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Valdivia compact spaces

In this talk we deal with several classes of nonmetrizable compact
spaces that correspond to well-known classes of Banach spaces
with many projections. In particular, we discuss the class of Val-
divia compact spaces and its subclass of Corson compact spaces.

Let I = [0, 1]. Given a set A, the Σ-product of the product IA is
the set

ΣIA := {f ∈ IA :
∣∣f−1((0, 1])

∣∣ ≤ ω}.
Definition

I A set Y ⊂ X will be called a Σ-subset of X if there is an
embedding φ : X → IA, for some set A, such that

Y = φ−1(φ(X) ∩ ΣIA).

I A compact is called Valdivia if it admits a dense Σ-subset.
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The r-skeletons

Kubís and Michalewski investigated a σ-complete inverse system
whose bonding mappings are retractions and use it to obtain a
characterization of Valdivia compact spaces.
From now on, Γ will denote an up-directed σ-complete partially
ordered set.

Definition (Kubís and Michalewski, 2006)

An r-skeleton in a space X is a family {rs : s ∈ Γ} of retractions
on X satisfying:

(i) rs(X) is cosmic for each s ∈ Γ.

(ii) rs = rs ◦ rt = rt ◦ rs whenever s ≤ t.

(iii) If s ∈ Γ and s = supn∈N sn ↑, then rs = limn→∞ rsn .

(iv) x = lims∈Γ rs(x) for every x ∈ X.
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A characterization of Valdivia compacta

An r-skeleton {rs : s ∈ Γ} on X is commutative if rs◦rt = rt◦rs
for every s, t ∈ Γ.

Theorem (Kubís and Michalewski, 2006)

A compact space X is Valdivia if and only if admits a commuta-
tive r-skeleton.

This characterization was used to prove that a compact space
of weight ω1 is Valdivia compact iff it is the limit of an inverse
sequence of metric compacta whose bonding maps are retractions.
As a corollary, it was proved that the class of Valdivia compacta
of weight ω1 is preserved both under retractions and under open
0-dimensional images.

Theorem (Chigogidze, 2008)

Let X be a compact group. Then X is a Valdivia compact iff X
is homeomorphic to a product of metrizable compacta.
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Characterizations of Corson compacta

An r-skeleton {rs : s ∈ Γ} on X is full if X =
⋃
{rs(X) : s ∈ Γ}.

Theorem (Cúth, 2014)

A compact space X is Corson if and only if admits a full r-
skeleton.

Theorem (Bandlow, 1991)

Let K be a compact space. Then K is Corson iff, for every large
enough cardinal θ, there exists a closed and unbounded family
C ⊂ [H(θ)]≤ω of elementary substructures (H(θ),∈) such that
for each M ∈ C the quotient map ∆(C(X)∩M) : K → RC(X)∩M

is one-to-one on K ∩M .

It is natural to try to get a proof of the characterization of Val-
divia compact spaces by using Bandlow’s ideas.
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Some technical lemmas

The r-skeletons in compact and countably compact spaces have
several nice properties.

Lemma

Let X be a countably compact space X. If {rs : s ∈ Γ} is a family
of retractions in a X satisfying (i) - (iii) from the definition of
r-skeleton. If Y =

⋃
{rs(X) : s ∈ Γ}, then

I t(Y ) ≤ ω.

I x = lims∈Γ rs(x) for each x ∈ Y .

Lemma

Let X be a compact space and let F be closed in X. Suppose that
{rs : s ∈ Γ} is a family of retractions from X into F such that
{rs �F : s ∈ Γ} is an r-skeleton on F . If R = ∆{rs �F : s ∈ Γ},
then R �F : F → R(X) is a homeomorphism.
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Some technical lemmas

Lemma

Let X be compact and let Y be induced by a commutative r-
skeleton. Then there exists a family {rA : A ∈ P(Y )} of retrac-
tions on X such that, if XA = rA(X) then:

(i) The family {rB : B ∈ [Y ]≤ω} is a commutative r-skeleton
on XA and induces Y ∩XA.

(ii) A ⊂ XA and d(XA) ≤ |A|.
(iii) rB ◦ rA = rA ◦ rB = rB whenever B ⊂ A.

(iv) If A =
⋃
α<λAα ↑∈ P(Y ) then rA = lim rAα.

(v) rA(Y ) ⊂ Y .

To prove that result we get an r-skeleton {rA : A ∈ [Y ]≤ω}
satisfying (ii) and use the previous two Lemmas.



Some technical lemmas

Lemma

Let X be compact and let Y be induced by a commutative r-
skeleton. Then there exists a family {rA : A ∈ P(Y )} of retrac-
tions on X such that, if XA = rA(X) then:

(i) The family {rB : B ∈ [Y ]≤ω} is a commutative r-skeleton
on XA and induces Y ∩XA.

(ii) A ⊂ XA and d(XA) ≤ |A|.
(iii) rB ◦ rA = rA ◦ rB = rB whenever B ⊂ A.

(iv) If A =
⋃
α<λAα ↑∈ P(Y ) then rA = lim rAα.

(v) rA(Y ) ⊂ Y .

To prove that result we get an r-skeleton {rA : A ∈ [Y ]≤ω}
satisfying (ii) and use the previous two Lemmas.



Some technical lemmas

Lemma

Let X be compact and let Y be induced by a commutative r-
skeleton. Then there exists a family {rA : A ∈ P(Y )} of retrac-
tions on X such that, if XA = rA(X) then:

(i) The family {rB : B ∈ [Y ]≤ω} is a commutative r-skeleton
on XA and induces Y ∩XA.

(ii) A ⊂ XA and d(XA) ≤ |A|.
(iii) rB ◦ rA = rA ◦ rB = rB whenever B ⊂ A.

(iv) If A =
⋃
α<λAα ↑∈ P(Y ) then rA = lim rAα.

(v) rA(Y ) ⊂ Y .

To prove that result we get an r-skeleton {rA : A ∈ [Y ]≤ω}
satisfying (ii) and use the previous two Lemmas.
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Theorem

Let Y be a dense subspace of a compact space X. If Y is induced
by a commutative r-skeleton in X, then Y is a Σ-subset of X.

Proof. By induction on the density of Y . Assume that d(Y ) =
κ > ω and the result holds for spaces of density at most κ.
Choose a family {rA : A ∈ P(X)} of retractions in X as in the
last Lemma. Let {yα : α < κ} be a dense subspace of Y . For each
α ≤ κ, set Aα = {xβ : β < α}, rα = rAα and Xα = rα(X). Given
α < κ we can find a set Tα and an embedding φα : Xα → RTα
such that Y ∩Xα = φ−1

α (ΣRTα). Let T =
⋃
{Tα : α < κ}. Define

φ : X → RT as follows: If x ∈ X and α < κ, we set

φ(x)(α) =

{
φα+1(rα+1(x))− φα+1(rα(x)) if α > 0;

φ0(r0(x)) if α = 0.

Then φ is an embedding and Y = φ−1(ΣRT ).
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Some consequences

Corollary

A compact space X is Valdivia if and only if admits a commuta-
tive r-skeleton.

It happens that the proof also works for the case of Corson com-
pact spaces.

Corollary

A compact space X is Corson iff and only if admits a full r-
skeleton.

Corollary

If a countably compact space, X has a full r-skeleton and has
weight at most ω1, then X can be embedded in a ΣRω1.
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Corson compacta and monotone functions

Recall that a Cp(X) denotes the space of all real-valued con-
tinuous functions over a space X in the pointwise convergence
topology.

Bandlow uses his result to obtain a characterization of the space
Cp(X) for a Corson compact space X. It is natural to ask if there
exists a similar characterization in the context of r-skeletons.

The next technical notion sometimes result useful.

Definition

A map φ : Γ→ [Y ]≤ω is called ω-monotone provided that:

(a) if s, t ∈ Γ and s ≤ t, then φ(s) ⊆ φ(t).

(b) if s = supn∈N sn ↑∈ Γ, then φ(s) =
⋃
n∈N φ(sn).
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The q-skeletons

It seems to be that the following notion is the right.

Definition

A q-skeleton on X is a family of pairs {(qs, Ds) : s ∈ Γ}, where
qs : X → Xs is an R-quotient map and Ds ∈ [X]≤ω for each
s ∈ Γ, such that:

(i) The set qs(Ds) is dense in Xs.

(ii) If s, t ∈ Γ and s ≤ t, then there exists a continuous onto
map pt,s : Xt → Xs such that qs = pt,s ◦ qt.

(iii) The assignment s→ Ds is ω-monotone.

If in addition Cp(X) =
⋃
s∈Γ q

∗
s(Cp(Xs)), then we say that the

q-skeleton is full.
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Some properties of q-skeletons

Theorem

If X has a full q-skeleton, then every countably compact subspace
of Cp(X) has a full r-skeleton. In particular, every compact sub-
space of Cp(X) is Corson.

Theorem

If X is monotonically ω-stable, then X has a full q-skeleton. In
particular, whenever X is either Lindelöf Σ or pseudocompact.

Theorem

If K is compact and X is a closed subspace of (Lκ)ω ×K, then
X has a full q-skeleton.

Corollary (Bandlow, 1994)

Let K and X be compact; suppose that Cp(X) is a continuous
image of a closed subspace of (Lκ)ω ×K. Then X is Corson.
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The c-skeletons

Let us observe that all the elements in the definition of q-skeleton
are dualizable. In this way, it is natural to define a dual concept.

Definition

A c-skeleton on X is a family of pairs {(Fs,Bs) : s ∈ Γ}, where
Fs is a closed in X and Bs ∈ [τ(X)]≤ω for each s ∈ Γ, which
satisfy:

(i) for each s ∈ Γ, Bs is a base for a topology on τs on X and
there exist a Tychonoff space Zs and a continuous map
gs : (X, τs)→ Zs which separates the points of Fs,

(ii) if s, t ∈ Γ and s ≤ t, then Fs ⊂ Ft, and

(iii) the assignment s→ Bs is ω-monotone.

In addition, if X =
⋃
s∈Γ Fs, then we say that the c-skeleton is

full.
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r-skeletons and W -sets

Consider the following game G(H,X) of length ω played in a
space X, where H is a closed subset of X. There are two players,
O and P.

I In the nth round, O chooses an open superset On of H,
and P chooses a point pn ∈ On.

The player O wins the game if pn → H. We say that H is a
W -set in X if O has a winning strategy for G(H,X).

Theorem

Let X be a countably compact which admits a full r-skeleton. If
H is non-empty and closed in X then H is a W -set in X.

Corollary

Suppose that X is countably compact and admits a full r-skelton.
Then X has a W -set diagonal.
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The proximal game

Definition (J. Bell, 2014)

The proximal game ProxD,P (X) of length ω played on a uniform
space X with two players D , P proceeds as follows:

I In the initial round 0, D chooses an open symmetric en-
tourage D0, followed by P choosing a point p0 ∈ X.

I In round n + 1, D chooses an open symmetric entourage
Dn+1 ⊂ Dn, followed by P choosing a point pn+1 ∈ X such
that pn+1 ∈ Dn[pn] := {y ∈ X : (pn, y) ∈ Dn}.

At the conclusion of the game, the player D wins if either⋂
{Dn[pn] : n ∈ ω} = ∅ or {pn : n ∈ N} converges, and P

wins otherwise.

A topological space is proximal iff it admits a compatible uni-
formity in which D has a winning strategy for ProxD,P (X).
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r-skeletons and proximal spaces

Theorem (Clontz and Gruenhague, 2015)

All proximal spaces are W -spaces.

Theorem

Let X be a countably compact which admits a full r-skeleton.
Then X is proximal.

For countably compact spaces we have:

r-skeleton −→ Proximal −→W -space

Question

Are the above implications reversible?
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monotonically retractable spaces

Definition

Given a space X, a subspace Y of X is monotonically re-
tractable in X if we can assign to each A ∈ [Y ]≤ω a retraction
rA : X → Y and a family N (A) ∈ [P(Y )]≤ω such that:

(i) A ⊆ rA(X);

(ii) N (A) is a network of rA � Y ; and

(iii) N is ω-monotone.

If in addition rA ◦ rB = rB ◦ rA for each A,B ∈ [Y ]≤ω, we say
that Y is commutatively monotonically retractable in X.

Theorem

A compact space X is Valdivia if and only if it has a dense subset
Y which is monotonically retractable in X.
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