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Compact convex sets

If K is a compact Hausdorff space, then:

M+(K ) . . . Radon measures on K ,
M1(K ) . . . probability Radon measures on K .

X . . . a compact convex set in a locally convex (Hausdorff) space.
A(X ,R) . . . affine continuous real functions on X.

If µ ∈M1(X ), then barycenter r(µ) satisfies
f (r(µ)) =

∫
X f dµ (= µ(f )), f ∈ A(X ,R).

Also, µ represents r(µ). The barycenter exists and it is unique.

If µ, ν ∈M+(X ), then µ ≺ ν if µ(k) ≤ ν(k) for all k convex continuous.
µ ∈M+(X ) is maximal if it is ≺-maximal.
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Ondřej Kalenda and Jiřı́ Spurný Baire classes of affine vector-valued functions



Compact convex sets

If K is a compact Hausdorff space, then:
M+(K ) . . . Radon measures on K ,
M1(K ) . . . probability Radon measures on K .

X . . . a compact convex set in a locally convex (Hausdorff) space.
A(X ,R) . . . affine continuous real functions on X.

If µ ∈M1(X ), then barycenter r(µ) satisfies
f (r(µ)) =

∫
X f dµ (= µ(f )), f ∈ A(X ,R).

Also, µ represents r(µ). The barycenter exists and it is unique.

If µ, ν ∈M+(X ), then µ ≺ ν if µ(k) ≤ ν(k) for all k convex continuous.
µ ∈M+(X ) is maximal if it is ≺-maximal.
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Simplices

Theorem (Choquet, Bishop, de Leeuw)

For each x ∈ X there exists a maximal measure µ ∈M1(X ) with
r(µ) = x.

If X is metrizable, then this measure satisfies
µ(X \ ext X ) = 0.

x ∈ ext X if and only if
∀a,b ∈ X∀t ∈ (0,1) : ta + (1− t)b = x =⇒ a = b = x .

Definition
X is a simplex if for each x ∈ X there is only one maximal measure
µ ∈M1(X ) with r(µ) = x.

Example

If K is a compact space, then X =M1(K ) is a simplex.
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Harmonic functions

Let U ⊂ Rd be open and bounded.

Let

H = {f ∈ C(U) : 4f = 0 on U}.

Then
X = {x∗ ∈ H∗ : x∗ ≥ 0, ‖x∗‖ = 1}

is a simplex.
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Baire classes

Let K be a set, L a topological space and F a family of mappings
from K to L. We define the Baire classes of mappings as follows.

Let (F)0 = F .
Assuming that α ∈ [1, ω1) is given and that (F)β have been already
defined for each β < α, we set

(F)α = {f : K → L; there exists a sequence (fn) in
⋃
β<α

(F)β

such that fn → f pointwise}.

If K and L are topological spaces, by Cα(K ,L) we denote the set
(C(K ,L))α, where C(K ,L) is the set of all continuous functions
from K to L.
If X is a compact convex set and L is a convex subset of a locally
convex space, by Aα(X ,L) we denote (A(X ,L))α, where A(X ,L)
is the set of all affine continuous functions defined on X with
values in L.
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Ondřej Kalenda and Jiřı́ Spurný Baire classes of affine vector-valued functions



Baire classes

Let K be a set, L a topological space and F a family of mappings
from K to L. We define the Baire classes of mappings as follows.
Let (F)0 = F .
Assuming that α ∈ [1, ω1) is given and that (F)β have been already
defined for each β < α, we set

(F)α = {f : K → L; there exists a sequence (fn) in
⋃
β<α

(F)β

such that fn → f pointwise}.

If K and L are topological spaces, by Cα(K ,L) we denote the set
(C(K ,L))α, where C(K ,L) is the set of all continuous functions
from K to L.

If X is a compact convex set and L is a convex subset of a locally
convex space, by Aα(X ,L) we denote (A(X ,L))α, where A(X ,L)
is the set of all affine continuous functions defined on X with
values in L.
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Vector integration (Pettis approach)

If (X ,A, µ) is a measure space with µ finite, F a locally convex space
and f : X → F,

then f is µ-integrable if
τ ◦ f ∈ L1(µ) for each τ ∈ F ∗,
for each B ⊂ A µ-measurable there exists an element xB ∈ F
such that

τ(xB) =

∫
B
τ ◦ f dµ, τ ∈ F ∗.

It is clear that the element xB is uniquely determined, we denote it as∫
B f dµ.

Lemma

If K is a compact space, µ ∈M+(K ), F a Fréchet space and
f : K → F bounded Baire measurable, then f is µ-integrable.

Baire sets is the σ-algebra generated by cozero sets.
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Ondřej Kalenda and Jiřı́ Spurný Baire classes of affine vector-valued functions



Vector integration (Pettis approach)

If (X ,A, µ) is a measure space with µ finite, F a locally convex space
and f : X → F, then f is µ-integrable if

τ ◦ f ∈ L1(µ) for each τ ∈ F ∗,
for each B ⊂ A µ-measurable there exists an element xB ∈ F
such that

τ(xB) =

∫
B
τ ◦ f dµ, τ ∈ F ∗.

It is clear that the element xB is uniquely determined, we denote it as∫
B f dµ.

Lemma

If K is a compact space, µ ∈M+(K ), F a Fréchet space and
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Strongly affine functions

Definition
If X is a compact convex set, F a locally convex space, then
f : X → F is strongly affine if

for each µ ∈M1(X ), f is µ-integrable
and f (r(µ)) =

∫
X f dµ (= µ(f )).

If f is strongly affine, then f is affine and bounded.
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Strongly affine functions of the first Baire class

Theorem (Choquet, Mokobodzki)

f ∈ C1(X ,R) affine, then f is strongly affine and in A1(X ,R).

Theorem

If F is a locally convex space, then any affine f ∈ C1(X ,F ) is strongly
affine.

Theorem
If F is a Banach space with a bounded approximation property. Then
any affine f ∈ C1(X ,F ) is in A1(X ,F ).

Example

If E is separable reflexive Banach space without the compact
approximation property, X = (BE ,w) and f : X → E is identity, then
f ∈ C1(X ,F ) \

⋃
α<ω1

Aα(X ,F ).
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Strongly affine scalar functions of higher classes

Example (Choquet)

There exists an affine function in C2(X ,R) that is not strongly affine.

Theorem (Talagrand)

There exists a compact convex set X and a strongly affine function
f ∈ C2(X ,R) such that f /∈

⋃
α<ω1

Aα(X ,R).

Ondřej Kalenda and Jiřı́ Spurný Baire classes of affine vector-valued functions



Strongly affine scalar functions of higher classes

Example (Choquet)

There exists an affine function in C2(X ,R) that is not strongly affine.

Theorem (Talagrand)

There exists a compact convex set X and a strongly affine function
f ∈ C2(X ,R) such that f /∈

⋃
α<ω1

Aα(X ,R).
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Dilation mapping on simplices

Theorem
Let X be a simplex. Then the mapping

T : X →M1(X ),

x 7→ δx ,

is strongly affine and in A1(X ,M1(X )).

δx is the unique maximal measure with r(δx ) = x.
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Strongly affine mappings on simplices

Theorem

Let X be a simplex, F be a Fréchet space, 1 ≤ α < ω1 and
f ∈ Cα(X ,F ) be strongly affine.

Then f ∈ A1+α(X ,F ).

Ondřej Kalenda and Jiřı́ Spurný Baire classes of affine vector-valued functions



Strongly affine mappings on simplices

Theorem

Let X be a simplex, F be a Fréchet space, 1 ≤ α < ω1 and
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The Dirichlet problem on simplices

Theorem

Let X be a simplex with ext X being Lindelöf, α ∈ [0, ω1), F a Fréchet
space and f : ext X → F a bounded mapping from Cα(ext X ,F ).

Then
f can be extended to a mapping from A1+α(X ,F ).

Theorem

Let X be a simplex, K ⊂ ext X a compact subset, F a Fréchet space
and f a bounded mapping in Cα(K ,F ). Then f can be extended to a
mapping from Aα(X , cof (K )).

Theorem
Let K be a compact subset of a completely regular topological space
Z , F be a Fréchet space and f : K → F be a bounded mapping in
Cα(K ,F ). Then there exists a mapping h : Z → F in Cα(Z ,F )
extending f such that h(Z ) ⊂ cof (K ).
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Z , F be a Fréchet space and f : K → F be a bounded mapping in
Cα(K ,F ). Then there exists a mapping h : Z → F in Cα(Z ,F )
extending f such that h(Z ) ⊂ cof (K ).

Ondřej Kalenda and Jiřı́ Spurný Baire classes of affine vector-valued functions



The Dirichlet problem on simplices

Theorem

Let X be a simplex with ext X being Lindelöf, α ∈ [0, ω1), F a Fréchet
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Affine Jayne-Rogers selection result

Theorem

Let X be a simplex, F a Fréchet space and Φ: X → F an upper
semicontinuous set-valued mapping with nonempty closed values
and bounded range.

If the graph of Φ is convex, then Φ admits a selection in A2(X ,F ).

Φ is upper semicontinuous if {x ∈ X : Φ(x) ⊂ U} is open in X for
each U ⊂ F open.

Example

There are simplices X1, X2 and upper semicontinuous mappings
Γi : Xi → R with closed values, bounded range and convex graph for
i = 1,2 such that the following assertions hold:

(i) X1 is metrizable and Γ1 admits no affine Baire-one selection.
(ii) X2 is non-metrizable and Γ2 admits no affine Borel selection.
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Thank you for your attention.
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