bounded.

Let $U \subset \mathbb{R}^d$ be open and bounded. Let

$$\mathcal{H} = \{ f \in C(\overline{U}) \colon \triangle f = 0 \text{ on } U \}.$$

Let $U \subset \mathbb{R}^d$ be open and bounded. Let

$$\mathcal{H} = \{ f \in C(\overline{U}) \colon \triangle f = 0 \text{ on } U \}.$$

Then

$$X = \{x^* \in \mathcal{H}^* \colon x^* \ge 0, \|x^*\| = 1\}$$

is a simplex.

Let *K* be a set, *L* a topological space and \mathcal{F} a family of mappings from *K* to *L*. We define the **Baire classes** of mappings as follows.

Let K be a set, L a topological space and \mathcal{F} a family of mappings from K to L. We define the **Baire classes** of mappings as follows. Let $(\mathcal{F})_0 = \mathcal{F}$.

Let K be a set, L a topological space and \mathcal{F} a family of mappings from K to L. We define the **Baire classes** of mappings as follows. Let $(\mathcal{F})_0 = \mathcal{F}$. Assuming that $\alpha \in [1, \omega_1)$ is given and that $(\mathcal{F})_\beta$ have been already defined for each $\beta < \alpha$, we set

Let K be a set, L a topological space and \mathcal{F} a family of mappings from K to L. We define the **Baire classes** of mappings as follows. Let $(\mathcal{F})_0 = \mathcal{F}$. Assuming that $\alpha \in [1, \omega_1)$ is given and that $(\mathcal{F})_\beta$ have been already defined for each $\beta < \alpha$, we set

 $(\mathcal{F})_{\alpha} = \{f \colon K \to L; \text{ there exists a sequence } (f_n) \text{ in } \bigcup_{\beta < \alpha} (\mathcal{F})_{\beta}$ such that $f_n \to f \text{ pointwise}\}.$

Let K be a set, L a topological space and \mathcal{F} a family of mappings from K to L. We define the **Baire classes** of mappings as follows. Let $(\mathcal{F})_0 = \mathcal{F}$. Assuming that $\alpha \in [1, \omega_1)$ is given and that $(\mathcal{F})_\beta$ have been already defined for each $\beta < \alpha$, we set

$$(\mathcal{F})_{\alpha} = \{f \colon K \to L; \text{ there exists a sequence } (f_n) \text{ in } \bigcup_{\beta < \alpha} (\mathcal{F})_{\beta}$$

such that $f_n \to f$ pointwise}

If K and L are topological spaces, by C_α(K, L) we denote the set (C(K, L))_α, where C(K, L) is the set of all continuous functions from K to L.

Let K be a set, L a topological space and \mathcal{F} a family of mappings from K to L. We define the **Baire classes** of mappings as follows. Let $(\mathcal{F})_0 = \mathcal{F}$. Assuming that $\alpha \in [1, \omega_1)$ is given and that $(\mathcal{F})_\beta$ have been already defined for each $\beta < \alpha$, we set

$$(\mathcal{F})_{\alpha} = \{f \colon K \to L; \text{ there exists a sequence } (f_n) \text{ in } \bigcup_{\beta < \alpha} (\mathcal{F})_{\beta}$$

such that $f_n \to f \text{ pointwise}\}.$

- If K and L are topological spaces, by C_α(K, L) we denote the set (C(K, L))_α, where C(K, L) is the set of all continuous functions from K to L.

If (X, A, μ) is a measure space with μ finite, F a locally convex space and f: $X \to F$,

If (X, A, μ) is a measure space with μ finite, F a locally convex space and $f: X \to F$, then f is μ -integrable if

- $\tau \circ f \in L^1(\mu)$ for each $\tau \in F^*$,
- for each B ⊂ A µ-measurable there exists an element x_B ∈ F such that

$$au(\mathbf{X}_{\mathbf{B}}) = \int_{\mathbf{B}} au \circ \mathbf{f} \, \mathrm{d}\mu, \quad au \in \mathbf{F}^*.$$

If (X, A, μ) is a measure space with μ finite, F a locally convex space and $f: X \to F$, then f is μ -integrable if

- $\tau \circ f \in L^1(\mu)$ for each $\tau \in F^*$,
- for each B ⊂ A µ-measurable there exists an element x_B ∈ F such that

$$au(\mathbf{x}_{\mathbf{B}}) = \int_{\mathbf{B}} au \circ f \, \mathrm{d}\mu, \quad au \in \mathbf{F}^*.$$

It is clear that the element x_B is uniquely determined, we denote it as $\int_B f \, \mathrm{d} \mu.$

If (X, A, μ) is a measure space with μ finite, F a locally convex space and $f: X \to F$, then f is μ -integrable if

- $\tau \circ f \in L^1(\mu)$ for each $\tau \in F^*$,
- for each B ⊂ A µ-measurable there exists an element x_B ∈ F such that

$$au(\mathbf{X}_{B}) = \int_{B} au \circ f \, \mathrm{d}\mu, \quad au \in F^{*}.$$

It is clear that the element x_B is uniquely determined, we denote it as $\int_B f \, \mathrm{d} \mu.$

Lemma

If K is a compact space, $\mu \in \mathcal{M}^+(K)$, F a Fréchet space and $f: K \to F$ bounded Baire measurable, then f is μ -integrable.

If (X, A, μ) is a measure space with μ finite, F a locally convex space and $f: X \to F$, then f is μ -integrable if

- $\tau \circ f \in L^1(\mu)$ for each $\tau \in F^*$,
- for each B ⊂ A µ-measurable there exists an element x_B ∈ F such that

$$au(\mathbf{X}_{B}) = \int_{B} au \circ f \, \mathrm{d}\mu, \quad au \in F^{*}.$$

It is clear that the element x_B is uniquely determined, we denote it as $\int_B f \, \mathrm{d} \mu.$

Lemma

If K is a compact space, $\mu \in \mathcal{M}^+(K)$, F a Fréchet space and $f: K \to F$ bounded Baire measurable, then f is μ -integrable.

Baire sets is the σ -algebra generated by **cozero** sets.

ト 4 同 ト 4 回 ト 4 回 ト

Definition

If X is a compact convex set, F a locally convex space, then $f: X \to F$ is **strongly affine** if

Definition

If X is a compact convex set, F a locally convex space, then $f: X \to F$ is **strongly affine** if for each $\mu \in \mathcal{M}^1(X)$, f is μ -integrable and $f(r(\mu)) = \int_X f \, d\mu \, (= \mu(f))$.

Definition

If X is a compact convex set, F a locally convex space, then $f: X \to F$ is **strongly affine** if for each $\mu \in \mathcal{M}^1(X)$, f is μ -integrable and $f(r(\mu)) = \int_X f \, d\mu \, (= \mu(f))$.

If f is strongly affine, then f is affine and bounded.

Theorem (Choquet, Mokobodzki)

 $f \in C_1(X, \mathbb{R})$ affine, then f is strongly affine and in $\mathfrak{A}_1(X, \mathbb{R})$.

Theorem (Choquet, Mokobodzki)

 $f \in C_1(X, \mathbb{R})$ affine, then f is strongly affine and in $\mathfrak{A}_1(X, \mathbb{R})$.

Theorem

If F is a locally convex space, then any affine $f \in C_1(X, F)$ is strongly affine.

Theorem (Choquet, Mokobodzki)

 $f \in C_1(X, \mathbb{R})$ affine, then f is strongly affine and in $\mathfrak{A}_1(X, \mathbb{R})$.

Theorem

If F is a locally convex space, then any affine $f \in C_1(X, F)$ is strongly affine.

Theorem

If F is a Banach space with a bounded approximation property. Then any affine $f \in C_1(X, F)$ is in $\mathfrak{A}_1(X, F)$.

Theorem (Choquet, Mokobodzki)

 $f \in C_1(X, \mathbb{R})$ affine, then f is strongly affine and in $\mathfrak{A}_1(X, \mathbb{R})$.

Theorem

If F is a locally convex space, then any affine $f \in C_1(X, F)$ is strongly affine.

Theorem

If F is a Banach space with a bounded approximation property. Then any affine $f \in C_1(X, F)$ is in $\mathfrak{A}_1(X, F)$.

Example

If *E* is separable reflexive Banach space without the compact approximation property, $X = (B_E, w)$ and $f : X \to E$ is identity, then $f \in C_1(X, F) \setminus \bigcup_{\alpha < \omega_1} \mathfrak{A}_{\alpha}(X, F)$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Strongly affine scalar functions of higher classes

Example (Choquet)

There exists an affine function in $C_2(X, \mathbb{R})$ that is not strongly affine.

Strongly affine scalar functions of higher classes

Example (Choquet)

There exists an affine function in $C_2(X, \mathbb{R})$ that is not strongly affine.

Theorem (Talagrand)

There exists a compact convex set X and a strongly affine function $f \in C_2(X, \mathbb{R})$ such that $f \notin \bigcup_{\alpha < \omega_1} \mathfrak{A}_{\alpha}(X, \mathbb{R})$.

Let X be a simplex. Then the mapping

 $T: X o \mathcal{M}^1(X),$ $x \mapsto \delta_x,$

is strongly affine and in $\mathfrak{A}_1(X, \mathcal{M}^1(X))$.

Let X be a simplex. Then the mapping

 $T: X o \mathcal{M}^1(X),$ $x \mapsto \delta_x,$

is strongly affine and in $\mathfrak{A}_1(X, \mathcal{M}^1(X))$.

 δ_x is the unique maximal measure with $r(\delta_x) = x$.

Strongly affine mappings on simplices

Theorem

Let X be a simplex, F be a Fréchet space, $1 \le \alpha < \omega_1$ and $f \in C_{\alpha}(X, F)$ be strongly affine.

Strongly affine mappings on simplices

Theorem

Let X be a simplex, F be a Fréchet space, $1 \le \alpha < \omega_1$ and $f \in C_{\alpha}(X, F)$ be strongly affine. Then $f \in \mathfrak{A}_{1+\alpha}(X, F)$.

Let X be a simplex with ext X being Lindelöf, $\alpha \in [0, \omega_1)$, F a Fréchet space and $f : \text{ext } X \to F$ a bounded mapping from $C_{\alpha}(\text{ext } X, F)$.

Let X be a simplex with ext X being Lindelöf, $\alpha \in [0, \omega_1)$, F a Fréchet space and f : ext $X \to F$ a bounded mapping from $C_{\alpha}(\text{ext } X, F)$. Then f can be extended to a mapping from $\mathfrak{A}_{1+\alpha}(X, F)$.

Let X be a simplex with ext X being Lindelöf, $\alpha \in [0, \omega_1)$, F a Fréchet space and f : ext $X \to F$ a bounded mapping from $C_{\alpha}(\text{ext } X, F)$. Then f can be extended to a mapping from $\mathfrak{A}_{1+\alpha}(X, F)$.

Theorem

Let X be a simplex, $K \subset \text{ext } X$ a compact subset, F a Fréchet space and f a bounded mapping in $C_{\alpha}(K, F)$.

Let X be a simplex with ext X being Lindelöf, $\alpha \in [0, \omega_1)$, F a Fréchet space and f : ext $X \to F$ a bounded mapping from $C_{\alpha}(\text{ext } X, F)$. Then f can be extended to a mapping from $\mathfrak{A}_{1+\alpha}(X, F)$.

Theorem

Let X be a simplex, $K \subset \text{ext } X$ a compact subset, F a Fréchet space and f a bounded mapping in $C_{\alpha}(K, F)$. Then f can be extended to a mapping from $\mathfrak{A}_{\alpha}(X, \overline{\operatorname{cof}}(K))$.

Let X be a simplex with ext X being Lindelöf, $\alpha \in [0, \omega_1)$, F a Fréchet space and f : ext $X \to F$ a bounded mapping from $C_{\alpha}(\text{ext } X, F)$. Then f can be extended to a mapping from $\mathfrak{A}_{1+\alpha}(X, F)$.

Theorem

Let X be a simplex, $K \subset \text{ext } X$ a compact subset, F a Fréchet space and f a bounded mapping in $C_{\alpha}(K, F)$. Then f can be extended to a mapping from $\mathfrak{A}_{\alpha}(X, \overline{\operatorname{cof}}(K))$.

Theorem

Let K be a compact subset of a completely regular topological space Z, F be a Fréchet space and f: $K \to F$ be a bounded mapping in $C_{\alpha}(K, F)$. Then there exists a mapping h: $Z \to F$ in $C_{\alpha}(Z, F)$ extending f such that $h(Z) \subset \overline{co}f(K)$.

Affine Jayne-Rogers selection result

Theorem

Let X be a simplex, F a Fréchet space and $\Phi: X \rightarrow F$ an upper semicontinuous set-valued mapping with nonempty closed values and bounded range.

Affine Jayne-Rogers selection result

Theorem

Let X be a simplex, F a Fréchet space and $\Phi: X \to F$ an upper semicontinuous set-valued mapping with nonempty closed values and bounded range.

If the graph of Φ is convex, then Φ admits a selection in $\mathfrak{A}_2(X, F)$.

Affine Jayne-Rogers selection result

Theorem

Let X be a simplex, F a Fréchet space and $\Phi: X \to F$ an upper semicontinuous set-valued mapping with nonempty closed values and bounded range.

If the graph of Φ is convex, then Φ admits a selection in $\mathfrak{A}_2(X, F)$.

 Φ is upper semicontinuous if $\{x \in X : \Phi(x) \subset U\}$ is open in X for each $U \subset F$ open.

Let X be a simplex, F a Fréchet space and $\Phi: X \to F$ an upper semicontinuous set-valued mapping with nonempty closed values and bounded range.

If the graph of Φ is convex, then Φ admits a selection in $\mathfrak{A}_2(X, F)$.

 Φ is upper semicontinuous if $\{x \in X : \Phi(x) \subset U\}$ is open in X for each $U \subset F$ open.

Example

There are simplices X_1 , X_2 and upper semicontinuous mappings $\Gamma_i : X_i \to \mathbb{R}$ with closed values, bounded range and convex graph for i = 1, 2 such that the following assertions hold:

Let X be a simplex, F a Fréchet space and $\Phi: X \to F$ an upper semicontinuous set-valued mapping with nonempty closed values and bounded range.

If the graph of Φ is convex, then Φ admits a selection in $\mathfrak{A}_2(X, F)$.

 Φ is upper semicontinuous if $\{x \in X : \Phi(x) \subset U\}$ is open in X for each $U \subset F$ open.

Example

There are simplices X_1 , X_2 and upper semicontinuous mappings $\Gamma_i: X_i \to \mathbb{R}$ with closed values, bounded range and convex graph for i = 1, 2 such that the following assertions hold:

- (i) X_1 is metrizable and Γ_1 admits no affine Baire-one selection.
- (ii) X_2 is non-metrizable and Γ_2 admits no affine Borel selection.

Thank you for your attention.