Setwise and Pointwise Betweenness via Hyperspaces

Qays Shakir joint with Aisling McCluskey

National University of Ireland, Galway

12th Symposium on General Topology and its Relations to Modern Analysis and Algebra 25–29 July 2016 Prague, Czech Republic

< □ > < @ > < 注 > < 注 > ... 注

2 Setwise Betweenness via 2^X and $\mathcal{F}_n(X)$

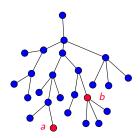
3 Pointwise Betweenness via 2^X and $\mathcal{F}_n(X)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

An intuitive view of betweenness arises naturally in any order-theoretic structure; given a preorder \leq on a set X, with $a, b, c \in X$ such that $a \leq c \leq b$, we say that "c is between a and b".

(日) (國) (필) (필) (필) 표

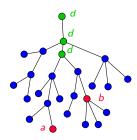
• Let (X, \leq) be a partially ordered set. Define for $a \leq b$, $[a, b]_O = \{c \in X : a \leq c \leq b\}$. If (X, \leq) is a tree with a common lower bound d of a, b. $O(a, b, d) = [d, a]_O \bigcup [d, b]_O$.



An intuitive view of betweenness arises naturally in any order-theoretic structure; given a preorder \leq on a set X, with $a, b, c \in X$ such that $a \leq c \leq b$, we say that "c is between a and b".

(日) (國) (필) (필) (필) 표

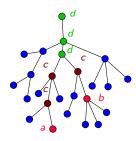
Let (X, ≤) be a partially ordered set. Define for a ≤ b, [a, b]_O = {c ∈ X : a ≤ c ≤ b}. If (X, ≤) is a tree with a common lower bound d of a, b. Define O(a, b, d) = [d, a]_O ∪[d, b]_O. Define [a, b]_T = {c ∈ O(a, b, d) : d ≤ a, b}



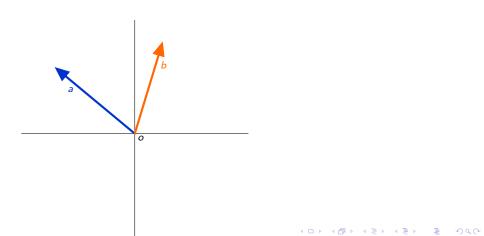
An intuitive view of betweenness arises naturally in any order-theoretic structure; given a preorder \leq on a set X, with $a, b, c \in X$ such that $a \leq c \leq b$, we say that "c is between a and b".

(日) (國) (필) (필) (필) 표

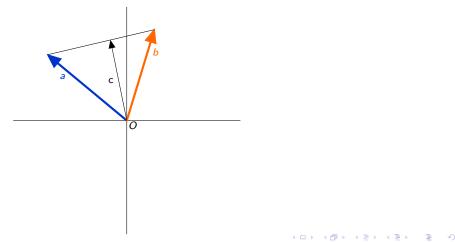
Let (X, ≤) be a partially ordered set. Define for a ≤ b, [a, b]_O = {c ∈ X : a ≤ c ≤ b}. If (X, ≤) is a tree with a common lower bound d of a, b. Define O(a, b, d) = [d, a]_O ∪[d, b]_O. Define [a, b]_T = {c ∈ O(a, b, d) : d ≤ a, b}



Let X be a vector space over the real field ℝ and let a, b ∈ X. The convex interval can be defined as follows: A vector c ∈ X is between a and b if c ∈ [a, b]_{conv} = {at + (1 − t)b : t ∈ [0, 1]}. So [a, b]_{conv} is the set of all convex combinations of a and b.



Let X be a vector space over the real field R and let a, b ∈ X. The convex interval can be defined as follows: A vector c ∈ X is between a and b if c ∈ [a, b]_{conv} = {at + (1 − t)b : t ∈ [0, 1]}. So [a, b]_{conv} is the set of all convex combinations of a and b.



Paul Bankston introduced the following definitions:

Definition

A road system is a pair $\langle X, \mathcal{R} \rangle$, where X is a nonempty set and \mathcal{R} is a collection of nonempty subsets of X -called the roads- such that:

<ロト <四ト <注入 <注下 <注下 <

- For each $a \in X$, the singleton set $\{a\}$ is a road.
- **2** Each two points $a, b \in X$ belong to at least one road.

Road Systems and Pointwise Betweenness

Paul Bankston introduced the following definitions:

Definition

A road system is a pair $\langle X, \mathcal{R} \rangle$, where X is a nonempty set and \mathcal{R} is a collection of nonempty subsets of X -called the roads- such that:

- For each $a \in X$, the singleton set $\{a\}$ is a road.
- **2** Each two points $a, b \in X$ belong to at least one road.

Definition

Let $\langle X, \mathcal{R} \rangle$ be a road system and $a, b, c \in X$. Then $c \in [a, b]_{\mathcal{R}}$ if every road containing a and b also contain c. Then

$$c \in [a, b]_{\mathcal{R}}$$
 if $c \in \bigcap \{R \in \mathcal{R} : R \in \mathcal{R}(a, b)\}$

where $\mathcal{R}(a, b)$ denotes the set of roads that contain both a and b

There is a natural generalisation from pointwise betweenness to setwise betweenness as follows:

Definition

Let $\langle X, \mathcal{R} \rangle$ be a road system with $a, b \in X$ and $\emptyset \neq C \subseteq X$. We say that *C* is between *a* and *b* if $C \bigcap R \neq \emptyset$ for all $R \in \mathcal{R}(a, b)$

Let X be a T_1 space. The Vietoris topology 2^X on CL(X), the collection of all non-empty closed subsets of X, is the one generated by sets of the form

$$U^+ = \{A \in CL(X) : A \subset U\}$$
$$U^- = \{A \in CL(X) : A \cap U \neq \emptyset\}$$

where U is an open subset of X.

A basis of the Vietoris topology consists of the collection of sets of the form

$$\langle U_1, U_2, ..., U_n \rangle = \{A \in CL(X) : A \subseteq \bigcup_{i=1}^n U_i \text{ and if } i \leq n, A \bigcap U_i \neq \emptyset\}$$

where $U_1, U_2, ..., U_n$ are non-empty open subsets of X.

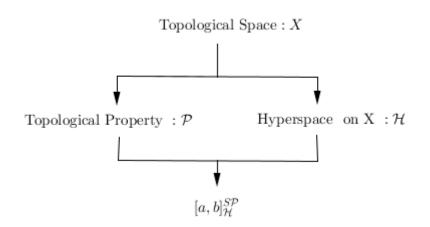
Let X be a T_1 space, the hyperspace $\mathcal{F}_n(X)$, called *n*-fold symmetric product of X, is a subspace of the Vietoris space 2^X defined as follows

$$\mathcal{F}_n(X) = \{A \in X : |A| \le n\}$$

Some properties of $\mathcal{F}_n(X)$

- $\mathcal{F}_1(X) \cong X$
- $\mathcal{F}_n(X) \subseteq \mathcal{F}_{n+1}(X)$
- If X is a Hausdorff space then $\mathcal{F}_n(X)$ is a closed subspace in the Vietoris hyperspace.

Setwise Betweenness via 2^X and $\mathcal{F}_n(X)$



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Notation

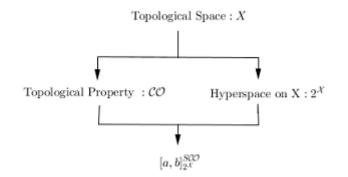
Let X be a topological space and $a, b \in X$, the collection of sets that satisfies a topological property \mathcal{P} forms a road system. The collection of sets that contain a and b and satisfy a topological property \mathcal{P} is denoted by $\mathcal{P}(a, b)$.

Definition

Let X be a T_1 space. Define the setwise interval with respect to a property \mathcal{P} and a hyperspace \mathcal{H} as follows:

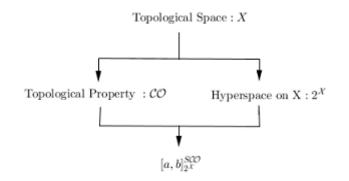
$$[a, b]_{\mathcal{H}}^{\mathcal{SP}} = \{ C \in \mathcal{H} : C \bigcap K \neq \emptyset \text{ for every } K \in \mathcal{P}(a, b) \}$$

・ロト ・御ト ・ヨト ・ヨト 三田



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

The Setwise Interval $[a, b]_{2^{X}}^{SCO}$



Definition

Let X be a topological space. Define the setwise interval with respect to the Vietoris hyperspace 2^X as follows:

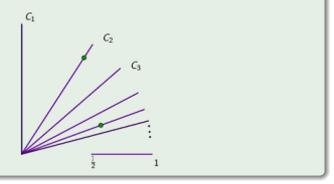
 $[a, b]_{2^X}^{SCO} = \{C \in 2^X : C \bigcap K \neq \emptyset \text{ for every } K \in CO(a, b)\}$

where $\mathcal{CO}(a, b)$ the collection of all connected sets that contains a and b.

The Setwise Interval $[a, b]_{2^{X}}^{SCO}$

Example

Let $X = C \bigcup B$ be a subspace of the \mathbb{R}^2 where $C = [\frac{1}{2}, 1]$ and $B = \{(0,0)\} \bigcup_{n=1}^{\infty} C_n$. Now if $a \in C_i$ and $b \in C_j$ with $i \neq j$ then for a $A \in 2^X$ to be lie in the interval $[a, b]_{2^X}^{SCO}$ it is necessary and sufficient that $(0,0) \in A$.



Let X be a
$$T_1$$
 space with $a, b \in X$. Then
(a) $\{a\}, \{b\} \in [a, b]_{2^X}^{SCO}$
(a) $[a, b]_{2^X}^{SCO} \subseteq [a, a]_{2^X}^{SCO}, [b, b]_{2^X}^{SCO}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ● ●

Let X be a topological space with $a, b \in X$. Then

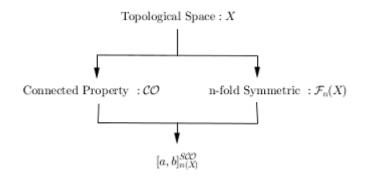
1 {*a*}, {*b*} ∈ [*a*, *b*]^{*SCO*}_{2^{*X*}} **2** [*a*, *b*]^{*SCO*}_{2^{*X*}} ⊆ [*a*, *a*]^{*SCO*}_{2^{*X*}}, [*b*, *b*]^{*SCO*}_{2^{*X*}}</sub>

Theorem

If $f: X \longrightarrow Y$ be a homeomorphism then

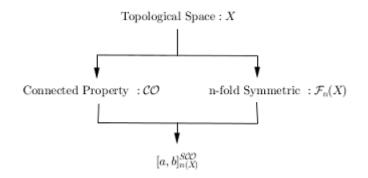
$$f([a,b]_{2^{X}}^{SCO}) = [f(a),f(b)]_{2^{Y}}^{SCO}$$

(日) (四) (문) (문) (문)



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

The Setwise Interval $[a, b]_{n(X)}^{SCO}$



Definition

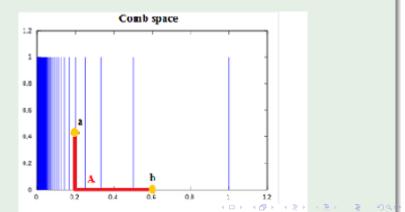
Let X be a topological space. Define the setwise interval with respect to the n-fold symmetric product hyperspace $\mathcal{F}_n(X)$ as follows:

 $[a, b]_{n(X)}^{SCO} = \{ C \in \mathcal{F}_n(X) : C \bigcap K \neq \emptyset \text{ for every } K \in \mathcal{CO}(a, b) \}$

The Setwise Interval $[a, b]_{n(X)}^{SCO}$

Example

Let X be the comb space and $A = \{[x, 0] \bigcup [0.2, y] : \text{ where } 0.2 \le x \le 0.6 \text{ and } 0 \le y \le 0.4\}$. It is clear that $A \in CO(a, b)$. Thus for $C \in \mathcal{F}_n(X)$ to lie between a and b, i.e. to be sure that $C \in [a, b]_{n(X)}^{PCO}$ it is enough for C to intersect A.



◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Some properties of the setwise interval $[a, b]_{n(X)}^{SCO}$

Let X be a topological space with $a, b \in X$. Then

●
$$\{a\}, \{b\} \in [a, b]_{n(X)}^{SCO}$$

- $(a, b)_{n(X)}^{SCO} \subseteq [a, a]_{n(X)}^{SCO}, [b, b]_{n(X)}^{SCO}$
- **3** For $n \ge 3$, we have $[a, b]_{n(X)}^{SCO} \cap [b, c]_{n(X)}^{SCO} \neq \emptyset$

$$(a, b]_{1(X)}^{SCO} \subseteq [a, b]_{2(X)}^{SCO} \subseteq ... \subseteq [a, b]_{n(X)}^{SCO}$$

Some Properties of The Interval $[a, b]_{n(X)}^{SCO}$ continue

Some properties of the setwise interval $[a, b]_{n(X)}^{SCO}$

Let X be a topological space with $a, b \in X$. Then

1 $\{a\}, \{b\} \in [a, b]_{n(X)}^{SCO}$

$$(a, b]_{n(X)}^{SCO} \subseteq [a, a]_{n(X)}^{SCO}, [b, b]_{n(X)}^{SCO}$$

- Solution For $n \ge 3$, we have $[a, b]_{n(X)}^{SCO} \cap [b, c]_{n(X)}^{SCO} \neq \emptyset$
- $(a, b]_{1(X)}^{SCO} \subseteq [a, b]_{2(X)}^{SCO} \subseteq ... \subseteq [a, b]_{n(X)}^{SCO}$

Proposition

Proposition: Let X be a topological space with $a, b \in X$ and $C_i \in \mathcal{F}_n(X)$ for i = 1, 2, ... such that $C_1 \subset C_2 \subset ...$ If $C_1 \in [a, b]_{n(X)}^{S \subset \mathcal{O}}$ then $C_i \in [a, b]_{n(X)}^{S \subset \mathcal{O}}$ for each i = 2, 3, ...

Some Properties of The Interval $[a, b]_{n(X)}^{SCO}$ continue

Theorem

If $f: X \longrightarrow Y$ be a homeomorphism then

$$f([a, b]_{n(X)}^{SCO}) = [f(a), f(b)]_{n(Y)}^{SCO}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Let X be a topological space with $x \in X$. The hyperstar collection of x with respect to a hyperspace \mathcal{H} is defined by

$$st(x, \mathcal{H}) = \{C \in \mathcal{H} : x \in C\}$$

◆□→ ◆□→ ◆□→ ◆□→ □ □

Let X be a topological space with $x \in X$. We define the hyperstar collection of x with respect to a hyperspace \mathcal{H} as follows:

$$st(x,\mathcal{H}) = \{C \in \mathcal{H} : x \in C\}$$

•
$$st(x, 2^X) = \{C \in 2^X : x \in C\}$$

• $st(x, \mathcal{F}_n(X)) = \{C \in \mathcal{F}_n(X) : x \in C\}$

Let X be a topological space with $x \in X$. We define the hyperstar collection of x with respect to a hyperspace \mathcal{H} is defined by

 $st(x, \mathcal{H}) = \{C \in \mathcal{H} : x \in C\}$

<ロト <四ト <注入 <注下 <注下 <

•
$$st(x, 2^X) = \{C \in 2^X : x \in C\}$$

•
$$st(x, \mathcal{F}_n(X)) = \{C \in \mathcal{F}_n(X) : x \in C\}$$

Some properties of $st(x, \mathcal{F}_n(X))$

•
$$st(x, \mathcal{F}_1(X)) = \{\{x\}\}$$

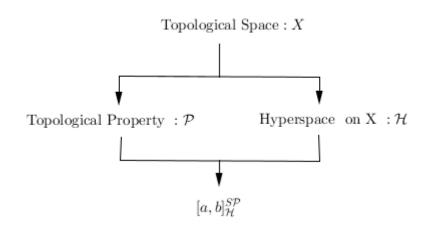
•
$$st(x, \mathcal{F}_n(X)) \subset st(x, \mathcal{F}_{n+1}(X))$$

Let X be a T_1 space. We define the hyperstar collection of a set $C \subset X$ as follows:

$$st(C, \mathcal{F}_n(X)) = \bigcup_{c \in C} st(c, \mathcal{F}_n(X))$$

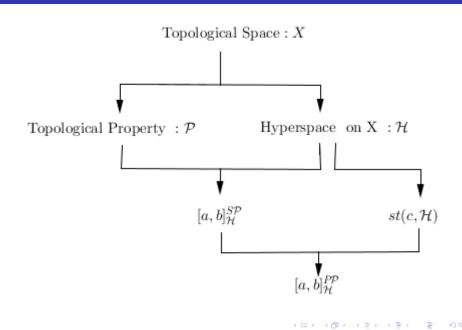
◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Pointwise Betweenness via 2^X and $\mathcal{F}_n(X)$



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Pointwise Betweenness via 2^X and $\mathcal{F}_n(X)$



Let X be a topological space with $a, b, c \in X$. We say that c lies between a and b with respect to a hyperspace \mathcal{H} (denoted by $c \in [a, b]_{\mathcal{H}}^{P\mathcal{P}}$) if $st(c, \mathcal{H}) \subset [a, b]_{\mathcal{H}}^{S\mathcal{P}}$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Let X be a topological space with $a, b, c \in X$. We say that c lies between a and b with respect to a hyperspace \mathcal{H} (denoted by $c \in [a, b]_{\mathcal{H}}^{P\mathcal{P}}$) if $st(c, \mathcal{H}) \subset [a, b]_{\mathcal{H}}^{S\mathcal{P}}$.

Pointwise interval via 2^{χ}

Definition

Let X be a topological space. Define the pointwise interval with respect to 2^X as follows:

$$[a,b]_{2^X}^{\mathcal{PCO}} = \{c \in X : st(c,2^X) \subset [a,b]_{2^X}^{\mathcal{SCO}}\}$$

Pointwise Betweenness via 2^X and $\mathcal{F}_n(X)$

◆□▶
◆□▶
●●

Pointwise interval via $\mathcal{F}_n(X)$

Definition

Let X be a topological space. Define the pointwise interval with respect to $\mathcal{F}_n(X)$ as follows:

$$[a,b]_{n(X)}^{\mathcal{PCO}} = \{c \in X : st(c,\mathcal{F}_n(X)) \subset [a,b]_{n(X)}^{\mathcal{SCO}}\}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Pointwise Betweenness via 2^X and $\mathcal{F}_n(X)$

Pointwise interval via $\mathcal{F}_n(X)$

Definition

Let X be a topological space. Define the pointwise interval with respect to $\mathcal{F}_n(X)$ as follows:

$$[a,b]_{n(X)}^{\mathcal{PCO}} = \{c \in X : st(c,\mathcal{F}_n(X)) \subset [a,b]_{n(X)}^{\mathcal{SCO}}\}$$

Some properties

• $\{a, b\} \subset [a, b]_{n(X)}^{PCO}$ • $[a, b]_{n(X)}^{PCO} = [b, a]_{n(X)}^{PCO}$ • $[a, b]_{n(X)}^{PCO} \subset [a, b]_{n+1(X)}^{PCO}$ • Let $f: X \to Y$ be a homeomorphism map, then $f([a, b]_{n(X)}^{PCO}) = [f(a), f(b)]_{n(Y)}^{PCO}$

A New Set Arose from Betweenness Setwise Interval $[a, b]_{n(X)}^{SCO}$

Definition

Let X be a topological space with $a, b, c \in X$.

$$C^{n(X)}_{a,b} = \{c \in X : c \in [a,b]^{\mathcal{PCO}}_{\mathcal{F}_n(X)}\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A New Set Arose from Betweenness Setwise Interval $[a, b]_{n(X)}^{SCO}$

Definition

Let X be a topological space with $a, b, c \in X$.

$$C^{n(X)}_{a,b} = \{c \in X : c \in [a, b]^{\mathcal{PCO}}_{\mathcal{F}_n(X)}\}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Let X be a topological space with $a, b \in X$. Then

a,
$$b \in C_{a,b}^{n(X)}$$
If $|C_{a,b}^{n(X)}| \le n$ then $C_{a,b}^{n(X)} \in [a, b]_{n(X)}^{SCO}$
 $C_{a,b}^{n(X)} \subseteq C_{a,b}^{n+1(X)}$
 $C_{a,b}^{n(X)} \subset C_{a,a}^{n(X)}, C_{b,b}^{n(X)}$

A New Set Arose from Betweenness Setwise Interval $[a, b]_{n(X)}^{SCO}$

Definition

Let X be a topological space with $a, b, c \in X$. We define the following set:

$$C_{a,b}^{n(X)} = \{ c \in X : c \in [a, b]_{n(X)}^{PCO} \}$$

Let X be a topological space with $a, b \in X$. Then

1 a, b ∈
$$C_{a,b}^{n(X)}$$

2 If $|C_{a,b}^{n(X)}| \le n$ then $C_{a,b}^{n(X)} ∈ [a, b]_{n(X)}^{SCC}$
3 $C_{a,b}^{n(X)} ⊆ C_{a,b}^{n+1(X)}$
3 $C_{a,b}^{n(X)} ⊂ C_{a,a}^{n(X)}, C_{b,b}^{n(X)}$

Theorem

If $f: X \longrightarrow Y$ be a homeomorphism between two topological spaces then

$$f(C_{a,b}^{n(X)}) = C_{f(a),f(b)}^{n(Y)}$$

Thank You

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで