A local Ramsey theory for block sequences

lian Smythe

Cornell University Ithaca, NY, USA

Toposym Prague, Czech Republic July 26, 2016

Outline

Review of (local) Ramsey theory on $\ensuremath{\mathbb{N}}$

- 2 Ramsey theory for block sequences in vector spaces
- 3 Local Ramsey theory for block sequences in vector spaces

Projections in the Calkin algebra

Infinite dimensional Ramsey theory

Theorem (Silver, 1970)

If $\mathbb{A} \subseteq [\mathbb{N}]^{\infty}$ is analytic and $X \in [\mathbb{N}]^{\infty}$, then there is a $Y \in [X]^{\infty}$ such that either $[Y]^{\infty} \cap \mathbb{A} = \emptyset$ or $[Y]^{\infty} \subseteq \mathbb{A}$.

- Here, $[X]^{\infty}$ is the set of all infinite subsets of *X*.
- This result was the culmination of work of Ramsey, Nash-Williams, Galvin, and Prikry.

Infinite dimensional Ramsey theory

With more assumptions, we can go well beyond the analytic sets:

Theorem (Shelah & Woodin, 1990)

Assume \exists supercompact κ . If $\mathbb{A} \subseteq [\mathbb{N}]^{\infty}$ is in $\mathbf{L}(\mathbb{R})$ and $X \in [\mathbb{N}]^{\infty}$, then there is a $Y \in [X]^{\infty}$ such that either $[Y]^{\infty} \cap \mathbb{A} = \emptyset$ or $[Y]^{\infty} \subseteq \mathbb{A}$.

Local Ramsey theory

Theorem (Silver, 1970 (Shelah & Woodin, 1990))

(Assume \exists supercompact κ .) If $\mathbb{A} \subseteq [\mathbb{N}]^{\infty}$ is analytic (in $\mathbf{L}(\mathbb{R})$) and $X \in [\mathbb{N}]^{\infty}$, then there is a $Y \in [X]^{\infty}$ such that either $[Y]^{\infty} \cap \mathbb{A} = \emptyset$ or $[Y]^{\infty} \subseteq \mathbb{A}$.

Local Ramsey theory

Theorem (Silver, 1970 (Shelah & Woodin, 1990))

(Assume \exists supercompact κ .) If $\mathbb{A} \subseteq [\mathbb{N}]^{\infty}$ is analytic (in $\mathbf{L}(\mathbb{R})$) and $X \in [\mathbb{N}]^{\infty}$, then there is a $Y \in [X]^{\infty}$ such that either $[Y]^{\infty} \cap \mathbb{A} = \emptyset$ or $[Y]^{\infty} \subseteq \mathbb{A}$.

Local Ramsey theory concerns "localizing" the witness *Y* above. That is, finding families $\mathcal{H} \subseteq [\mathbb{N}]^{\infty}$ such that, provided the given *X* is in \mathcal{H} , *Y* can also be found in \mathcal{H} .

Definition

H ⊆ [ℕ][∞] is a coideal if it is the complement of a (non-trivial) ideal. Equivalently, it is a non-empty family such that

$$X \in \mathcal{H}$$
 and $X \subseteq^* Y \Longrightarrow Y \in \mathcal{H}$,

- $X, Y \in [\mathbb{N}]^{\infty}$ with $X \cup Y \in \mathcal{H} \Longrightarrow X \in \mathcal{H}$ or $Y \in \mathcal{H}$.
- A coideal $\mathcal{H} \subseteq [\mathbb{N}]^{\infty}$ is selective (or a happy family) if whenever $X_0 \supseteq X_1 \supseteq \cdots$ are in \mathcal{H} , there is an $X \in \mathcal{H}$ such that $X/n \subseteq X_n$ for all $n \in X$.

Definition

H ⊆ [ℕ][∞] is a coideal if it is the complement of a (non-trivial) ideal. Equivalently, it is a non-empty family such that

$$X \in \mathcal{H} \text{ and } X \subseteq^* Y \Longrightarrow Y \in \mathcal{H},$$

- $X, Y \in [\mathbb{N}]^{\infty}$ with $X \cup Y \in \mathcal{H} \Longrightarrow X \in \mathcal{H}$ or $Y \in \mathcal{H}$.
- A coideal $\mathcal{H} \subseteq [\mathbb{N}]^{\infty}$ is selective (or a happy family) if whenever $X_0 \supseteq X_1 \supseteq \cdots$ are in \mathcal{H} , there is an $X \in \mathcal{H}$ such that $X/n \subseteq X_n$ for all $n \in X$.

Examples (of selective coideals)

- $[\mathbb{N}]^{\infty}$
- \mathcal{U} a selective (or sufficiently generic) ultrafilter
- $\bullet \ [\mathbb{N}]^{\infty} \setminus \mathcal{I}$ where \mathcal{I} is the ideal generated by an infinite a.d. family

Theorem (Mathias, 1977 (Todorcevic, 1997))

(Assume \exists supercompact κ .) Let $\mathcal{H} \subseteq [\mathbb{N}]^{\infty}$ be a selective coideal. If $\mathbb{A} \subseteq [\mathbb{N}]^{\infty}$ is analytic (in $\mathbf{L}(\mathbb{R})$), then for any $X \in \mathcal{H}$, there is a $Y \in \mathcal{H} \upharpoonright X$ such that either $[Y]^{\infty} \cap \mathbb{A} = \emptyset$ or $[Y]^{\infty} \subseteq \mathbb{A}$.

Theorem (Mathias, 1977 (Todorcevic, 1997))

(Assume \exists supercompact κ .) Let $\mathcal{H} \subseteq [\mathbb{N}]^{\infty}$ be a selective coideal. If $\mathbb{A} \subseteq [\mathbb{N}]^{\infty}$ is analytic (in $\mathbf{L}(\mathbb{R})$), then for any $X \in \mathcal{H}$, there is a $Y \in \mathcal{H} \upharpoonright X$ such that either $[Y]^{\infty} \cap \mathbb{A} = \emptyset$ or $[Y]^{\infty} \subseteq \mathbb{A}$.

Corollary

Assume \exists supercompact κ . A filter \mathcal{G} is $\mathbf{L}(\mathbb{R})$ -generic for $([\mathbb{N}]^{\infty}, \subseteq^*)$ if and only if \mathcal{G} is selective.

Theorem (Mathias, 1977 (Todorcevic, 1997))

(Assume \exists supercompact κ .) Let $\mathcal{H} \subseteq [\mathbb{N}]^{\infty}$ be a selective coideal. If $\mathbb{A} \subseteq [\mathbb{N}]^{\infty}$ is analytic (in $\mathbf{L}(\mathbb{R})$), then for any $X \in \mathcal{H}$, there is a $Y \in \mathcal{H} \upharpoonright X$ such that either $[Y]^{\infty} \cap \mathbb{A} = \emptyset$ or $[Y]^{\infty} \subseteq \mathbb{A}$.

Corollary

Assume \exists supercompact κ . A filter \mathcal{G} is $\mathbf{L}(\mathbb{R})$ -generic for $([\mathbb{N}]^{\infty}, \subseteq^*)$ if and only if \mathcal{G} is selective.

- Selective ultrafilters are said to have "complete combinatorics" (cf. work of Blass, LaFlamme, Dobrinen)
- An "abstract" version has recently been developed for topological Ramsey spaces (Di Prisco, Mijares, & Nieto, 2015).

Let *B* be a Banach space with normalized Schauder basis (e_n) , and $E = \operatorname{span}_F(e_n)$, for *F* a countable subfield of \mathbb{R} (or \mathbb{C}) so that the norm on *E* takes values in *F*.

Let *B* be a Banach space with normalized Schauder basis (e_n) , and $E = \operatorname{span}_F(e_n)$, for *F* a countable subfield of \mathbb{R} (or \mathbb{C}) so that the norm on *E* takes values in *F*.

Definition

• Given any vector x in B, its support (with respect to (e_n)) is $supp(x) = \{k : x = \sum_n a_n e_n \Rightarrow a_k \neq 0\}$. Write x < y if max(supp(x)) < min(supp(y)).

Let *B* be a Banach space with normalized Schauder basis (e_n) , and $E = \operatorname{span}_F(e_n)$, for *F* a countable subfield of \mathbb{R} (or \mathbb{C}) so that the norm on *E* takes values in *F*.

- Given any vector x in B, its support (with respect to (e_n)) is supp(x) = {k : x = ∑_n a_ne_n ⇒ a_k ≠ 0}. Write x < y if max(supp(x)) < min(supp(y)).
- If supp(x) is finite, then x is a block vector.

Let *B* be a Banach space with normalized Schauder basis (e_n) , and $E = \operatorname{span}_F(e_n)$, for *F* a countable subfield of \mathbb{R} (or \mathbb{C}) so that the norm on *E* takes values in *F*.

- Given any vector x in B, its support (with respect to (e_n)) is $supp(x) = \{k : x = \sum_n a_n e_n \Rightarrow a_k \neq 0\}$. Write x < y if max(supp(x)) < min(supp(y)).
- If supp(*x*) is finite, then *x* is a block vector.
- A block sequence (with respect to (e_n)) is a sequence of vectors (x_n) such that $x_0 < x_1 < x_2 < \cdots$.

Let *B* be a Banach space with normalized Schauder basis (e_n) , and $E = \operatorname{span}_F(e_n)$, for *F* a countable subfield of \mathbb{R} (or \mathbb{C}) so that the norm on *E* takes values in *F*.

- Given any vector x in B, its support (with respect to (e_n)) is $supp(x) = \{k : x = \sum_n a_n e_n \Rightarrow a_k \neq 0\}$. Write x < y if max(supp(x)) < min(supp(y)).
- If supp(*x*) is finite, then *x* is a block vector.
- A block sequence (with respect to (e_n)) is a sequence of vectors (x_n) such that $x_0 < x_1 < x_2 < \cdots$.
- For X and Y block sequences, if X is block with respect to Y, write $X \preceq Y$. Equivalently (for *block* sequences), $span(X) \subseteq span(Y)$.

Let *B* be a Banach space with normalized Schauder basis (e_n) , and $E = \operatorname{span}_F(e_n)$, for *F* a countable subfield of \mathbb{R} (or \mathbb{C}) so that the norm on *E* takes values in *F*.

- Given any vector x in B, its support (with respect to (e_n)) is supp(x) = {k : x = ∑_n a_ne_n ⇒ a_k ≠ 0}. Write x < y if max(supp(x)) < min(supp(y)).
- If supp(*x*) is finite, then *x* is a block vector.
- A block sequence (with respect to (e_n)) is a sequence of vectors (x_n) such that $x_0 < x_1 < x_2 < \cdots$.
- For X and Y block sequences, if X is block with respect to Y, write $X \preceq Y$. Equivalently (for *block* sequences), $span(X) \subseteq span(Y)$.
- Let bb[∞](B) be the space of infinite normalized block sequences in B, a Polish subspace of B^N. Similarly for bb[∞](E).

Ramsey theory for block sequences?

What would a Ramsey theorem block sequences in E look like?

Ramsey theory for block sequences?

What would a Ramsey theorem block sequences in E look like?

A "pigeonhole principle": If $A \subseteq E$, there is an $X \in bb^{\infty}(E)$ all of whose ∞ -dimensional (block) subspaces are contained in one of A or A^c .

Ramsey theory for block sequences?

What would a Ramsey theorem block sequences in E look like?

A "pigeonhole principle": If $A \subseteq E$, there is an $X \in bb^{\infty}(E)$ all of whose ∞ -dimensional (block) subspaces are contained in one of A or A^c .

Example

This is false. Let *A* be vectors whose first coefficient, with respect to the basis (e_n) , is positive. There is no *X* with the above property.

- Similar counterexamples can be found which are invariant under scalar multiplication.
- For general Banach spaces *B*, there is no pigeonhole principle even "up to ϵ " for block sequences, with the (essentially) unique exception of c_0 (Gowers, 1992).

Games with block vectors

Definition

For $Y \in bb^{\infty}(E)$,

- *G*[*Y*] denotes the Gowers game below *Y*: Players I and II alternate with I going first.
 - I plays $Y_k \preceq Y$,
 - ▶ Il responds with a vector $y_k \in \text{span}_F(Y_k)$ such that $y_k < y_{k+1}$.

Games with block vectors

Definition

For $Y \in bb^{\infty}(E)$,

- *G*[*Y*] denotes the Gowers game below *Y*: Players I and II alternate with I going first.
 - I plays $Y_k \preceq Y$,
 - Il responds with a vector $y_k \in \text{span}_F(Y_k)$ such that $y_k < y_{k+1}$.
- *F*[*Y*] denotes the infinite asymptotic game below *Y*: Players I and II alternate with I going first
 - I plays $n_k \in \mathbb{N}$,
 - Il responds with a vector $y_k \in \text{span}_F(Y)$ such that $n_k < y_k < y_{k+1}$.

In both games, the outcome is the block sequence (y_k) .

Games with block vectors

Definition

For $Y \in bb^{\infty}(E)$,

- *G*[*Y*] denotes the Gowers game below *Y*: Players I and II alternate with I going first.
 - I plays $Y_k \preceq Y$,
 - Il responds with a vector $y_k \in \text{span}_F(Y_k)$ such that $y_k < y_{k+1}$.
- *F*[*Y*] denotes the infinite asymptotic game below *Y*: Players I and II alternate with I going first
 - I plays $n_k \in \mathbb{N}$,
 - Il responds with a vector $y_k \in \operatorname{span}_F(Y)$ such that $n_k < y_k < y_{k+1}$.

In both games, the outcome is the block sequence (y_k) .

For Y ∈ bb[∞](B), the games are defined similarly, with II playing block vectors. We denote these games G^{*}[Y] and F^{*}[Y].

Gowers' dichotomy

Theorem (Gowers, 1996)

Whenever $\mathbb{A} \subseteq bb^{\infty}(B)$ is analytic, $X \in bb^{\infty}(B)$, and $\Delta = (\delta_n) > 0$, then there is a $Y \preceq X$ such that either

- every $Z \preceq Y$ is in \mathbb{A}^c , or
- If has a strategy in $G^*[Y]$ for playing into \mathbb{A}_{Δ} .

•
$$\mathbb{A}_{\Delta} = \{(z_n) \in bb^{\infty}(B) : \exists (z'_n) \in \mathbb{A} \forall n (||z_n - z'_n|| < \delta_n)\}$$
 is the Δ -expansion of \mathbb{A} .

Assuming ∃ supercompact κ, this can be extended to sets A in L(ℝ) (Lopez-Abad, 2005).

Rosendal's dichotomy

In the discrete setting, we have the following exact result:

Theorem (Rosendal, 2010)

Whenever $\mathbb{A} \subseteq bb^{\infty}(E)$ is analytic and $X \in bb^{\infty}(E)$, there is a $Y \preceq X$ such that either

- I has a strategy in F[Y] for playing into \mathbb{A}^c , or
- II has a strategy in G[Y] for playing into \mathbb{A} .
- This can be used to prove Gowers' dichotomy, with minimal use of Δ -expansions.

Local forms?

Motivating question: Are there local forms of Gowers' and Rosendal's dichotomies?

Local forms?

Motivating question: Are there local forms of Gowers' and Rosendal's dichotomies?

Possible obstacles:

- What is a "coideal" of block sequences?
- Coideals on ℕ witness the pigeonhole principle. There is no pigeonhole principle here...

Definition

By a family *H* ⊆ bb[∞](*E*), we mean a non-empty set which is upwards closed with respect to *≤**.

- By a family *H* ⊆ bb[∞](*E*), we mean a non-empty set which is upwards closed with respect to *≤**.
- A family $\mathcal{H} \subseteq bb^{\infty}(E)$ has the (p)-property if whenever $X_0 \succeq X_1 \succeq \cdots$ in \mathcal{H} , there is an $X \in \mathcal{H}$ such that $X \preceq^* X_n$ for all n.

- By a family *H* ⊆ bb[∞](*E*), we mean a non-empty set which is upwards closed with respect to *≤**.
- A family $\mathcal{H} \subseteq bb^{\infty}(E)$ has the (p)-property if whenever $X_0 \succeq X_1 \succeq \cdots$ in \mathcal{H} , there is an $X \in \mathcal{H}$ such that $X \preceq^* X_n$ for all n.
- A family H ⊆ bb[∞](E) is full if whenever D ⊆ E and X ∈ H is such that for all Y ∈ H ↾ X, there is Z ≤ Y with ⟨Z⟩ ⊆ D, then there is Z ∈ H ↾ X with ⟨Z⟩ ⊆ D.

Definition

- By a family *H* ⊆ bb[∞](*E*), we mean a non-empty set which is upwards closed with respect to *≤**.
- A family $\mathcal{H} \subseteq bb^{\infty}(E)$ has the (p)-property if whenever $X_0 \succeq X_1 \succeq \cdots$ in \mathcal{H} , there is an $X \in \mathcal{H}$ such that $X \preceq^* X_n$ for all n.
- A family H ⊆ bb[∞](E) is full if whenever D ⊆ E and X ∈ H is such that for all Y ∈ H ↾ X, there is Z ≤ Y with ⟨Z⟩ ⊆ D, then there is Z ∈ H ↾ X with ⟨Z⟩ ⊆ D.

A full family with the (p)-property is a (p^+) -family.

Definition

- By a family *H* ⊆ bb[∞](*E*), we mean a non-empty set which is upwards closed with respect to *≤**.
- A family $\mathcal{H} \subseteq bb^{\infty}(E)$ has the (p)-property if whenever $X_0 \succeq X_1 \succeq \cdots$ in \mathcal{H} , there is an $X \in \mathcal{H}$ such that $X \preceq^* X_n$ for all n.
- A family H ⊆ bb[∞](E) is full if whenever D ⊆ E and X ∈ H is such that for all Y ∈ H ↾ X, there is Z ≤ Y with ⟨Z⟩ ⊆ D, then there is Z ∈ H ↾ X with ⟨Z⟩ ⊆ D.

A full family with the (p)-property is a (p^+) -family.

• Fullness says that \mathcal{H} witnesses the pigeonhole principle wherever it holds " \mathcal{H} -frequently" below an element of \mathcal{H} .

Definition

- By a family *H* ⊆ bb[∞](*E*), we mean a non-empty set which is upwards closed with respect to *≤**.
- A family $\mathcal{H} \subseteq bb^{\infty}(E)$ has the (p)-property if whenever $X_0 \succeq X_1 \succeq \cdots$ in \mathcal{H} , there is an $X \in \mathcal{H}$ such that $X \preceq^* X_n$ for all n.
- A family H ⊆ bb[∞](E) is full if whenever D ⊆ E and X ∈ H is such that for all Y ∈ H ↾ X, there is Z ≤ Y with ⟨Z⟩ ⊆ D, then there is Z ∈ H ↾ X with ⟨Z⟩ ⊆ D.

A full family with the (p)-property is a (p^+) -family.

- Fullness says that \mathcal{H} witnesses the pigeonhole principle wherever it holds " \mathcal{H} -frequently" below an element of \mathcal{H} .
- (*p*⁺)-filters can be obtained by forcing with (bb[∞](*E*), ≤*), or built under CH or MA. Their existence is independent of ZFC.

A local Rosendal dichotomy

Theorem (S.)

Let $\mathcal{H} \subseteq bb^{\infty}(E)$ be a (p^+) -family. Then, whenever $\mathbb{A} \subseteq bb^{\infty}(E)$ is analytic and $X \in \mathcal{H}$, there is a $Y \in \mathcal{H} \upharpoonright X$ such that either

- I has a strategy for playing F[Y] into \mathbb{A}^c , or
- II has a strategy for playing G[Y] into \mathbb{A} .

A local Rosendal dichotomy

Theorem (S.)

Let $\mathcal{H} \subseteq bb^{\infty}(E)$ be a (p^+) -family. Then, whenever $\mathbb{A} \subseteq bb^{\infty}(E)$ is analytic and $X \in \mathcal{H}$, there is a $Y \in \mathcal{H} \upharpoonright X$ such that either

- I has a strategy for playing F[Y] into \mathbb{A}^c , or
- II has a strategy for playing G[Y] into \mathbb{A} .
- The proof closely follows Rosendal's, using "combinatorial forcing" to obtain the result for open sets.
- Fullness is necessary; it is implied by the theorem for clopen sets.
- A caveat: the second conclusion of the theorem does not appear sufficient to determine whether *H* ↾ *X* meets A.

A local Rosendal dichotomy (cont'd)

The last concern is addressed with the following:

Definition

A family $\mathcal{H} \subseteq bb^{\infty}(E)$ is strategic if whenever $X \in \mathcal{H}$ and α is a strategy for II in G[X], then there is an outcome of α in \mathcal{H} .

A local Rosendal dichotomy (cont'd)

The last concern is addressed with the following:

Definition A family $\mathcal{H} \subseteq bb^{\infty}(E)$ is strategic if whenever $X \in \mathcal{H}$ and α is a strategy for II in G[X], then there is an outcome of α in \mathcal{H} .

- Strategies for II are (a priori) complicated objects, however the set of outcomes can be refined to a *≤*-dense closed set, using a lemma of Ferenczi & Rosendal.
- Strategic (p^+) -filters can be obtained similarly as (p^+) -filters.

Extending to $\mathbf{L}(\mathbb{R})$

Theorem (S.)

Assume \exists supercompact κ . Let $\mathcal{H} \subseteq bb^{\infty}(E)$ be a strategic (p^+) -family. Then, whenever $\mathbb{A} \subseteq bb^{\infty}(E)$ is in $\mathbf{L}(\mathbb{R})$ and $X \in \mathcal{H}$, there is a $Y \in \mathcal{H} \upharpoonright X$ such that either

- I has a strategy for playing F[Y] into \mathbb{A}^c , or
- II has a strategy for playing G[Y] into \mathbb{A} .

Extending to $\mathbf{L}(\mathbb{R})$

Theorem (S.)

Assume \exists supercompact κ . Let $\mathcal{H} \subseteq bb^{\infty}(E)$ be a strategic (p^+) -family. Then, whenever $\mathbb{A} \subseteq bb^{\infty}(E)$ is in $\mathbf{L}(\mathbb{R})$ and $X \in \mathcal{H}$, there is a $Y \in \mathcal{H} \upharpoonright X$ such that either

- I has a strategy for playing F[Y] into \mathbb{A}^c , or
- II has a strategy for playing G[Y] into \mathbb{A} .

Corollary (S.)

Assume \exists supercompact κ . A filter $\mathcal{G} \subseteq bb^{\infty}(E)$ is $\mathbf{L}(\mathbb{R})$ -generic for $(bb^{\infty}(E), \preceq^*)$ if and only if it is a strategic (p^+) -filter.

Extending to $\mathbf{L}(\mathbb{R})$

Theorem (S.)

Assume \exists supercompact κ . Let $\mathcal{H} \subseteq bb^{\infty}(E)$ be a strategic (p^+) -family. Then, whenever $\mathbb{A} \subseteq bb^{\infty}(E)$ is in $\mathbf{L}(\mathbb{R})$ and $X \in \mathcal{H}$, there is a $Y \in \mathcal{H} \upharpoonright X$ such that either

- I has a strategy for playing F[Y] into \mathbb{A}^c , or
- If has a strategy for playing G[Y] into \mathbb{A} .

Corollary (S.)

Assume \exists supercompact κ . A filter $\mathcal{G} \subseteq bb^{\infty}(E)$ is $\mathbf{L}(\mathbb{R})$ -generic for $(bb^{\infty}(E), \preceq^*)$ if and only if it is a strategic (p^+) -filter.

• The theorem is proved first for filters, using a Mathias-like forcing, and generalized by forcing with a given strategic (p^+) -family to add a strategic (p^+) -filter without adding reals.

Theorem (S.)

- every $Z \preceq Y$ is in \mathbb{A}^c , or
- If has a strategy in $G^*[Y]$ for playing into \mathbb{A}_{Δ} .

Theorem (S.)

- every $Z \preceq Y$ is in \mathbb{A}^c , or
- II has a strategy in $G^*[Y]$ for playing into \mathbb{A}_{Δ} .
- (*p*)-families in bb[∞](*B*) are defined as before, and * denotes an approximate form of fullness.

Theorem (S.)

- every $Z \preceq Y$ is in \mathbb{A}^c , or
- II has a strategy in $G^*[Y]$ for playing into \mathbb{A}_{Δ} .
- (*p*)-families in bb[∞](*B*) are defined as before, and * denotes an approximate form of fullness.
- A family *H* is spread if each *X* ∈ *H* has a further *Y* ∈ *H* ↾ *X* whose supports are "spread out". Resembles a "(q)-property".

Theorem (S.)

- every $Z \preceq Y$ is in \mathbb{A}^c , or
- II has a strategy in $G^*[Y]$ for playing into \mathbb{A}_{Δ} .
- (*p*)-families in bb[∞](*B*) are defined as before, and * denotes an approximate form of fullness.
- A family *H* is spread if each *X* ∈ *H* has a further *Y* ∈ *H* ↾ *X* whose supports are "spread out". Resembles a "(q)-property".
- A family is invariant under small perturbations if there is some $\Delta > 0$ so that $\mathcal{H}_{\Delta} = \mathcal{H}$.

Since the local Gowers dichotomy is approximate, the corresponding $L(\mathbb{R})$ -genericity result should be for a poset of block subspaces "modulo small perturbations". There are many options, we give one.

Let *H* be a Hilbert space, with orthonormal basis (e_n) .

The Calkin algebra is the quotient $C(H) = \mathcal{B}(H)/\mathcal{K}(H)$, where $\mathcal{K}(H)$ is the ideal of compact operators.

Let $\mathcal{P}(\mathcal{C}(H))$ be the set of projections (those *p* with $p^2 = p^* = p$) in $\mathcal{C}(H)$.

 $\mathcal{P}(\mathcal{C}(H))$ can be identified with the set of closed subspaces in *H* modulo compact perturbations, and inherits a natural ordering \leq .

Let *H* be a Hilbert space, with orthonormal basis (e_n) .

The Calkin algebra is the quotient C(H) = B(H)/K(H), where K(H) is the ideal of compact operators.

Let $\mathcal{P}(\mathcal{C}(H))$ be the set of projections (those *p* with $p^2 = p^* = p$) in $\mathcal{C}(H)$.

 $\mathcal{P}(\mathcal{C}(H))$ can be identified with the set of closed subspaces in H modulo compact perturbations, and inherits a natural ordering \leq .

Fact

 If Δ > 0 is summable, then a Δ-perturbation is a compact perturbation.

• The (images of) block projections are \leq -dense in $\mathcal{P}(\mathcal{C}(H))^+ = \mathcal{P}(\mathcal{C}(H)) \setminus \{0\}.$

Theorem (S.)

(Assume \exists supercompact κ .) A filter $\mathcal{G} \subseteq \mathcal{P}(\mathcal{C}(H))^+$ is $\mathbf{L}(\mathbb{R})$ -generic for $(\mathcal{P}(\mathcal{C}(H))^+, \leq)$ if and only if it is block dense and the corresponding set of block projections is a strategic (p^*) -family in $\mathrm{bb}^{\infty}(H)$.

Theorem (S.)

(Assume \exists supercompact κ .) A filter $\mathcal{G} \subseteq \mathcal{P}(\mathcal{C}(H))^+$ is $\mathbf{L}(\mathbb{R})$ -generic for $(\mathcal{P}(\mathcal{C}(H))^+, \leq)$ if and only if it is block dense and the corresponding set of block projections is a strategic (p^*) -family in $\mathrm{bb}^{\infty}(H)$.

• Why study such a notion of forcing?

Definition

- A state on $\mathcal{B}(H)$ is a positive linear functional τ with $\tau(I) = 1$.
- A pure state is an extreme point in the (weak*-compact convex) set of states.

Definition

- A state on $\mathcal{B}(H)$ is a positive linear functional τ with $\tau(I) = 1$.
- A pure state is an extreme point in the (weak*-compact convex) set of states.

Example

If (e_n) is an orthonormal basis, and \mathcal{U} an ultrafilter on \mathbb{N} , then $\tau_{\mathcal{U}}(T) = \lim_{n \to \mathcal{U}} \langle Te_n, e_n \rangle$ defines a diagonalizable pure state.

Definition

- A state on $\mathcal{B}(H)$ is a positive linear functional τ with $\tau(I) = 1$.
- A pure state is an extreme point in the (weak*-compact convex) set of states.

Example

If (e_n) is an orthonormal basis, and \mathcal{U} an ultrafilter on \mathbb{N} , then $\tau_{\mathcal{U}}(T) = \lim_{n \to \mathcal{U}} \langle Te_n, e_n \rangle$ defines a diagonalizable pure state.

• Anderson (1980) conjectured that every pure state on $\mathcal{B}(H)$ is diagonalizable.

Definition

- A state on $\mathcal{B}(H)$ is a positive linear functional τ with $\tau(I) = 1$.
- A pure state is an extreme point in the (weak*-compact convex) set of states.

Example

If (e_n) is an orthonormal basis, and \mathcal{U} an ultrafilter on \mathbb{N} , then $\tau_{\mathcal{U}}(T) = \lim_{n \to \mathcal{U}} \langle Te_n, e_n \rangle$ defines a diagonalizable pure state.

- Anderson (1980) conjectured that every pure state on $\mathcal{B}(H)$ is diagonalizable.
- (Akemann & Weaver, 2008): (CH) There is a counterexample.

Definition

- A state on $\mathcal{B}(H)$ is a positive linear functional τ with $\tau(I) = 1$.
- A pure state is an extreme point in the (weak*-compact convex) set of states.

Example

If (e_n) is an orthonormal basis, and \mathcal{U} an ultrafilter on \mathbb{N} , then $\tau_{\mathcal{U}}(T) = \lim_{n \to \mathcal{U}} \langle Te_n, e_n \rangle$ defines a diagonalizable pure state.

- Anderson (1980) conjectured that every pure state on $\mathcal{B}(H)$ is diagonalizable.
- (Akemann & Weaver, 2008): (CH) There is a counterexample.
- (Farah & Weaver): Forcing with (𝒫(𝔅(𝑘))⁺, ≤) produces a counterexample. (Uses the theory of quantum filters.)

Pure states on $\mathcal{B}(H)$ (cont'd)

While forcing over $L(\mathbb{R})$ suffices to construct a non-diagonalizable pure state, and thus our characterization of $L(\mathbb{R})$ -generic filters applies, we can get away with less (and no large cardinals):

Pure states on $\mathcal{B}(H)$ (cont'd)

While forcing over $L(\mathbb{R})$ suffices to construct a non-diagonalizable pure state, and thus our characterization of $L(\mathbb{R})$ -generic filters applies, we can get away with less (and no large cardinals):

Theorem (S.)

If \mathcal{F} is a quantum filter of projections in $\mathcal{P}(\mathcal{C}(H))^+$ which is block dense and the corresponding set of block projections is a spread (p^*) -family, then \mathcal{F} yields a non-diagonalizable pure state.

Pure states on $\mathcal{B}(H)$ (cont'd)

While forcing over $L(\mathbb{R})$ suffices to construct a non-diagonalizable pure state, and thus our characterization of $L(\mathbb{R})$ -generic filters applies, we can get away with less (and no large cardinals):

Theorem (S.)

If \mathcal{F} is a quantum filter of projections in $\mathcal{P}(\mathcal{C}(H))^+$ which is block dense and the corresponding set of block projections is a spread (p^*) -family, then \mathcal{F} yields a non-diagonalizable pure state.

- Such families \mathcal{F} are easily constructed under CH or MA.
- One can show that any \mathcal{F} satisfying the hypotheses of the theorem is a (genuine!) filter, but the existence of such families is independent of ZFC (Bice, 2011).
- The consistency of Anderson's conjecture remains unresolved.