EXAMPLES OF ABSORBERS IN CONTINUUM THEORY

Paweł Krupski and Alicja Samulewicz

27.07.2016

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Continuum - compact connected metric space.

A continuum is *locally connected* if its every point has arbitrarily small connected open neighbourhoods.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Peano continuum = locally connected continuum.

Continuum – compact connected metric space.

A continuum is *locally connected* if its every point has arbitrarily small connected open neighbourhoods.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Peano continuum = locally connected continuum.

Continuum – compact connected metric space.

A continuum is *locally connected* if its every point has arbitrarily small connected open neighbourhoods.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Peano continuum = locally connected continuum.

 $2^X = \{A \subset X : A \text{ is a closed subset of } X\}$

 $C(X) = \{A \subset X : A \text{ is a continuum}\}.$

 \mathcal{H} is a hyperspace of X if $\mathcal{H} \subseteq 2^X$.

Hyperspaces of a continuum (X, d) are equipped with the Hausdorff metric d_H .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

X is a *space without free arcs* provided that all arcs in a space *X* have empty interiors.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

THEOREM (CURTIS, SCHORI)

If X is a Peano continuum then its hyperspace 2^X is homeomorphic to the Hilbert cube I^{ω} . If X is a Peano continuum without free arcs then the hyperspace C(X) is homeomorphic to I^{ω} as well. *X* is a *space without free arcs* provided that all arcs in a space *X* have empty interiors.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

THEOREM (CURTIS, SCHORI)

If X is a Peano continuum then its hyperspace 2^X is homeomorphic to the Hilbert cube I^{ω} .

If X is a Peano continuum without free arcs then the hyperspace C(X) is homeomorphic to I^{ω} as well.

X is a *space without free arcs* provided that all arcs in a space *X* have empty interiors.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

THEOREM (CURTIS, SCHORI)

If X is a Peano continuum then its hyperspace 2^X is homeomorphic to the Hilbert cube I^{ω} . If X is a Peano continuum without free arcs then the hyperspace C(X) is homeomorphic to I^{ω} as well. A closed subset *A* of a Hilbert cube *X* is a *Z*-set in *X* if for every $\varepsilon > 0$ exists a continuous mapping $f : X \to X$ such that

- $A \cap f[X] = \emptyset$
- $d_{sup}(f, id_X) < \varepsilon$.

A countable union of Z-sets in X is called a σ Z-set in X.

A closed subset *A* of a Hilbert cube *X* is a *Z*-set in *X* if for every $\varepsilon > 0$ exists a continuous mapping $f : X \to X$ such that

- $A \cap f[X] = \emptyset$
- $d_{sup}(f, id_X) < \varepsilon$.

A countable union of Z-sets in X is called a σ Z-set in X.

(ロ) (同) (三) (三) (三) (○) (○)

Let ${\mathcal M}$ be a Borel or a projective class.

A subset *D* of a Hilbert cube *X* is an \mathcal{M} -**absorber** in *X* provided that

• $D \in \mathcal{M};$

D is contained in a σZ -set in X;

D is strongly M-universal, i.e., for each subset M ∈ M of I^ω and for each compact set K ⊂ I^ω, any embedding f : I^ω → X such that f(K) is a Z-set in X can be approximated arbitrarily closely (in the "sup" metric d) by an embedding g : I^ω → X such that g(I^ω) is a Z-set in X, g|K = f|K and g⁻¹(D) \ K = M \ K.

Let ${\mathcal M}$ be a Borel or a projective class.

A subset *D* of a Hilbert cube *X* is an M-**absorber** in *X* provided that

- $D \in \mathcal{M};$
- **2** *D* is contained in a σZ -set in *X*;
- D is strongly M-universal, i.e., for each subset M ∈ M of I^ω and for each compact set K ⊂ I^ω, any embedding f : I^ω → X such that f(K) is a Z-set in X can be approximated arbitrarily closely (in the "sup" metric d) by an embedding g : I^ω → X such that g(I^ω) is a Z-set in X, g|K = f|K and g⁻¹(D) \ K = M \ K.

Let \mathcal{M} be a Borel or a projective class.

A subset *D* of a Hilbert cube *X* is an M-**absorber** in *X* provided that

- $D \in \mathcal{M};$
- **2** *D* is contained in a σZ -set in *X*;

D is strongly *M*-universal, i.e., for each subset M ∈ M of I^ω and for each compact set K ⊂ I^ω, any embedding f : I^ω → X such that f(K) is a Z-set in X can be approximated arbitrarily closely (in the "sup" metric d) by an embedding g : I^ω → X such that g(I^ω) is a Z-set in X, g|K = f|K and g⁻¹(D) \ K = M \ K.

Let \mathcal{M} be a Borel or a projective class.

A subset *D* of a Hilbert cube *X* is an M-**absorber** in *X* provided that

- $D \in \mathcal{M};$
- **2** *D* is contained in a σZ -set in *X*;
- D is strongly M-universal, i.e., for each subset M ∈ M of I^ω and for each compact set K ⊂ I^ω, any embedding f : I^ω → X such that f(K) is a Z-set in X can be approximated arbitrarily closely (in the "sup" metric d) by an embedding g : I^ω → X such that g(I^ω) is a Z-set in X, g|K = f|K and g⁻¹(D) \ K = M \ K.

TOPOLOGICAL UNIQUENESS

THEOREM

If $A \subset X$ and $B \subset Y$ are \mathcal{M} -absorbers in Hilbert cubes X and Y, respectively, then there exists a homeomorphism $h : X \to Y$ with h[A] = B.

THEOREM

For any Borel (except for G_{δ}) or projective class \mathcal{M} exists a set $M \subset I^{\omega}$ that is an \mathcal{M} -absorber in I^{ω} . Moreover, there exists an incomplete linear subspace of I_2 homeomorphic to the \mathcal{M} -absorber M.

THEOREM

If $A \subset X$ and $B \subset Y$ are \mathcal{M} -absorbers in Hilbert cubes X and Y, respectively, then there exists a homeomorphism $h : X \to Y$ with h[A] = B.

THEOREM

For any Borel (except for G_{δ}) or projective class \mathcal{M} exists a set $M \subset I^{\omega}$ that is an \mathcal{M} -absorber in I^{ω} .

Moreover, there exists an incomplete linear subspace of I_2 homeomorphic to the M-absorber M.

THEOREM

If $A \subset X$ and $B \subset Y$ are \mathcal{M} -absorbers in Hilbert cubes X and Y, respectively, then there exists a homeomorphism $h : X \to Y$ with h[A] = B.

THEOREM

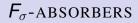
For any Borel (except for G_{δ}) or projective class \mathcal{M} exists a set $M \subset I^{\omega}$ that is an \mathcal{M} -absorber in I^{ω} . Moreover, there exists an incomplete linear subspace of I_2 homeomorphic to the \mathcal{M} -absorber M.

PROPERTIES OF ABSORBERS

COROLLARY

All absorbers in the Hilbert cube are

- homogeneous
- arcwise connected
- not complete metrizable
- not locally compact.



A standard F_{σ} -absorber in the Hilbert cubes I^{ω} is its pseudoboundary

$$B(I^{\omega}) = \{(x_i) \in I^{\omega} : \exists i \ x_i \in \{0, 1\} \}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

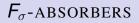
- the family of compacta with nonempty interiors in 2^X , where X is a Peano continuum (Curtis, Michael, 1987)
- Oim_{≥n} in the Hilbert cube $2^{l^{\omega}}$, n ≥ 1 (Dijkstra, van Mill, Mogilski, 1992)
- Oim_{≥n} in the Hilbert cube 2^X, where X is a Peano continuum each of whose open non-empty subset has dimension ≥ n, n ≥ 1 (Cauty, 1999)
- the family D(Iⁿ) of all decomposable subcontinua of Iⁿ, n ≥ 3, in the Hilbert cube C(Iⁿ) (A.S., 2008)
- the family of compacta that block all subcontinua of a Peano continuum which is not separated by any finite set (Illanes, P. Krupski, 2011)

- the family of compacta with nonempty interiors in 2^X , where X is a Peano continuum (Curtis, Michael, 1987)
- *Dim*_{≥n} in the Hilbert cube 2^{t^ω}, n ≥ 1 (Dijkstra, van Mill, Mogilski, 1992)
- Dim_{≥n} in the Hilbert cube 2^X, where X is a Peano continuum each of whose open non-empty subset has dimension ≥ n, n ≥ 1 (Cauty, 1999)
- the family D(Iⁿ) of all decomposable subcontinua of Iⁿ, n ≥ 3, in the Hilbert cube C(Iⁿ) (A.S., 2008)
- the family of compacta that block all subcontinua of a Peano continuum which is not separated by any finite set (Illanes, P. Krupski, 2011)

- the family of compacta with nonempty interiors in 2^X , where X is a Peano continuum (Curtis, Michael, 1987)
- *Dim*_{≥n} in the Hilbert cube 2^{t^ω}, n ≥ 1 (Dijkstra, van Mill, Mogilski, 1992)
- Dim_{≥n} in the Hilbert cube 2^X, where X is a Peano continuum each of whose open non-empty subset has dimension ≥ n, n ≥ 1 (Cauty, 1999)
- the family D(Iⁿ) of all decomposable subcontinua of Iⁿ, n ≥ 3, in the Hilbert cube C(Iⁿ) (A.S., 2008)
- the family of compacta that block all subcontinua of a Peano continuum which is not separated by any finite set (Illanes, P. Krupski, 2011)

- the family of compacta with nonempty interiors in 2^X , where X is a Peano continuum (Curtis, Michael, 1987)
- *Dim*_{≥n} in the Hilbert cube 2^{t^ω}, n ≥ 1 (Dijkstra, van Mill, Mogilski, 1992)
- Dim_{≥n} in the Hilbert cube 2^X, where X is a Peano continuum each of whose open non-empty subset has dimension ≥ n, n ≥ 1 (Cauty, 1999)
- the family D(Iⁿ) of all decomposable subcontinua of Iⁿ, n ≥ 3, in the Hilbert cube C(Iⁿ) (A.S., 2008)
- the family of compacta that block all subcontinua of a Peano continuum which is not separated by any finite set (Illanes, P. Krupski, 2011)

- the family of compacta with nonempty interiors in 2^X , where X is a Peano continuum (Curtis, Michael, 1987)
- *Dim*_{≥n} in the Hilbert cube 2^{*l*^ω}, n ≥ 1 (Dijkstra, van Mill, Mogilski, 1992)
- Dim_{≥n} in the Hilbert cube 2^X, where X is a Peano continuum each of whose open non-empty subset has dimension ≥ n, n ≥ 1 (Cauty, 1999)
- the family D(Iⁿ) of all decomposable subcontinua of Iⁿ, n ≥ 3, in the Hilbert cube C(Iⁿ) (A.S., 2008)
- the family of compacta that block all subcontinua of a Peano continuum which is not separated by any finite set (Illanes, P. Krupski, 2011)



A closed subset C is a *separator* in a space X if $X \setminus C$ is disconnected.

S(X) – the family of all closed separators of X.

Theorem

Let X be a Peano continuum such that

- each open non-empty subset of X contains a copy of (0,1)ⁿ, 3 ≤ n < ∞, as an open subset,
- no subset of dimension \leq 1 separates *X*.

Then the families S(X) and $S(X) \cap C(X)$ are F_{σ} -absorbers in 2^X and C(X), respectively.

A closed subset *C* is a *separator* in a space *X* if $X \setminus C$ is disconnected.

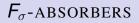
S(X) – the family of all closed separators of X.

Theorem

Let X be a Peano continuum such that

- each open non-empty subset of X contains a copy of $(0,1)^n$, $3 \le n < \infty$, as an open subset,
- no subset of dimension \leq 1 separates *X*.

Then the families S(X) and $S(X) \cap C(X)$ are F_{σ} -absorbers in 2^X and C(X), respectively.



A closed subset *C* is a *separator* in a space *X* if $X \setminus C$ is disconnected.

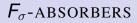
S(X) – the family of all closed separators of X.

THEOREM

Let X be a Peano continuum such that

- each open non-empty subset of X contains a copy of $(0,1)^n$, $3 \le n < \infty$, as an open subset,
- no subset of dimension \leq 1 separates X.

Then the families S(X) and $S(X) \cap C(X)$ are F_{σ} -absorbers in 2^X and C(X), respectively.



COROLLARY

If a continuum X is an n-manifold (with or without boundary), $3 \le n < \infty$, then S(X) and $S(X) \cap C(X)$ are F_{σ} -absorbers in 2^X and C(X), respectively. In particular, $S(X) \cong S(X) \cap C(X) \cong B(I^{\omega})$.

$D_2(F_{\sigma})$ -Absorbers

The Borel class $D_2(F_{\sigma})$ consists of all sets that are differences of two F_{σ} -sets.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A standard $D_2(F_{\sigma})$ -absorber in $I^{\omega} \times I^{\omega}$ is $B(I^{\omega}) \times (0,1)^{\omega}$.

$\mathcal{N}(X)$ – the family of all nowhere dense closed subsets of XS(X) – the family of all closed separators of X

Theorem

Assume X is a Peano continuum such that

each open non-empty subset of X contains a copy of (0,1)ⁿ, 3 ≤ n < ∞, as an open subset,

• no subset of dimension \leq 1 separates X.

Then $S(X) \cap \mathcal{N}(X)$ is a $D_2(F_{\sigma})$ -absorber in 2^X and $S(X) \cap \mathcal{N}(X) \cap C(X)$ is a $D_2(F_{\sigma})$ -absorber in C(X).

 $\mathcal{N}(X)$ – the family of all nowhere dense closed subsets of XS(X) – the family of all closed separators of X

Theorem

Assume X is a Peano continuum such that

each open non-empty subset of X contains a copy of (0,1)ⁿ, 3 ≤ n < ∞, as an open subset,

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• no subset of dimension \leq 1 separates X.

Then $S(X) \cap \mathcal{N}(X)$ is a $D_2(F_{\sigma})$ -absorber in 2^X and $S(X) \cap \mathcal{N}(X) \cap C(X)$ is a $D_2(F_{\sigma})$ -absorber in C(X).

 $\mathcal{N}(X)$ – the family of all nowhere dense closed subsets of XS(X) – the family of all closed separators of X

Theorem

Assume X is a Peano continuum such that

- each open non-empty subset of X contains a copy of (0,1)ⁿ, 3 ≤ n < ∞, as an open subset,
- no subset of dimension \leq 1 separates X.

Then $S(X) \cap \mathcal{N}(X)$ is a $D_2(F_{\sigma})$ -absorber in 2^X and $S(X) \cap \mathcal{N}(X) \cap C(X)$ is a $D_2(F_{\sigma})$ -absorber in C(X).

$S(X)_{n-1}$ – the family of all (n-1)-dimensional closed separators of X

COROLLARY

If a continuum X is an n-manifold (with or without boundary), $3 \le n < \infty$, then

- $S(X)_{n-1}$ is a $D_2(F_{\sigma})$ -absorber in 2^X ,
- $S(X)_{n-1} \cap C(X)$ is a $D_2(F_{\sigma})$ -absorber in C(X).

In particular, $S(X)_{n-1} \cong S(X)_{n-1} \cap C(X) \cong B(I^{\omega}) \times (0,1)^{\omega}$.

 $S(X)_{n-1}$ – the family of all (n-1)-dimensional closed separators of X

COROLLARY

If a continuum X is an n-manifold (with or without boundary), $3 \le n < \infty$, then

- $S(X)_{n-1}$ is a $D_2(F_{\sigma})$ -absorber in 2^X ,
- $S(X)_{n-1} \cap C(X)$ is a $D_2(F_{\sigma})$ -absorber in C(X).

In particular, $S(X)_{n-1} \cong S(X)_{n-1} \cap C(X) \cong B(I^{\omega}) \times (0,1)^{\omega}$.

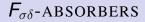
 $S(X)_{n-1}$ – the family of all (n-1)-dimensional closed separators of X

COROLLARY

If a continuum X is an n-manifold (with or without boundary), $3 \le n < \infty$, then

- $\mathcal{S}(X)_{n-1}$ is a $D_2(F_{\sigma})$ -absorber in 2^X ,
- $S(X)_{n-1} \cap C(X)$ is a $D_2(F_{\sigma})$ -absorber in C(X).

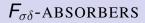
In particular, $\mathcal{S}(X)_{n-1} \cong \mathcal{S}(X)_{n-1} \cap C(X) \cong B(I^{\omega}) \times (0,1)^{\omega}$.



Standard $F_{\sigma\delta}$ -absorbers:

•
$$(B(I^{\omega}))^{\omega}$$
 in $(I^{\omega})^{\omega}$,

•
$$\widehat{c}_0 = \{(x_i) \in I^\omega : \lim_i x_i = 0\}$$
 in I^ω .

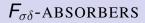


Examples of $F_{\sigma\delta}$ -absorbers:

- the family of all infinite-dimensional compact subsets of I^{ω} (Dijkstra, van Mill, Mogilski, 1992)
- *LC*(*Iⁿ*) − the family of all locally connected subcontinua of *Iⁿ*, *n* ≥ 3 (Gladdines, van Mill, 1993)

(日) (日) (日) (日) (日) (日) (日)

 the family of all continua being absolute retracts in I² (Cauty, Dobrowolski, Gladdines, van Mill, 1995).

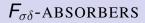


Examples of $F_{\sigma\delta}$ -absorbers:

- the family of all infinite-dimensional compact subsets of *I*^ω (Dijkstra, van Mill, Mogilski, 1992)
- *LC*(*Iⁿ*) − the family of all locally connected subcontinua of *Iⁿ*, *n* ≥ 3 (Gladdines, van Mill, 1993)

(日) (日) (日) (日) (日) (日) (日)

 the family of all continua being absolute retracts in l² (Cauty, Dobrowolski, Gladdines, van Mill, 1995).

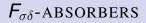


Examples of $F_{\sigma\delta}$ -absorbers:

- the family of all infinite-dimensional compact subsets of *I*^ω (Dijkstra, van Mill, Mogilski, 1992)
- *LC*(*Iⁿ*) − the family of all locally connected subcontinua of *Iⁿ*, *n* ≥ 3 (Gladdines, van Mill, 1993)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 the family of all continua being absolute retracts in *I*² (Cauty, Dobrowolski, Gladdines, van Mill, 1995).



X is *aposyndetic* \Leftrightarrow each $x \in X$ has an arbitrarily small neighbourhood *U* such that $X \setminus U$ has finitely many components.

Col(X) – the family of colocally connected continua in X Apo(X) – the family of aposyndetic continua in X

Theorem

If $n \ge 3$ then Apo(I^n) and Col(I^n) are $F_{\sigma\delta}$ -absorbers in C(I^n).

X is *aposyndetic* \Leftrightarrow each $x \in X$ has an arbitrarily small neighbourhood *U* such that $X \setminus U$ has finitely many components.

Col(X) – the family of colocally connected continua in X Apo(X) – the family of aposyndetic continua in X

Theorem

If $n \ge 3$ then $Apo(I^n)$ and $Col(I^n)$ are $F_{\sigma\delta}$ -absorbers in $C(I^n)$.

X is *aposyndetic* \Leftrightarrow each $x \in X$ has an arbitrarily small neighbourhood *U* such that $X \setminus U$ has finitely many components.

Col(X) – the family of colocally connected continua in X Apo(X) – the family of aposyndetic continua in X

Theorem

If $n \ge 3$ then Apo(I^n) and Col(I^n) are $F_{\sigma\delta}$ -absorbers in C(I^n).

X is *aposyndetic* \Leftrightarrow each $x \in X$ has an arbitrarily small neighbourhood *U* such that $X \setminus U$ has finitely many components.

Col(X) – the family of colocally connected continua in XApo(X) – the family of aposyndetic continua in X

Theorem

If $n \ge 3$ then Apo(I^n) and Col(I^n) are $F_{\sigma\delta}$ -absorbers in C(I^n).

X is *aposyndetic* \Leftrightarrow each $x \in X$ has an arbitrarily small neighbourhood *U* such that $X \setminus U$ has finitely many components.

Col(X) – the family of colocally connected continua in XApo(X) – the family of aposyndetic continua in X

Theorem

If $n \ge 3$ then $Apo(I^n)$ and $Col(I^n)$ are $F_{\sigma\delta}$ -absorbers in $C(I^n)$.

X is a *Kelley continuum* \Leftrightarrow for each $x \in X$, each sequence $x_n \to x$ and each $Z \in C(X)$ with $x \in Z$, there are $Z_n \in C(X)$ such that $x_n \in Z_n$ and $d_H(Z_n, Z) \to 0$.

 $\mathcal{K}(X)$ – the family of Kelley continua in X

Theorem

If $n \geq 3$ then $\mathcal{K}(I^n) \cap \mathcal{D}_2(I^n)$ and $\mathcal{K}(I^n) \cap \text{Decomp}(I^n)$ are $F_{\sigma\delta}$ -absorbers in $\mathcal{C}(I^n)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

X is a *Kelley continuum* \Leftrightarrow for each $x \in X$, each sequence $x_n \to x$ and each $Z \in C(X)$ with $x \in Z$, there are $Z_n \in C(X)$ such that $x_n \in Z_n$ and $d_H(Z_n, Z) \to 0$.

 $\mathcal{K}(X)$ – the family of Kelley continua in X

THEOREM

If $n \geq 3$ then $\mathcal{K}(I^n) \cap \mathcal{D}_2(I^n)$ and $\mathcal{K}(I^n) \cap Decomp(I^n)$ are $F_{\sigma\delta}$ -absorbers in $C(I^n)$.

THEOREM (CAUTY, 1991)

The Hurewicz set $\mathcal{H} = \{A \in 2^{I} : |A| \le \omega\}$ is a coanalytic absorber in 2^{I} .

Theorem (Cauty, 1991)

The space of all differentiable functions $f : I \to \mathbb{R}$ is homeomorphic to the Hurewicz set \mathcal{H} .

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うゅつ

THEOREM (CAUTY, 1991)

The Hurewicz set $\mathcal{H} = \{A \in 2^{I} : |A| \le \omega\}$ is a coanalytic absorber in 2^{I} .

THEOREM (CAUTY, 1991)

The space of all differentiable functions $f : I \to \mathbb{R}$ is homeomorphic to the Hurewicz set \mathcal{H} .

Y is *strongly countable dimensional* if *Y* is a countable union of its compact, finite-dimensional subspaces.

X is *strongly infinite-dimensional* if there exists a sequence $(A_n, B_n)_n$ of closed disjoint subsets of *X* such that for each sequence $(C_n)_n$ of closed separators of *X* between A_n and B_n we have $\bigcap_n C_n \neq \emptyset$.

(日) (日) (日) (日) (日) (日) (日)

A space is *weakly infinite-dimensional* if it is not strongly infinite-dimensional.

Y is *strongly countable dimensional* if *Y* is a countable union of its compact, finite-dimensional subspaces.

X is *strongly infinite-dimensional* if there exists a sequence $(A_n, B_n)_n$ of closed disjoint subsets of *X* such that for each sequence $(C_n)_n$ of closed separators of *X* between A_n and B_n we have $\bigcap_n C_n \neq \emptyset$.

(日) (日) (日) (日) (日) (日) (日)

A space is *weakly infinite-dimensional* if it is not strongly infinite-dimensional.

Y is *strongly countable dimensional* if *Y* is a countable union of its compact, finite-dimensional subspaces.

X is *strongly infinite-dimensional* if there exists a sequence $(A_n, B_n)_n$ of closed disjoint subsets of *X* such that for each sequence $(C_n)_n$ of closed separators of *X* between A_n and B_n we have $\bigcap_n C_n \neq \emptyset$.

(日) (日) (日) (日) (日) (日) (日)

A space is *weakly infinite-dimensional* if it is not strongly infinite-dimensional.

$SCD_n(X)$ – the family of all strongly countable-dimensional compacta of dimension $\ge n$ in X.

 $W_n(X)$ – the family of all weakly infinite-dimensional compacta of dimension $\ge n$ in X.

Theorem

Let X be a locally connected continuum such that each non-empty open subset of X contains a copy of the Hilbert cube.

- $SCD_n(X)$ and $W_n(X)$ are coanalytic absorbers in 2^X for $n \ge 1$.
- SCD_n(X) ∩ C(X) and W_n(X) ∩ C(X) are coanalytic absorbers in C(X) for n ≥ 2.

 $SCD_n(X)$ – the family of all strongly countable-dimensional compacta of dimension $\ge n$ in X. $W_n(X)$ – the family of all weakly infinite-dimensional compacta

of dimension $\ge n$ in X.

Theorem

Let X be a locally connected continuum such that each non-empty open subset of X contains a copy of the Hilbert cube.

- $SCD_n(X)$ and $W_n(X)$ are coanalytic absorbers in 2^X for $n \ge 1$.
- SCD_n(X) ∩ C(X) and W_n(X) ∩ C(X) are coanalytic absorbers in C(X) for n ≥ 2.

 $\mathcal{SCD}_n(X)$ – the family of all strongly countable-dimensional compacta of dimension $\ge n$ in X.

 $W_n(X)$ – the family of all weakly infinite-dimensional compacta of dimension $\ge n$ in X.

THEOREM

Let X be a locally connected continuum such that each non-empty open subset of X contains a copy of the Hilbert cube.

- $\mathcal{SCD}_n(X)$ and $\mathcal{W}_n(X)$ are coanalytic absorbers in 2^X for $n \ge 1$.
- SCD_n(X) ∩ C(X) and W_n(X) ∩ C(X) are coanalytic absorbers in C(X) for n ≥ 2.

X is *hereditarily locally connected* = each subcontinuum of *X* is locally connected.

 $\mathcal{HLC}(X)$ – the family of all hereditarily locally connected subcontinua of X

X is Suslinian = each collection of pairwise disjoint nondegenerate subcontinua of X is countable.

Susl(X) – the family of all Suslinian subcontinua of X

Theorem (Darji, Marcone, 2004)

If $n \ge 2$ then the families $\mathcal{HLC}(I^n)$ and $SusI(I^n)$ are coanalytic complete.

THEOREM

X is *hereditarily locally connected* = each subcontinuum of *X* is locally connected.

 $\mathcal{HLC}(X)$ – the family of all hereditarily locally connected subcontinua of X

X is Suslinian = each collection of pairwise disjoint nondegenerate subcontinua of X is countable.

Susl(X) – the family of all Suslinian subcontinua of X

Theorem (Darji, Marcone, 2004)

If $n \ge 2$ then the families $\mathcal{HLC}(I^n)$ and $Susl(I^n)$ are coanalytic complete.

THEOREM

X is *hereditarily locally connected* = each subcontinuum of *X* is locally connected.

 $\mathcal{HLC}(X)$ – the family of all hereditarily locally connected subcontinua of X

X is Suslinian = each collection of pairwise disjoint nondegenerate subcontinua of X is countable.

Susl(X) – the family of all Suslinian subcontinua of X

Theorem (Darji, Marcone, 2004)

If $n \ge 2$ then the families $\mathcal{HLC}(I^n)$ and $Susl(I^n)$ are coanalytic complete.

THEOREM

X is *hereditarily locally connected* = each subcontinuum of *X* is locally connected.

 $\mathcal{HLC}(X)$ – the family of all hereditarily locally connected subcontinua of X

X is Suslinian = each collection of pairwise disjoint nondegenerate subcontinua of X is countable.

Susl(X) – the family of all Suslinian subcontinua of X

Theorem (Darji, Marcone, 2004)

If $n \ge 2$ then the families $\mathcal{HLC}(I^n)$ and $SusI(I^n)$ are coanalytic complete.

THEOREM

X is *hereditarily locally connected* = each subcontinuum of *X* is locally connected.

 $\mathcal{HLC}(X)$ – the family of all hereditarily locally connected subcontinua of X

X is Suslinian = each collection of pairwise disjoint nondegenerate subcontinua of X is countable.

Susl(X) – the family of all Suslinian subcontinua of X

THEOREM (DARJI, MARCONE, 2004)

If $n \ge 2$ then the families $\mathcal{HLC}(I^n)$ and $SusI(I^n)$ are coanalytic complete.

THEOREM

X is *hereditarily locally connected* = each subcontinuum of *X* is locally connected.

 $\mathcal{HLC}(X)$ – the family of all hereditarily locally connected subcontinua of X

X is Suslinian = each collection of pairwise disjoint nondegenerate subcontinua of X is countable.

Susl(X) – the family of all Suslinian subcontinua of X

THEOREM (DARJI, MARCONE, 2004)

If $n \ge 2$ then the families $\mathcal{HLC}(I^n)$ and $SusI(I^n)$ are coanalytic complete.

THEOREM

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●