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Compact convex sets

If K is a compact Hausdorff space, then:
M*(K)... Radon measures on K,
M'(K) ... probability Radon measures on K.

X ... a compact convex set in a locally convex (Hausdorff) space.
A(X,R)... affine continuous real functions on X.
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Compact convex sets

If K is a compact Hausdorff space, then:
M*(K)... Radon measures on K,
M'(K) ... probability Radon measures on K.

X ... a compact convex set in a locally convex (Hausdorff) space.
A(X,R)... affine continuous real functions on X.

If u € M'(X), then barycenter r(y.) satisfies
f(r(n)) = [y fdu(= p(f)), f € AUX,R).
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Compact convex sets

If K is a compact Hausdorff space, then:
M*(K)... Radon measures on K,
M'(K) ... probability Radon measures on K.

X ... a compact convex set in a locally convex (Hausdorff) space.
A(X,R)... affine continuous real functions on X.

If u € M'(X), then barycenter r(y.) satisfies
F(r(w) = Jy fdu(= u(h), f € AXR).
Also, i represents r(p).
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Compact convex sets

If K is a compact Hausdorff space, then:
M*(K)... Radon measures on K,
M'(K) ... probability Radon measures on K.

X ... a compact convex set in a locally convex (Hausdorff) space.
A(X,R)... affine continuous real functions on X.

If u € M'(X), then barycenter r(y.) satisfies

H(r(w) = [y fdu(= u(F)), f € AX,R).
Also, i represents r(u). The barycenter exists and it is unique.
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Compact convex sets

If K is a compact Hausdorff space, then:
M*(K)... Radon measures on K,
M'(K) ... probability Radon measures on K.

X ... a compact convex set in a locally convex (Hausdorff) space.
A(X,R)... affine continuous real functions on X.

If u € M'(X), then barycenter r(y.) satisfies

H(r(w) = [y fdu(= u(F)), f € AX,R).
Also, i represents r(u). The barycenter exists and it is unique.

If v € MF(X), then u < v if u(k) < v(k) for all k convex continuous.
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Compact convex sets

If K is a compact Hausdorff space, then:
M*(K)... Radon measures on K,
M'(K) ... probability Radon measures on K.

X ... a compact convex set in a locally convex (Hausdorff) space.
A(X,R)... affine continuous real functions on X.

If u € M'(X), then barycenter r(y.) satisfies

H(r(w) = [y fdu(= u(F)), f € AX,R).
Also, i represents r(u). The barycenter exists and it is unique.

If v € MF(X), then u < v if u(k) < v(k) for all k convex continuous.
w € M*(X) is maximal if it is <-maximal.
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Theorem (Choquet, Bishop, de Leeuw)

For each x € X there exists a maximal measure i € M'(X) with
r(p) = x.
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Theorem (Choquet, Bishop, de Leeuw)

For each x € X there exists a maximal measure i € M'(X) with
r(p) = x. If X is metrizable, then this measure satisfies
u(X\ extX)=0.

Ondfej Kalenda and Jifi Spurny Baire classes of affine vector-valued functions



Simplices

Theorem (Choquet, Bishop, de Leeuw)

For each x € X there exists a maximal measure i € M'(X) with
r(p) = x. If X is metrizable, then this measure satisfies
u(X\ extX)=0.

x € ext X if and only if
Va,be XvVte (0,1):ta+ (1 —t)b=x = a=b=x.

Ondfej Kalenda and Jifi Spurny Baire classes of affine vector-valued functions



Simplices

Theorem (Choquet, Bishop, de Leeuw)

For each x € X there exists a maximal measure i € M'(X) with
r(p) = x. If X is metrizable, then this measure satisfies
u(X\ extX)=0.

x € ext X if and only if
Va,be XvVte (0,1):ta+ (1 —t)b=x = a=b=x.

Definition

X is a simplex if for each x € X there is only one maximal measure
€ MY(X) with r(u) = x.

Ondfej Kalenda and Jifi Spurny Baire classes of affine vector-valued functions



Simplices

Theorem (Choquet, Bishop, de Leeuw)

For each x € X there exists a maximal measure i € M'(X) with
r(p) = x. If X is metrizable, then this measure satisfies
u(X\ extX)=0.

x € ext X if and only if
Va,be XvVte (0,1):ta+ (1 —t)b=x = a=b=x.

Definition

X is a simplex if for each x € X there is only one maximal measure
€ MY(X) with r(u) = x.

If K is a compact space, then X = M'(K) is a simplex.
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Harmonic functions

Let U c RY be open and bounded.
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Harmonic functions

Let U c RY be open and bounded. Let

H = {fe C(U): Arf=0o0nUj}.

Ondfiej Kalenda and Jifi Spurny Baire classes of affine vector-valued functions



Harmonic functions

Let U c RY be open and bounded. Let
H = {fe C(U): Af=0o0nUj}.

Then
X={x"eH :x*>0,|x*|| =1}

is a simplex.
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Baire classes

Let K be a set, L a topological space and F a family of mappings
from K to L. We define the Baire classes of mappings as follows.

Ondfej Kalenda and Jifi Spurny Baire classes of affine vector-valued functions



Baire classes

Let K be a set, L a topological space and F a family of mappings
from K to L. We define the Baire classes of mappings as follows.
Let(F)o = F.
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Baire classes

Let K be a set, L a topological space and F a family of mappings
from K to L. We define the Baire classes of mappings as follows.
Let(F)o = F.

Assuming that « € [1,w1) is given and that (F)s have been already
defined for each 8 < «, we set
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Baire classes

Let K be a set, L a topological space and F a family of mappings
from K to L. We define the Baire classes of mappings as follows.
Let(F)o = F.

Assuming that « € [1,w1) is given and that (F)s have been already
defined for each 8 < «, we set

(F)a = {f: K — L; there exists a sequence (f,) in U (F)s
B<a
such that f, — f pointwise}.

Ondfej Kalenda and Jifi Spurny Baire classes of affine vector-valued functions



Baire classes

Let K be a set, L a topological space and F a family of mappings
from K to L. We define the Baire classes of mappings as follows.
Let(F)o = F.

Assuming that « € [1,w1) is given and that (F)s have been already
defined for each 8 < «, we set

(F)a = {f: K — L; there exists a sequence (f,) in U (F)s
B<a
such that f, — f pointwise}.

@ IfK and L are topological spaces, by C. (K, L) we denote the set
(C(K, L)), where C(K, L) is the set of all continuous functions
from K to L.
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Baire classes

Let K be a set, L a topological space and F a family of mappings
from K to L. We define the Baire classes of mappings as follows.
Let(F)o = F.

Assuming that « € [1,w1) is given and that (F)s have been already
defined for each 8 < «, we set

(F)a = {f: K — L; there exists a sequence (f,) in U (F)s
B<a
such that f, — f pointwise}.

@ IfK and L are topological spaces, by C. (K, L) we denote the set
(C(K, L)), where C(K, L) is the set of all continuous functions
from K to L.

@ If X is a compact convex set and L is a convex subset of a locally
convex space, by (X, L) we denote (A(X, L)), where 2A(X, L)
is the set of all affine continuous functions defined on X with
values in L.
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Vector integration (Pettis approach)

If (X, A, u) is a measure space with p finite, F a locally convex space
andf: X — F,
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Vector integration (Pettis approach)

If (X, A, u) is a measure space with p finite, F a locally convex space
and f: X — F, then f is u-integrable if

@ 7ofe L'(u)foreacht e F*,

@ for each B C A u-measurable there exists an element xg € F
such that

T(XB):/TOfd,LL, T e F*.
B
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Vector integration (Pettis approach)

If (X, A, u) is a measure space with p finite, F a locally convex space
and f: X — F, then f is u-integrable if

@ 7ofe L'(u)foreacht e F*,

@ for each B C A u-measurable there exists an element xg € F
such that

7'(X13):/TOfd,u7 T e F*.
B

It is clear that the element xg is uniquely determined, we denote it as
Jg fdp.
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Vector integration (Pettis approach)

If (X, A, u) is a measure space with p finite, F a locally convex space
and f: X — F, then f is u-integrable if

@ 7ofe L'(u)foreacht e F*,

@ for each B C A u-measurable there exists an element xg € F
such that

T(XB):/TOfd,LL, T e F*.
B

It is clear that the element xg is uniquely determined, we denote it as
Jg fdp.

Lemma

If K is a compact space, p € M*(K), F a Fréchet space and
f: K — F bounded Baire measurable, then f is u-integrable.
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Vector integration (Pettis approach)

If (X, A, u) is a measure space with p finite, F a locally convex space
and f: X — F, then f is u-integrable if

@ 7ofe L'(u)foreacht e F*,

@ for each B C A u-measurable there exists an element xg € F
such that

7'(X13):/TOfd,u7 T e F*.
B

It is clear that the element xg is uniquely determined, we denote it as
Jg fdp.

Lemma

If K is a compact space, p € M*(K), F a Fréchet space and
f: K — F bounded Baire measurable, then f is u-integrable.

Baire sets is the o-algebra generated by cozero sets. J
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Strongly affine functions

Definition

If X is a compact convex set, F a locally convex space, then
f: X — F is strongly affine if
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Strongly affine functions

Definition

If X is a compact convex set, F a locally convex space, then
f: X — F is strongly affine if for each . € M'(X), f is p-integrable
and f(r(u)) = [y fdu (= ().
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Strongly affine functions

Definition

If X is a compact convex set, F a locally convex space, then
f: X — F is strongly affine if for each . € M'(X), f is p-integrable
and f(r(u)) = [y fdu (= ().

If f is strongly affine, then f is affine and bounded. J
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Strongly affine functions of the first Baire class

Theorem (Choquet, Mokobodzki)
f € C1(X,R) affine, then f is strongly affine and in A;(X,R).
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Strongly affine functions of the first Baire class

Theorem (Choquet, Mokobodzki)
f € C1(X,R) affine, then f is strongly affine and in 24 (X, R).

If F is a locally convex space, then any affine f € C1(X, F) is strongly
affine.
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Strongly affine functions of the first Baire class

Theorem (Choquet, Mokobodzki)
f € C1(X,R) affine, then f is strongly affine and in 24 (X, R).

If F is a locally convex space, then any affine f € C1(X, F) is strongly
affine.

| \

Theorem

If F is a Banach space with a bounded approximation property. Then
any affine f € C1(X, F) is in2A4(X, F).

A\
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Strongly affine functions of the first Baire class

Theorem (Choquet, Mokobodzki)
f € C1(X,R) affine, then f is strongly affine and in 24 (X, R).

If F is a locally convex space, then any affine f € C1(X, F) is strongly
affine.

Theorem

If F is a Banach space with a bounded approximation property. Then
any affine f € C1(X, F) is in2A4(X, F).

| \

Example

If E is separable reflexive Banach space without the compact
approximation property, X = (Bg,w) and f: X — E is identity, then
f € Ci(X, F)\ Unew, Aa(X, F).

A
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Strongly affine scalar functions of higher classes

Example (Choquet)

There exists an affine function in C2(X,R) that is not strongly affine.
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Strongly affine scalar functions of higher classes

Example (Choquet)
There exists an affine function in C2(X,R) that is not strongly affine.

Theorem (Talagrand)

There exists a compact convex set X and a strongly affine function
f € Co(X,R) such that f ¢ | J Ao (X, R).

a<wiq
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Dilation mapping on simplices

Let X be a simplex. Then the mapping

T: X = MY(X),
X > Oy,

is strongly affine and in 24 (X, M'(X)).
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Dilation mapping on simplices

Theorem

Let X be a simplex. Then the mapping

T: X = MY(X),
X > Oy,

is strongly affine and in 24 (X, M'(X)).

dx is the unique maximal measure with r(dx) = x. J

Ondfej Kalenda and Jifi Spurny Baire classes of affine vector-valued functions



Strongly affine mappings on simplices

Let X be a simplex, F be a Fréchet space, 1 < a < wy and
f € Co(X, F) be strongly affine.
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Strongly affine mappings on simplices

Let X be a simplex, F be a Fréchet space, 1 < a < wy and
f € Co(X, F) be strongly affine. Then f € A1,(X, F).
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The Dirichlet problem on simplices

Let X be a simplex with ext X being Lindeldf, o € [0,w1), F a Fréchet
space and f : ext X — F a bounded mapping from C,(ext X, F).
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The Dirichlet problem on simplices

Let X be a simplex with ext X being Lindeldf, o € [0,w1), F a Fréchet
space and f : ext X — F a bounded mapping from C.(ext X, F). Then
f can be extended to a mapping from 21,.(X, F).
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The Dirichlet problem on simplices

Let X be a simplex with ext X being Lindeldf, o € [0,w1), F a Fréchet
space and f : ext X — F a bounded mapping from C.(ext X, F). Then
f can be extended to a mapping from 21,.(X, F).

Let X be a simplex, K C ext X a compact subset, F a Fréchet space
and f a bounded mapping inC.(K, F).
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The Dirichlet problem on simplices

Let X be a simplex with ext X being Lindeldf, o € [0,w1), F a Fréchet
space and f : ext X — F a bounded mapping from C.(ext X, F). Then
f can be extended to a mapping from 21,.(X, F).

Let X be a simplex, K C ext X a compact subset, F a Fréchet space
and f a bounded mapping in C.(K, F). Then f can be extended to a
mapping from 2, (X, cof(K)).
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The Dirichlet problem on simplices

Let X be a simplex with ext X being Lindeldf, o € [0,w1), F a Fréchet
space and f : ext X — F a bounded mapping from C.(ext X, F). Then
f can be extended to a mapping from 21,.(X, F).

Theorem

Let X be a simplex, K C ext X a compact subset, F a Fréchet space
and f a bounded mapping in C.(K, F). Then f can be extended to a
mapping from 2, (X, cof(K)).

Theorem

Let K be a compact subset of a completely regular topological space
Z, F be a Fréchet space and f: K — F be a bounded mapping in
Ca(K, F). Then there exists a mapping h: Z — F inC,(Z, F)
extending f such that h(Z) c cof(K).
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Affine Jayne-Rogers selection result

Let X be a simplex, F a Fréchet space and : X — F an upper
semicontinuous set-valued mapping with nonempty closed values
and bounded range.
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Affine Jayne-Rogers selection result

Let X be a simplex, F a Fréchet space and : X — F an upper
semicontinuous set-valued mapping with nonempty closed values
and bounded range.

If the graph of & is convex, then ® admits a selection in (X, F).
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Affine Jayne-Rogers selection result

Theorem

Let X be a simplex, F a Fréchet space and : X — F an upper
semicontinuous set-valued mapping with nonempty closed values
and bounded range.

If the graph of & is convex, then ® admits a selection in (X, F).

 js upper semicontinuous if {x € X: ®(x) c U} is open in X for
each U C F open.
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Affine Jayne-Rogers selection result

Theorem

Let X be a simplex, F a Fréchet space and : X — F an upper
semicontinuous set-valued mapping with nonempty closed values
and bounded range.

If the graph of & is convex, then ® admits a selection in (X, F).

 js upper semicontinuous if {x € X: ®(x) c U} is open in X for
each U C F open.

Example

There are simplices X1, Xo and upper semicontinuous mappings
Ii: Xi — R with closed values, bounded range and convex graph for
i = 1,2 such that the following assertions hold:
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Affine Jayne-Rogers selection result

Theorem

Let X be a simplex, F a Fréchet space and : X — F an upper
semicontinuous set-valued mapping with nonempty closed values
and bounded range.

If the graph of & is convex, then ® admits a selection in (X, F).

 js upper semicontinuous if {x € X: ®(x) c U} is open in X for
each U C F open.

Example

There are simplices X1, Xo and upper semicontinuous mappings
Ii: Xi — R with closed values, bounded range and convex graph for
i = 1,2 such that the following assertions hold:

() Xy is metrizable and Ty admits no affine Baire-one selection.
(ii) Xz is non-metrizable and T» admits no affine Borel selection.
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Thank you for your attention. )
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