On Corson and Valdivia compact spaces*

Reynaldo Rojas Hernández

Centro de Ciencias Matemáticas

Universidad Nacional Autónoma de México

Let I = [0, 1]. Given a set A, the Σ -product of the product I^A is the set

$$\Sigma I^A := \{ f \in I^A : |f^{-1}((0,1])| \le \omega \}.$$

Definition

• A set $Y \subset X$ will be called a Σ -subset of X if there is an embedding $\phi : X \to I^A$, for some set A, such that

$$Y = \phi^{-1}(\phi(X) \cap \Sigma I^A).$$

Let I = [0, 1]. Given a set A, the Σ -product of the product I^A is the set

 $\Sigma I^A := \{ f \in I^A : |f^{-1}((0,1])| \le \omega \}.$

Definition

• A set $Y \subset X$ will be called a Σ -subset of X if there is an embedding $\phi : X \to I^A$, for some set A, such that

$$Y = \phi^{-1}(\phi(X) \cap \Sigma I^A).$$

Let I = [0, 1]. Given a set A, the Σ -product of the product I^A is the set

$$\Sigma I^A := \{ f \in I^A : |f^{-1}((0,1])| \le \omega \}.$$

Definition

• A set $Y \subset X$ will be called a Σ -subset of X if there is an embedding $\phi : X \to I^A$, for some set A, such that

$$Y = \phi^{-1}(\phi(X) \cap \Sigma I^A).$$

Let I = [0, 1]. Given a set A, the Σ -product of the product I^A is the set

$$\Sigma I^A := \{ f \in I^A : |f^{-1}((0,1])| \le \omega \}.$$

Definition

• A set $Y \subset X$ will be called a Σ -subset of X if there is an embedding $\phi : X \to I^A$, for some set A, such that

$$Y = \phi^{-1}(\phi(X) \cap \Sigma I^A).$$

Let I = [0, 1]. Given a set A, the Σ -product of the product I^A is the set

$$\Sigma I^A := \{ f \in I^A : |f^{-1}((0,1])| \le \omega \}.$$

Definition

• A set $Y \subset X$ will be called a Σ -subset of X if there is an embedding $\phi : X \to I^A$, for some set A, such that

$$Y = \phi^{-1}(\phi(X) \cap \Sigma I^A).$$

Let I = [0, 1]. Given a set A, the Σ -product of the product I^A is the set

$$\Sigma I^A := \{ f \in I^A : |f^{-1}((0,1])| \le \omega \}.$$

Definition

• A set $Y \subset X$ will be called a Σ -subset of X if there is an embedding $\phi : X \to I^A$, for some set A, such that

$$Y = \phi^{-1}(\phi(X) \cap \Sigma I^A).$$

・ロト ・西ト ・ヨト ・ヨト ・ シック

Kubiś and Michalewski investigated a σ -complete inverse system whose bonding mappings are retractions and use it to obtain a characterization of Valdivia compact spaces. From now on, Γ will denote an up-directed σ -complete partially

From now on, 1 will denote an up-directed σ -complete partially ordered set.

Definition (Kubiś and Michalewski, 2006)

An *r*-skeleton in a space X is a family $\{r_s : s \in \Gamma\}$ of retractions on X satisfying:

(i)
$$r_s(X)$$
 is cosmic for each $s \in \Gamma$.

(ii)
$$r_s = r_s \circ r_t = r_t \circ r_s$$
 whenever $s \leq t$.

(iii) If $s \in \Gamma$ and $s = \sup_{n \in \mathbb{N}} s_n \uparrow$, then $r_s = \lim_{n \to \infty} r_{s_n}$.

(iv) $x = \lim_{s \in \Gamma} r_s(x)$ for every $x \in X$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Kubiś and Michalewski investigated a σ -complete inverse system whose bonding mappings are retractions and use it to obtain a characterization of Valdivia compact spaces. From now on, Γ will denote an up-directed σ -complete partially

From now on, 1 will denote an up-directed σ -complete partially ordered set.

Definition (Kubiś and Michalewski, 2006)

An *r*-skeleton in a space X is a family $\{r_s : s \in \Gamma\}$ of retractions on X satisfying:

(i)
$$r_s(X)$$
 is cosmic for each $s \in \Gamma$.

(ii)
$$r_s = r_s \circ r_t = r_t \circ r_s$$
 whenever $s \leq t$.

(iii) If $s \in \Gamma$ and $s = \sup_{n \in \mathbb{N}} s_n \uparrow$, then $r_s = \lim_{n \to \infty} r_{s_n}$.

(iv) $x = \lim_{s \in \Gamma} r_s(x)$ for every $x \in X$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

From now on, Γ will denote an up-directed σ -complete partially ordered set.

Definition (Kubiś and Michalewski, 2006)

An *r*-skeleton in a space X is a family $\{r_s : s \in \Gamma\}$ of retractions on X satisfying:

(i)
$$r_s(X)$$
 is cosmic for each $s \in \Gamma$.

(ii)
$$r_s = r_s \circ r_t = r_t \circ r_s$$
 whenever $s \leq t$.

(iii) If $s \in \Gamma$ and $s = \sup_{n \in \mathbb{N}} s_n \uparrow$, then $r_s = \lim_{n \to \infty} r_{s_n}$.

(iv) $x = \lim_{s \in \Gamma} r_s(x)$ for every $x \in X$.

・ロト ・ 四ト ・ ヨト ・ ヨー ・ つへぐ

From now on, Γ will denote an up-directed σ -complete partially ordered set.

Definition (Kubiś and Michalewski, 2006)

An *r*-skeleton in a space X is a family $\{r_s : s \in \Gamma\}$ of retractions on X satisfying:

(i)
$$r_s(X)$$
 is cosmic for each $s \in \Gamma$.

(ii)
$$r_s = r_s \circ r_t = r_t \circ r_s$$
 whenever $s \le t$.

(iii) If $s \in \Gamma$ and $s = \sup_{n \in \mathbb{N}} s_n \uparrow$, then $r_s = \lim_{n \to \infty} r_{s_n}$.

(iv) $x = \lim_{s \in \Gamma} r_s(x)$ for every $x \in X$.

・ロト ・ 四ト ・ ヨト ・ ヨー ・ つへぐ

From now on, Γ will denote an up-directed $\sigma\text{-complete partially ordered set.}$

Definition (Kubiś and Michalewski, 2006)

An *r*-skeleton in a space X is a family $\{r_s : s \in \Gamma\}$ of retractions on X satisfying:

(i)
$$r_s(X)$$
 is cosmic for each $s \in \Gamma$.

(ii)
$$r_s = r_s \circ r_t = r_t \circ r_s$$
 whenever $s \le t$.

(iii) If $s \in \Gamma$ and $s = \sup_{n \in \mathbb{N}} s_n \uparrow$, then $r_s = \lim_{n \to \infty} r_{s_n}$.

From now on, Γ will denote an up-directed $\sigma\text{-complete partially ordered set.}$

Definition (Kubiś and Michalewski, 2006)

An *r*-skeleton in a space X is a family $\{r_s : s \in \Gamma\}$ of retractions on X satisfying:

(i)
$$r_s(X)$$
 is cosmic for each $s \in \Gamma$.

(ii)
$$r_s = r_s \circ r_t = r_t \circ r_s$$
 whenever $s \le t$.

(iii) If $s \in \Gamma$ and $s = \sup_{n \in \mathbb{N}} s_n \uparrow$, then $r_s = \lim_{n \to \infty} r_{s_n}$.

From now on, Γ will denote an up-directed $\sigma\text{-complete partially ordered set.}$

Definition (Kubiś and Michalewski, 2006)

An *r*-skeleton in a space X is a family $\{r_s : s \in \Gamma\}$ of retractions on X satisfying:

(i)
$$r_s(X)$$
 is cosmic for each $s \in \Gamma$.

(ii)
$$r_s = r_s \circ r_t = r_t \circ r_s$$
 whenever $s \le t$.

(iii) If $s \in \Gamma$ and $s = \sup_{n \in \mathbb{N}} s_n \uparrow$, then $r_s = \lim_{n \to \infty} r_{s_n}$.

From now on, Γ will denote an up-directed $\sigma\text{-complete partially}$ ordered set.

Definition (Kubiś and Michalewski, 2006)

An *r*-skeleton in a space X is a family $\{r_s : s \in \Gamma\}$ of retractions on X satisfying:

(日) (日) (日) (日) (日) (日) (日) (日)

(i)
$$r_s(X)$$
 is cosmic for each $s \in \Gamma$.

(ii)
$$r_s = r_s \circ r_t = r_t \circ r_s$$
 whenever $s \le t$.

(iii) If $s \in \Gamma$ and $s = \sup_{n \in \mathbb{N}} s_n \uparrow$, then $r_s = \lim_{n \to \infty} r_{s_n}$.

From now on, Γ will denote an up-directed $\sigma\text{-complete partially}$ ordered set.

Definition (Kubiś and Michalewski, 2006)

An *r*-skeleton in a space X is a family $\{r_s : s \in \Gamma\}$ of retractions on X satisfying:

(i)
$$r_s(X)$$
 is cosmic for each $s \in \Gamma$.

(ii)
$$r_s = r_s \circ r_t = r_t \circ r_s$$
 whenever $s \le t$.

(iii) If $s \in \Gamma$ and $s = \sup_{n \in \mathbb{N}} s_n \uparrow$, then $r_s = \lim_{n \to \infty} r_{s_n}$.

(iv)
$$x = \lim_{s \in \Gamma} r_s(x)$$
 for every $x \in X$.

An *r*-skeleton $\{r_s : s \in \Gamma\}$ on X is **commutative** if $r_s \circ r_t = r_t \circ r_s$ for every $s, t \in \Gamma$.

Theorem (Kubiś and Michalewski, 2006)

A compact space X is Valdivia if and only if admits a commutative r-skeleton.

This characterization was used to prove that a compact space of weight ω_1 is Valdivia compact iff it is the limit of an inverse sequence of metric compacta whose bonding maps are retractions. As a corollary, it was proved that the class of Valdivia compacta of weight ω_1 is preserved both under retractions and under open 0-dimensional images.

Theorem (Chigogidze, 2008)

An *r*-skeleton $\{r_s : s \in \Gamma\}$ on X is **commutative** if $r_s \circ r_t = r_t \circ r_s$ for every $s, t \in \Gamma$.

Theorem (Kubiś and Michalewski, 2006)

A compact space X is Valdivia if and only if admits a commutative r-skeleton.

This characterization was used to prove that a compact space of weight ω_1 is Valdivia compact iff it is the limit of an inverse sequence of metric compacta whose bonding maps are retractions. As a corollary, it was proved that the class of Valdivia compacta of weight ω_1 is preserved both under retractions and under open 0-dimensional images.

Theorem (Chigogidze, 2008)

A characterization of Valdivia compacta

An *r*-skeleton $\{r_s : s \in \Gamma\}$ on *X* is **commutative** if $r_s \circ r_t = r_t \circ r_s$ for every $s, t \in \Gamma$.

Theorem (Kubiś and Michalewski, 2006)

A compact space X is Valdivia if and only if admits a commutative r-skeleton.

This characterization was used to prove that a compact space of weight ω_1 is Valdivia compact iff it is the limit of an inverse sequence of metric compacta whose bonding maps are retractions. As a corollary, it was proved that the class of Valdivia compacta of weight ω_1 is preserved both under retractions and under open 0-dimensional images.

Theorem (Chigogidze, 2008)

An *r*-skeleton $\{r_s : s \in \Gamma\}$ on *X* is **commutative** if $r_s \circ r_t = r_t \circ r_s$ for every $s, t \in \Gamma$.

Theorem (Kubiś and Michalewski, 2006)

A compact space X is Valdivia if and only if admits a commutative r-skeleton.

This characterization was used to prove that a compact space of weight ω_1 is Valdivia compact iff it is the limit of an inverse sequence of metric compacta whose bonding maps are retractions. As a corollary, it was proved that the class of Valdivia compacta of weight ω_1 is preserved both under retractions and under open 0-dimensional images.

Theorem (Chigogidze, 2008)

An *r*-skeleton $\{r_s : s \in \Gamma\}$ on *X* is **commutative** if $r_s \circ r_t = r_t \circ r_s$ for every $s, t \in \Gamma$.

Theorem (Kubiś and Michalewski, 2006)

A compact space X is Valdivia if and only if admits a commutative r-skeleton.

This characterization was used to prove that a compact space of weight ω_1 is Valdivia compact iff it is the limit of an inverse sequence of metric compacta whose bonding maps are retractions. As a corollary, it was proved that the class of Valdivia compacta of weight ω_1 is preserved both under retractions and under open 0-dimensional images.

Theorem (Chigogidze, 2008)

An *r*-skeleton $\{r_s : s \in \Gamma\}$ on *X* is **commutative** if $r_s \circ r_t = r_t \circ r_s$ for every $s, t \in \Gamma$.

Theorem (Kubiś and Michalewski, 2006)

A compact space X is Valdivia if and only if admits a commutative r-skeleton.

This characterization was used to prove that a compact space of weight ω_1 is Valdivia compact iff it is the limit of an inverse sequence of metric compacta whose bonding maps are retractions. As a corollary, it was proved that the class of Valdivia compacta of weight ω_1 is preserved both under retractions and under open 0-dimensional images.

Theorem (Chigogidze, 2008)

Theorem (Cúth, 2014)

A compact space X is Corson if and only if admits a full r-skeleton.

Theorem (Bandlow, 1991)

Let K be a compact space. Then K is Corson iff, for every large enough cardinal θ , there exists a closed and unbounded family $\mathcal{C} \subset [H(\theta)]^{\leq \omega}$ of elementary substructures $(H(\theta), \in)$ such that for each $M \in \mathcal{C}$ the quotient map $\Delta(C(X) \cap M) : K \to \mathbb{R}^{C(X) \cap M}$ is one-to-one on $\overline{K \cap M}$.

It is natural to try to get a proof of the characterization of Valdivia compact spaces by using Bandlow's ideas.

うして ふゆう ふほう ふほう ふしつ

Theorem (Cúth, 2014)

A compact space X is Corson if and only if admits a full r-skeleton.

Theorem (Bandlow, 1991)

Let K be a compact space. Then K is Corson iff, for every large enough cardinal θ , there exists a closed and unbounded family $\mathcal{C} \subset [H(\theta)]^{\leq \omega}$ of elementary substructures $(H(\theta), \in)$ such that for each $M \in \mathcal{C}$ the quotient map $\Delta(C(X) \cap M) : K \to \mathbb{R}^{C(X) \cap M}$ is one-to-one on $\overline{K \cap M}$.

It is natural to try to get a proof of the characterization of Valdivia compact spaces by using Bandlow's ideas.

うして ふゆう ふほう ふほう ふしつ

Theorem (Cúth, 2014)

A compact space X is Corson if and only if admits a full r-skeleton.

Theorem (Bandlow, 1991)

Let K be a compact space. Then K is Corson iff, for every large enough cardinal θ , there exists a closed and unbounded family $\mathcal{C} \subset [H(\theta)]^{\leq \omega}$ of elementary substructures $(H(\theta), \in)$ such that for each $M \in \mathcal{C}$ the quotient map $\Delta(C(X) \cap M) : K \to \mathbb{R}^{C(X) \cap M}$ is one-to-one on $\overline{K \cap M}$.

Theorem (Cúth, 2014)

A compact space X is Corson if and only if admits a full r-skeleton.

Theorem (Bandlow, 1991)

Let K be a compact space. Then K is Corson iff, for every large enough cardinal θ , there exists a closed and unbounded family $\mathcal{C} \subset [H(\theta)]^{\leq \omega}$ of elementary substructures $(H(\theta), \in)$ such that for each $M \in \mathcal{C}$ the quotient map $\Delta(C(X) \cap M) : K \to \mathbb{R}^{C(X) \cap M}$ is one-to-one on $\overline{K \cap M}$.

Theorem (Cúth, 2014)

A compact space X is Corson if and only if admits a full r-skeleton.

Theorem (Bandlow, 1991)

Let K be a compact space. Then K is Corson iff, for every large enough cardinal θ , there exists a closed and unbounded family $\mathcal{C} \subset [H(\theta)]^{\leq \omega}$ of elementary substructures $(H(\theta), \in)$ such that for each $M \in \mathcal{C}$ the quotient map $\Delta(C(X) \cap M) : K \to \mathbb{R}^{C(X) \cap M}$ is one-to-one on $\overline{K \cap M}$.

Theorem (Cúth, 2014)

A compact space X is Corson if and only if admits a full r-skeleton.

Theorem (Bandlow, 1991)

Let K be a compact space. Then K is Corson iff, for every large enough cardinal θ , there exists a closed and unbounded family $\mathcal{C} \subset [H(\theta)]^{\leq \omega}$ of elementary substructures $(H(\theta), \in)$ such that for each $M \in \mathcal{C}$ the quotient map $\Delta(C(X) \cap M) : K \to \mathbb{R}^{C(X) \cap M}$ is one-to-one on $\overline{K \cap M}$.

Lemma

Let X be a countably compact space X. If $\{r_s : s \in \Gamma\}$ is a family of retractions in a X satisfying (i) - (iii) from the definition of r-skeleton. If $Y = \bigcup \{r_s(X) : s \in \Gamma\}$, then

$$\blacktriangleright t(Y) \le \omega.$$

• $x = \lim_{s \in \Gamma} r_s(x)$ for each $x \in \overline{Y}$.

Lemma

Lemma

Let X be a countably compact space X. If $\{r_s : s \in \Gamma\}$ is a family of retractions in a X satisfying (i) - (iii) from the definition of r-skeleton. If $Y = \bigcup \{r_s(X) : s \in \Gamma\}$, then

$$\blacktriangleright t(Y) \le \omega.$$

• $x = \lim_{s \in \Gamma} r_s(x)$ for each $x \in \overline{Y}$.

Lemma

Lemma

Let X be a countably compact space X. If $\{r_s : s \in \Gamma\}$ is a family of retractions in a X satisfying (i) - (iii) from the definition of r-skeleton. If $Y = \bigcup \{r_s(X) : s \in \Gamma\}$, then

$$\blacktriangleright t(Y) \le \omega.$$

 $\blacktriangleright x = \lim_{s \in \Gamma} r_s(x) \text{ for each } x \in \overline{Y}.$

Lemma

Lemma

Let X be a countably compact space X. If $\{r_s : s \in \Gamma\}$ is a family of retractions in a X satisfying (i) - (iii) from the definition of r-skeleton. If $Y = \bigcup\{r_s(X) : s \in \Gamma\}$, then

$$\blacktriangleright t(Y) \le \omega.$$

 $\blacktriangleright x = \lim_{s \in \Gamma} r_s(x) \text{ for each } x \in \overline{Y}.$

Lemma

Lemma

Let X be a countably compact space X. If $\{r_s : s \in \Gamma\}$ is a family of retractions in a X satisfying (i) - (iii) from the definition of r-skeleton. If $Y = \bigcup\{r_s(X) : s \in \Gamma\}$, then

•
$$t(Y) \le \omega$$
.

 $\blacktriangleright x = \lim_{s \in \Gamma} r_s(x) \text{ for each } x \in \overline{Y}.$

Lemma

Lemma

Let X be a countably compact space X. If $\{r_s : s \in \Gamma\}$ is a family of retractions in a X satisfying (i) - (iii) from the definition of r-skeleton. If $Y = \bigcup\{r_s(X) : s \in \Gamma\}$, then

$$\blacktriangleright t(Y) \le \omega.$$

•
$$x = \lim_{s \in \Gamma} r_s(x)$$
 for each $x \in \overline{Y}$.

Lemma

Lemma

Let X be a countably compact space X. If $\{r_s : s \in \Gamma\}$ is a family of retractions in a X satisfying (i) - (iii) from the definition of r-skeleton. If $Y = \bigcup\{r_s(X) : s \in \Gamma\}$, then

•
$$t(Y) \le \omega$$
.

•
$$x = \lim_{s \in \Gamma} r_s(x)$$
 for each $x \in \overline{Y}$.

Lemma

Lemma

Let X be compact and let Y be induced by a commutative rskeleton. Then there exists a family $\{r_A : A \in \mathcal{P}(Y)\}$ of retractions on X such that, if $X_A = r_A(X)$ then:

 (i) The family {r_B : B ∈ [Y]^{≤ω}} is a commutative r-skeleton on X_A and induces Y ∩ X_A.

(ii)
$$A \subset X_A$$
 and $d(X_A) \leq |A|$.

(iii)
$$r_B \circ r_A = r_A \circ r_B = r_B$$
 whenever $B \subset A$.

(iv) If
$$A = \bigcup_{\alpha < \lambda} A_{\alpha} \uparrow \in \mathcal{P}(Y)$$
 then $r_A = \lim r_{A_{\alpha}}$.
(v) $r_A(Y) \subset Y$.

To prove that result we get an r-skeleton $\{r_A : A \in [Y]^{\leq \omega}\}$ satisfying (ii) and use the previous two Lemmas.

うして ふゆう ふほう ふほう ふしつ
Let X be compact and let Y be induced by a commutative rskeleton. Then there exists a family $\{r_A : A \in \mathcal{P}(Y)\}$ of retractions on X such that, if $X_A = r_A(X)$ then:

 (i) The family {r_B : B ∈ [Y]^{≤ω}} is a commutative r-skeleton on X_A and induces Y ∩ X_A.

(ii)
$$A \subset X_A$$
 and $d(X_A) \leq |A|$.

(iii)
$$r_B \circ r_A = r_A \circ r_B = r_B$$
 whenever $B \subset A$.

(iv) If
$$A = \bigcup_{\alpha < \lambda} A_{\alpha} \uparrow \in \mathcal{P}(Y)$$
 then $r_A = \lim r_{A_{\alpha}}$.
(v) $r_A(Y) \subset Y$.

To prove that result we get an r-skeleton $\{r_A : A \in [Y]^{\leq \omega}\}$ satisfying (ii) and use the previous two Lemmas.

うして ふゆう ふほう ふほう ふしつ

Let X be compact and let Y be induced by a commutative rskeleton. Then there exists a family $\{r_A : A \in \mathcal{P}(Y)\}$ of retractions on X such that, if $X_A = r_A(X)$ then:

 (i) The family {r_B : B ∈ [Y]^{≤ω}} is a commutative r-skeleton on X_A and induces Y ∩ X_A.

(ii)
$$A \subset X_A$$
 and $d(X_A) \leq |A|$.

(iii)
$$r_B \circ r_A = r_A \circ r_B = r_B$$
 whenever $B \subset A$.

(iv) If
$$A = \bigcup_{\alpha < \lambda} A_{\alpha} \uparrow \in \mathcal{P}(Y)$$
 then $r_A = \lim r_{A_{\alpha}}$.
(v) $r_A(Y) \subset Y$.

To prove that result we get an r-skeleton $\{r_A : A \in [Y]^{\leq \omega}\}$ satisfying (ii) and use the previous two Lemmas.

Let X be compact and let Y be induced by a commutative rskeleton. Then there exists a family $\{r_A : A \in \mathcal{P}(Y)\}$ of retractions on X such that, if $X_A = r_A(X)$ then:

(i) The family $\{r_B : B \in [Y]^{\leq \omega}\}$ is a commutative r-skeleton on X_A and induces $Y \cap X_A$.

(ii)
$$A \subset X_A$$
 and $d(X_A) \leq |A|$.
(iii) $r_B \circ r_A = r_A \circ r_B = r_B$ whenever $B \subset A$.
(iv) If $A = \bigcup_{\alpha < \lambda} A_\alpha \uparrow \in \mathcal{P}(Y)$ then $r_A = \lim r_{A_\alpha}$.
(v) $r_A(Y) \subset Y$.

To prove that result we get an *r*-skeleton $\{r_A : A \in [Y]^{\leq \omega}\}$ satisfying (ii) and use the previous two Lemmas.

(日) (日) (日) (日) (日) (日) (日) (日)

Let X be compact and let Y be induced by a commutative rskeleton. Then there exists a family $\{r_A : A \in \mathcal{P}(Y)\}$ of retractions on X such that, if $X_A = r_A(X)$ then:

(i) The family $\{r_B : B \in [Y]^{\leq \omega}\}$ is a commutative r-skeleton on X_A and induces $Y \cap X_A$.

(ii)
$$A \subset X_A$$
 and $d(X_A) \leq |A|$.

(iii) $r_B \circ r_A = r_A \circ r_B = r_B$ whenever $B \subset A$. (iv) If $A = \bigcup_{\alpha < \lambda} A_{\alpha} \uparrow \in \mathcal{P}(Y)$ then $r_A = \lim r_{A_{\alpha}}$ (v) $r_A(Y) \subset Y$.

To prove that result we get an r-skeleton $\{r_A : A \in [Y]^{\leq \omega}\}$ satisfying (ii) and use the previous two Lemmas.

(日) (日) (日) (日) (日) (日) (日) (日)

Let X be compact and let Y be induced by a commutative rskeleton. Then there exists a family $\{r_A : A \in \mathcal{P}(Y)\}$ of retractions on X such that, if $X_A = r_A(X)$ then:

(i) The family $\{r_B : B \in [Y]^{\leq \omega}\}$ is a commutative r-skeleton on X_A and induces $Y \cap X_A$.

(ii)
$$A \subset X_A$$
 and $d(X_A) \leq |A|$.
(iii) $r_B \circ r_A = r_A \circ r_B = r_B$ whenever $B \subset A$.

(iv) If $A = \bigcup_{\alpha < \lambda} A_{\alpha} \uparrow \in \mathcal{P}(Y)$ then $r_A = \lim r_{A_{\alpha}}$. (v) $r_A(Y) \subset Y$.

To prove that result we get an r-skeleton $\{r_A : A \in [Y]^{\leq \omega}\}$ satisfying (ii) and use the previous two Lemmas.

うして ふゆう ふほう ふほう ふしつ

Let X be compact and let Y be induced by a commutative rskeleton. Then there exists a family $\{r_A : A \in \mathcal{P}(Y)\}$ of retractions on X such that, if $X_A = r_A(X)$ then:

(i) The family $\{r_B : B \in [Y]^{\leq \omega}\}$ is a commutative r-skeleton on X_A and induces $Y \cap X_A$.

(ii)
$$A \subset X_A$$
 and $d(X_A) \leq |A|$.
(iii) $r_B \circ r_A = r_A \circ r_B = r_B$ whenever $B \subset A$.
(iv) If $A = \bigcup_{\alpha < \lambda} A_\alpha \uparrow \in \mathcal{P}(Y)$ then $r_A = \lim r_{A_\alpha}$.
(v) $r_A(Y) \subset Y$.

To prove that result we get an *r*-skeleton $\{r_A : A \in [Y]^{\leq \omega}\}$ satisfying (ii) and use the previous two Lemmas.

(日) (日) (日) (日) (日) (日) (日) (日)

Let X be compact and let Y be induced by a commutative rskeleton. Then there exists a family $\{r_A : A \in \mathcal{P}(Y)\}$ of retractions on X such that, if $X_A = r_A(X)$ then:

(i) The family $\{r_B : B \in [Y]^{\leq \omega}\}$ is a commutative r-skeleton on X_A and induces $Y \cap X_A$.

(ii)
$$A \subset X_A$$
 and $d(X_A) \leq |A|$.
(iii) $r_B \circ r_A = r_A \circ r_B = r_B$ whenever $B \subset A$.
(iv) If $A = \bigcup_{\alpha < \lambda} A_\alpha \uparrow \in \mathcal{P}(Y)$ then $r_A = \lim r_{A_\alpha}$.
(v) $r_A(Y) \subset Y$.

To prove that result we get an *r*-skeleton $\{r_A : A \in [Y]^{\leq \omega}\}$ satisfying (ii) and use the previous two Lemmas.

(日) (日) (日) (日) (日) (日) (日) (日)

Let X be compact and let Y be induced by a commutative rskeleton. Then there exists a family $\{r_A : A \in \mathcal{P}(Y)\}$ of retractions on X such that, if $X_A = r_A(X)$ then:

(i) The family $\{r_B : B \in [Y]^{\leq \omega}\}$ is a commutative r-skeleton on X_A and induces $Y \cap X_A$.

(ii)
$$A \subset X_A$$
 and $d(X_A) \leq |A|$.
(iii) $r_B \circ r_A = r_A \circ r_B = r_B$ whenever $B \subset A$.
(iv) If $A = \bigcup_{\alpha < \lambda} A_\alpha \uparrow \in \mathcal{P}(Y)$ then $r_A = \lim r_{A_\alpha}$.
(v) $r_A(Y) \subset Y$.

To prove that result we get an r-skeleton $\{r_A : A \in [Y]^{\leq \omega}\}$ satisfying (ii) and use the previous two Lemmas.

Let Y be a dense subspace of a compact space X. If Y is induced by a commutative r-skeleton in X, then Y is a Σ -subset of X.

Proof. By induction on the density of Y. Assume that $d(Y) = \kappa > \omega$ and the result holds for spaces of density at most κ . Choose a family $\{r_A : A \in \mathcal{P}(X)\}$ of retractions in X as in the last Lemma. Let $\{y_\alpha : \alpha < \kappa\}$ be a dense subspace of Y. For each $\alpha \leq \kappa$, set $A_\alpha = \{x_\beta : \beta < \alpha\}$, $r_\alpha = r_{A_\alpha}$ and $X_\alpha = r_\alpha(X)$. Given $\alpha < \kappa$ we can find a set T_α and an embedding $\phi_\alpha : X_\alpha \to \mathbb{R}^{T_\alpha}$ such that $Y \cap X_\alpha = \phi_\alpha^{-1}(\Sigma \mathbb{R}^{T_\alpha})$. Let $T = \bigcup \{T_\alpha : \alpha < \kappa\}$. Define $\phi : X \to \mathbb{R}^T$ as follows: If $x \in X$ and $\alpha < \kappa$, we set

$$\phi(x)(\alpha) = \begin{cases} \phi_{\alpha+1}(r_{\alpha+1}(x)) - \phi_{\alpha+1}(r_{\alpha}(x)) & \text{if } \alpha > 0; \\ \phi_0(r_0(x)) & \text{if } \alpha = 0. \end{cases}$$

Let Y be a dense subspace of a compact space X. If Y is induced by a commutative r-skeleton in X, then Y is a Σ -subset of X.

Proof. By induction on the density of Y. Assume that $d(Y) = \kappa > \omega$ and the result holds for spaces of density at most κ . Choose a family $\{r_A : A \in \mathcal{P}(X)\}$ of retractions in X as in the last Lemma. Let $\{y_\alpha : \alpha < \kappa\}$ be a dense subspace of Y. For each $\alpha \leq \kappa$, set $A_\alpha = \{x_\beta : \beta < \alpha\}$, $r_\alpha = r_{A_\alpha}$ and $X_\alpha = r_\alpha(X)$. Given $\alpha < \kappa$ we can find a set T_α and an embedding $\phi_\alpha : X_\alpha \to \mathbb{R}^{T_\alpha}$ such that $Y \cap X_\alpha = \phi_\alpha^{-1}(\Sigma \mathbb{R}^{T_\alpha})$. Let $T = \bigcup \{T_\alpha : \alpha < \kappa\}$. Define $\phi : X \to \mathbb{R}^T$ as follows: If $x \in X$ and $\alpha < \kappa$, we set

$$\phi(x)(\alpha) = \begin{cases} \phi_{\alpha+1}(r_{\alpha+1}(x)) - \phi_{\alpha+1}(r_{\alpha}(x)) & \text{if } \alpha > 0; \\ \phi_0(r_0(x)) & \text{if } \alpha = 0. \end{cases}$$

Let Y be a dense subspace of a compact space X. If Y is induced by a commutative r-skeleton in X, then Y is a Σ -subset of X.

Proof. By induction on the density of Y. Assume that $d(Y) = \kappa > \omega$ and the result holds for spaces of density at most κ . Choose a family $\{r_A : A \in \mathcal{P}(X)\}$ of retractions in X as in the last Lemma. Let $\{y_\alpha : \alpha < \kappa\}$ be a dense subspace of Y. For each $\alpha \leq \kappa$, set $A_\alpha = \{x_\beta : \beta < \alpha\}$, $r_\alpha = r_{A_\alpha}$ and $X_\alpha = r_\alpha(X)$. Given $\alpha < \kappa$ we can find a set T_α and an embedding $\phi_\alpha : X_\alpha \to \mathbb{R}^{T_\alpha}$ such that $Y \cap X_\alpha = \phi_\alpha^{-1}(\Sigma \mathbb{R}^{T_\alpha})$. Let $T = \bigcup \{T_\alpha : \alpha < \kappa\}$. Define $\phi : X \to \mathbb{R}^T$ as follows: If $x \in X$ and $\alpha < \kappa$, we set

$$\phi(x)(\alpha) = \begin{cases} \phi_{\alpha+1}(r_{\alpha+1}(x)) - \phi_{\alpha+1}(r_{\alpha}(x)) & \text{if } \alpha > 0; \\ \phi_0(r_0(x)) & \text{if } \alpha = 0. \end{cases}$$

うして ふゆう ふほう ふほう ふしつ

Let Y be a dense subspace of a compact space X. If Y is induced by a commutative r-skeleton in X, then Y is a Σ -subset of X.

Proof. By induction on the density of Y. Assume that $d(Y) = \kappa > \omega$ and the result holds for spaces of density at most κ . Choose a family $\{r_A : A \in \mathcal{P}(X)\}$ of retractions in X as in the last Lemma. Let $\{y_\alpha : \alpha < \kappa\}$ be a dense subspace of Y. For each $\alpha \leq \kappa$, set $A_\alpha = \{x_\beta : \beta < \alpha\}$, $r_\alpha = r_{A_\alpha}$ and $X_\alpha = r_\alpha(X)$. Given $\alpha < \kappa$ we can find a set T_α and an embedding $\phi_\alpha : X_\alpha \to \mathbb{R}^{T_\alpha}$ such that $Y \cap X_\alpha = \phi_\alpha^{-1}(\Sigma \mathbb{R}^{T_\alpha})$. Let $T = \bigcup \{T_\alpha : \alpha < \kappa\}$. Define $\phi : X \to \mathbb{R}^T$ as follows: If $x \in X$ and $\alpha < \kappa$, we set

$$\phi(x)(\alpha) = \begin{cases} \phi_{\alpha+1}(r_{\alpha+1}(x)) - \phi_{\alpha+1}(r_{\alpha}(x)) & \text{if } \alpha > 0; \\ \phi_0(r_0(x)) & \text{if } \alpha = 0. \end{cases}$$

うして ふゆう ふほう ふほう ふしつ

Let Y be a dense subspace of a compact space X. If Y is induced by a commutative r-skeleton in X, then Y is a Σ -subset of X.

Proof. By induction on the density of Y. Assume that $d(Y) = \kappa > \omega$ and the result holds for spaces of density at most κ . Choose a family $\{r_A : A \in \mathcal{P}(X)\}$ of retractions in X as in the last Lemma. Let $\{y_\alpha : \alpha < \kappa\}$ be a dense subspace of Y. For each $\alpha \leq \kappa$, set $A_\alpha = \{x_\beta : \beta < \alpha\}$, $r_\alpha = r_{A_\alpha}$ and $X_\alpha = r_\alpha(X)$. Given $\alpha < \kappa$ we can find a set T_α and an embedding $\phi_\alpha : X_\alpha \to \mathbb{R}^{T_\alpha}$ such that $Y \cap X_\alpha = \phi_\alpha^{-1}(\Sigma \mathbb{R}^{T_\alpha})$. Let $T = \bigcup \{T_\alpha : \alpha < \kappa\}$. Define $\phi : X \to \mathbb{R}^T$ as follows: If $x \in X$ and $\alpha < \kappa$, we set

$$\phi(x)(\alpha) = \begin{cases} \phi_{\alpha+1}(r_{\alpha+1}(x)) - \phi_{\alpha+1}(r_{\alpha}(x)) & \text{if } \alpha > 0; \\ \phi_0(r_0(x)) & \text{if } \alpha = 0. \end{cases}$$

Let Y be a dense subspace of a compact space X. If Y is induced by a commutative r-skeleton in X, then Y is a Σ -subset of X.

Proof. By induction on the density of Y. Assume that $d(Y) = \kappa > \omega$ and the result holds for spaces of density at most κ . Choose a family $\{r_A : A \in \mathcal{P}(X)\}$ of retractions in X as in the last Lemma. Let $\{y_\alpha : \alpha < \kappa\}$ be a dense subspace of Y. For each $\alpha \le \kappa$, set $A_\alpha = \{x_\beta : \beta < \alpha\}$, $r_\alpha = r_{A_\alpha}$ and $X_\alpha = r_\alpha(X)$. Given $\alpha < \kappa$ we can find a set T_α and an embedding $\phi_\alpha : X_\alpha \to \mathbb{R}^{T_\alpha}$ such that $Y \cap X_\alpha = \phi_\alpha^{-1}(\Sigma \mathbb{R}^{T_\alpha})$. Let $T = \bigcup \{T_\alpha : \alpha < \kappa\}$. Define $\phi : X \to \mathbb{R}^T$ as follows: If $x \in X$ and $\alpha < \kappa$, we set

$$\phi(x)(\alpha) = \begin{cases} \phi_{\alpha+1}(r_{\alpha+1}(x)) - \phi_{\alpha+1}(r_{\alpha}(x)) & \text{if } \alpha > 0; \\ \phi_0(r_0(x)) & \text{if } \alpha = 0. \end{cases}$$

Let Y be a dense subspace of a compact space X. If Y is induced by a commutative r-skeleton in X, then Y is a Σ -subset of X.

Proof. By induction on the density of Y. Assume that $d(Y) = \kappa > \omega$ and the result holds for spaces of density at most κ . Choose a family $\{r_A : A \in \mathcal{P}(X)\}$ of retractions in X as in the last Lemma. Let $\{y_\alpha : \alpha < \kappa\}$ be a dense subspace of Y. For each $\alpha \leq \kappa$, set $A_\alpha = \{x_\beta : \beta < \alpha\}$, $r_\alpha = r_{A_\alpha}$ and $X_\alpha = r_\alpha(X)$. Given $\alpha < \kappa$ we can find a set T_α and an embedding $\phi_\alpha : X_\alpha \to \mathbb{R}^{T_\alpha}$ such that $Y \cap X_\alpha = \phi_\alpha^{-1}(\Sigma \mathbb{R}^{T_\alpha})$. Let $T = \bigcup \{T_\alpha : \alpha < \kappa\}$. Define $\phi : X \to \mathbb{R}^T$ as follows: If $x \in X$ and $\alpha < \kappa$, we set

$$\phi(x)(\alpha) = \begin{cases} \phi_{\alpha+1}(r_{\alpha+1}(x)) - \phi_{\alpha+1}(r_{\alpha}(x)) & \text{if } \alpha > 0; \\ \phi_0(r_0(x)) & \text{if } \alpha = 0. \end{cases}$$

Let Y be a dense subspace of a compact space X. If Y is induced by a commutative r-skeleton in X, then Y is a Σ -subset of X.

Proof. By induction on the density of Y. Assume that $d(Y) = \kappa > \omega$ and the result holds for spaces of density at most κ . Choose a family $\{r_A : A \in \mathcal{P}(X)\}$ of retractions in X as in the last Lemma. Let $\{y_\alpha : \alpha < \kappa\}$ be a dense subspace of Y. For each $\alpha \leq \kappa$, set $A_\alpha = \{x_\beta : \beta < \alpha\}$, $r_\alpha = r_{A_\alpha}$ and $X_\alpha = r_\alpha(X)$. Given $\alpha < \kappa$ we can find a set T_α and an embedding $\phi_\alpha : X_\alpha \to \mathbb{R}^{T_\alpha}$ such that $Y \cap X_\alpha = \phi_\alpha^{-1}(\Sigma \mathbb{R}^{T_\alpha})$. Let $T = \bigcup \{T_\alpha : \alpha < \kappa\}$. Define $\phi : X \to \mathbb{R}^T$ as follows: If $x \in X$ and $\alpha < \kappa$, we set

$$\phi(x)(\alpha) = \begin{cases} \phi_{\alpha+1}(r_{\alpha+1}(x)) - \phi_{\alpha+1}(r_{\alpha}(x)) & \text{if } \alpha > 0; \\ \phi_0(r_0(x)) & \text{if } \alpha = 0. \end{cases}$$

Let Y be a dense subspace of a compact space X. If Y is induced by a commutative r-skeleton in X, then Y is a Σ -subset of X.

Proof. By induction on the density of Y. Assume that $d(Y) = \kappa > \omega$ and the result holds for spaces of density at most κ . Choose a family $\{r_A : A \in \mathcal{P}(X)\}$ of retractions in X as in the last Lemma. Let $\{y_\alpha : \alpha < \kappa\}$ be a dense subspace of Y. For each $\alpha \leq \kappa$, set $A_\alpha = \{x_\beta : \beta < \alpha\}$, $r_\alpha = r_{A_\alpha}$ and $X_\alpha = r_\alpha(X)$. Given $\alpha < \kappa$ we can find a set T_α and an embedding $\phi_\alpha : X_\alpha \to \mathbb{R}^{T_\alpha}$ such that $Y \cap X_\alpha = \phi_\alpha^{-1}(\Sigma \mathbb{R}^{T_\alpha})$. Let $T = \bigcup \{T_\alpha : \alpha < \kappa\}$. Define $\phi : X \to \mathbb{R}^T$ as follows: If $x \in X$ and $\alpha < \kappa$, we set

$$\phi(x)(\alpha) = \begin{cases} \phi_{\alpha+1}(r_{\alpha+1}(x)) - \phi_{\alpha+1}(r_{\alpha}(x)) & \text{if } \alpha > 0; \\ \phi_0(r_0(x)) & \text{if } \alpha = 0. \end{cases}$$

Let Y be a dense subspace of a compact space X. If Y is induced by a commutative r-skeleton in X, then Y is a Σ -subset of X.

Proof. By induction on the density of Y. Assume that $d(Y) = \kappa > \omega$ and the result holds for spaces of density at most κ . Choose a family $\{r_A : A \in \mathcal{P}(X)\}$ of retractions in X as in the last Lemma. Let $\{y_\alpha : \alpha < \kappa\}$ be a dense subspace of Y. For each $\alpha \leq \kappa$, set $A_\alpha = \{x_\beta : \beta < \alpha\}$, $r_\alpha = r_{A_\alpha}$ and $X_\alpha = r_\alpha(X)$. Given $\alpha < \kappa$ we can find a set T_α and an embedding $\phi_\alpha : X_\alpha \to \mathbb{R}^{T_\alpha}$ such that $Y \cap X_\alpha = \phi_\alpha^{-1}(\Sigma \mathbb{R}^{T_\alpha})$. Let $T = \bigcup \{T_\alpha : \alpha < \kappa\}$. Define $\phi : X \to \mathbb{R}^T$ as follows: If $x \in X$ and $\alpha < \kappa$, we set

$$\phi(x)(\alpha) = \begin{cases} \phi_{\alpha+1}(r_{\alpha+1}(x)) - \phi_{\alpha+1}(r_{\alpha}(x)) & \text{if } \alpha > 0; \\ \phi_0(r_0(x)) & \text{if } \alpha = 0. \end{cases}$$

Let Y be a dense subspace of a compact space X. If Y is induced by a commutative r-skeleton in X, then Y is a Σ -subset of X.

Proof. By induction on the density of Y. Assume that $d(Y) = \kappa > \omega$ and the result holds for spaces of density at most κ . Choose a family $\{r_A : A \in \mathcal{P}(X)\}$ of retractions in X as in the last Lemma. Let $\{y_\alpha : \alpha < \kappa\}$ be a dense subspace of Y. For each $\alpha \leq \kappa$, set $A_\alpha = \{x_\beta : \beta < \alpha\}$, $r_\alpha = r_{A_\alpha}$ and $X_\alpha = r_\alpha(X)$. Given $\alpha < \kappa$ we can find a set T_α and an embedding $\phi_\alpha : X_\alpha \to \mathbb{R}^{T_\alpha}$ such that $Y \cap X_\alpha = \phi_\alpha^{-1}(\Sigma \mathbb{R}^{T_\alpha})$. Let $T = \bigcup \{T_\alpha : \alpha < \kappa\}$. Define $\phi : X \to \mathbb{R}^T$ as follows: If $x \in X$ and $\alpha < \kappa$, we set

$$\phi(x)(\alpha) = \begin{cases} \phi_{\alpha+1}(r_{\alpha+1}(x)) - \phi_{\alpha+1}(r_{\alpha}(x)) & \text{if } \alpha > 0; \\ \phi_0(r_0(x)) & \text{if } \alpha = 0. \end{cases}$$

Let Y be a dense subspace of a compact space X. If Y is induced by a commutative r-skeleton in X, then Y is a Σ -subset of X.

Proof. By induction on the density of Y. Assume that $d(Y) = \kappa > \omega$ and the result holds for spaces of density at most κ . Choose a family $\{r_A : A \in \mathcal{P}(X)\}$ of retractions in X as in the last Lemma. Let $\{y_\alpha : \alpha < \kappa\}$ be a dense subspace of Y. For each $\alpha \leq \kappa$, set $A_\alpha = \{x_\beta : \beta < \alpha\}$, $r_\alpha = r_{A_\alpha}$ and $X_\alpha = r_\alpha(X)$. Given $\alpha < \kappa$ we can find a set T_α and an embedding $\phi_\alpha : X_\alpha \to \mathbb{R}^{T_\alpha}$ such that $Y \cap X_\alpha = \phi_\alpha^{-1}(\Sigma \mathbb{R}^{T_\alpha})$. Let $T = \bigcup \{T_\alpha : \alpha < \kappa\}$. Define $\phi : X \to \mathbb{R}^T$ as follows: If $x \in X$ and $\alpha < \kappa$, we set

$$\phi(x)(\alpha) = \begin{cases} \phi_{\alpha+1}(r_{\alpha+1}(x)) - \phi_{\alpha+1}(r_{\alpha}(x)) & \text{if } \alpha > 0; \\ \phi_0(r_0(x)) & \text{if } \alpha = 0. \end{cases}$$

Then ϕ is an embedding and $Y = \phi^{-1}(\Sigma \mathbb{R}^T)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A compact space X is Valdivia if and only if admits a commutative r-skeleton.

It happens that the proof also works for the case of Corson compact spaces.

Corollary

A compact space X is Corson iff and only if admits a full r-skeleton.

Corollary

If a countably compact space, X has a full r-skeleton and has weight at most ω_1 , then X can be embedded in a $\Sigma \mathbb{R}^{\omega_1}$.

A compact space X is Valdivia if and only if admits a commutative r-skeleton.

It happens that the proof also works for the case of Corson compact spaces.

Corollary

A compact space X is Corson iff and only if admits a full r-skeleton.

Corollary

If a countably compact space, X has a full r-skeleton and has weight at most ω_1 , then X can be embedded in a $\Sigma \mathbb{R}^{\omega_1}$.

A compact space X is Valdivia if and only if admits a commutative r-skeleton.

It happens that the proof also works for the case of Corson compact spaces.

Corollary

A compact space X is Corson iff and only if admits a full r-skeleton.

Corollary

If a countably compact space, X has a full r-skeleton and has weight at most ω_1 , then X can be embedded in a $\Sigma \mathbb{R}^{\omega_1}$.

うして ふゆう ふほう ふほう ふしつ

A compact space X is Valdivia if and only if admits a commutative r-skeleton.

It happens that the proof also works for the case of Corson compact spaces.

Corollary

A compact space X is Corson iff and only if admits a full r-skeleton.

Corollary

If a countably compact space, X has a full r-skeleton and has weight at most ω_1 , then X can be embedded in a $\Sigma \mathbb{R}^{\omega_1}$.

うして ふゆう ふほう ふほう ふしつ

A compact space X is Valdivia if and only if admits a commutative r-skeleton.

It happens that the proof also works for the case of Corson compact spaces.

Corollary

A compact space X is Corson iff and only if admits a full r-skeleton.

Corollary

If a countably compact space, X has a full r-skeleton and has weight at most ω_1 , then X can be embedded in a $\Sigma \mathbb{R}^{\omega_1}$.

ション ふゆ マ キャット マックシン

A compact space X is Valdivia if and only if admits a commutative r-skeleton.

It happens that the proof also works for the case of Corson compact spaces.

Corollary

A compact space X is Corson iff and only if admits a full r-skeleton.

Corollary

If a countably compact space, X has a full r-skeleton and has weight at most ω_1 , then X can be embedded in a $\Sigma \mathbb{R}^{\omega_1}$.

ション ふゆ マ キャット マックシン

Bandlow uses his result to obtain a characterization of the space $C_p(X)$ for a Corson compact space X. It is natural to ask if there exists a similar characterization in the context of r-skeletons.

The next technical notion sometimes result useful.

Definition

A map $\phi: \Gamma \to [Y]^{\leq \omega}$ is called ω -monotone provided that:

(a) if $s, t \in \Gamma$ and $s \leq t$, then $\phi(s) \subseteq \phi(t)$.

(b) if $s = \sup_{n \in \mathbb{N}} s_n \uparrow \in \Gamma$, then $\phi(s) = \bigcup_{n \in \mathbb{N}} \phi(s_n)$.

4日 + 4日 + 4日 + 4日 + 1日 - 900

Bandlow uses his result to obtain a characterization of the space $C_p(X)$ for a Corson compact space X. It is natural to ask if there exists a similar characterization in the context of r-skeletons.

The next technical notion sometimes result useful.

Definition

A map $\phi: \Gamma \to [Y]^{\leq \omega}$ is called ω -monotone provided that:

(a) if $s, t \in \Gamma$ and $s \leq t$, then $\phi(s) \subseteq \phi(t)$.

(b) if $s = \sup_{n \in \mathbb{N}} s_n \uparrow \in \Gamma$, then $\phi(s) = \bigcup_{n \in \mathbb{N}} \phi(s_n)$.

4日 + 4日 + 4日 + 4日 + 1日 - 900

Bandlow uses his result to obtain a characterization of the space $C_p(X)$ for a Corson compact space X. It is natural to ask if there exists a similar characterization in the context of r-skeletons.

The next technical notion sometimes result useful.

Definition

A map $\phi: \Gamma \to [Y]^{\leq \omega}$ is called ω -monotone provided that:

(a) if $s, t \in \Gamma$ and $s \leq t$, then $\phi(s) \subseteq \phi(t)$.

(b) if $s = \sup_{n \in \mathbb{N}} s_n \uparrow \in \Gamma$, then $\phi(s) = \bigcup_{n \in \mathbb{N}} \phi(s_n)$.

・ロト ・ 四ト ・ ヨト ・ ヨー ・ つへぐ

Bandlow uses his result to obtain a characterization of the space $C_p(X)$ for a Corson compact space X. It is natural to ask if there exists a similar characterization in the context of r-skeletons.

The next technical notion sometimes result useful.

Definition

A map $\phi: \Gamma \to [Y]^{\leq \omega}$ is called ω -monotone provided that:

(a) if $s, t \in \Gamma$ and $s \leq t$, then $\phi(s) \subseteq \phi(t)$.

(b) if $s = \sup_{n \in \mathbb{N}} s_n \uparrow \in \Gamma$, then $\phi(s) = \bigcup_{n \in \mathbb{N}} \phi(s_n)$.

4日 + 4日 + 4日 + 4日 + 1日 - 900

Bandlow uses his result to obtain a characterization of the space $C_p(X)$ for a Corson compact space X. It is natural to ask if there exists a similar characterization in the context of r-skeletons.

The next technical notion sometimes result useful.

Definition

A map $\phi: \Gamma \to [Y]^{\leq \omega}$ is called ω -monotone provided that:

(a) if $s, t \in \Gamma$ and $s \leq t$, then $\phi(s) \subseteq \phi(t)$.

(b) if $s = \sup_{n \in \mathbb{N}} s_n \uparrow \in \Gamma$, then $\phi(s) = \bigcup_{n \in \mathbb{N}} \phi(s_n)$.

・ロト ・ 四ト ・ ヨト ・ ヨー ・ つへぐ

Bandlow uses his result to obtain a characterization of the space $C_p(X)$ for a Corson compact space X. It is natural to ask if there exists a similar characterization in the context of r-skeletons.

The next technical notion sometimes result useful.

Definition

A map $\phi: \Gamma \to [Y]^{\leq \omega}$ is called ω -monotone provided that:

(a) if $s, t \in \Gamma$ and $s \leq t$, then $\phi(s) \subseteq \phi(t)$.

(b) if $s = \sup_{n \in \mathbb{N}} s_n \uparrow \in \Gamma$, then $\phi(s) = \bigcup_{n \in \mathbb{N}} \phi(s_n)$.

・ロト ・ 四ト ・ ヨト ・ ヨー ・ つへぐ

Bandlow uses his result to obtain a characterization of the space $C_p(X)$ for a Corson compact space X. It is natural to ask if there exists a similar characterization in the context of r-skeletons.

(日) (日) (日) (日) (日) (日) (日) (日)

The next technical notion sometimes result useful.

Definition

A map $\phi: \Gamma \to [Y]^{\leq \omega}$ is called ω -monotone provided that:

(a) if $s, t \in \Gamma$ and $s \leq t$, then $\phi(s) \subseteq \phi(t)$.

(b) if $s = \sup_{n \in \mathbb{N}} s_n \uparrow \in \Gamma$, then $\phi(s) = \bigcup_{n \in \mathbb{N}} \phi(s_n)$.

Bandlow uses his result to obtain a characterization of the space $C_p(X)$ for a Corson compact space X. It is natural to ask if there exists a similar characterization in the context of r-skeletons.

The next technical notion sometimes result useful.

Definition

A map $\phi: \Gamma \to [Y]^{\leq \omega}$ is called ω -monotone provided that: (a) if $s, t \in \Gamma$ and $s \leq t$, then $\phi(s) \subseteq \phi(t)$. (b) if $s = \sup_{n \in \mathbb{N}} s_n \uparrow \in \Gamma$, then $\phi(s) = \bigcup_{n \in \mathbb{N}} \phi(s_n)$.

(日) (日) (日) (日) (日) (日) (日) (日)

It seems to be that the following notion is the right.

Definition

A q-skeleton on X is a family of pairs $\{(q_s, D_s) : s \in \Gamma\}$, where $q_s : X \to X_s$ is an \mathbb{R} -quotient map and $D_s \in [X]^{\leq \omega}$ for each $s \in \Gamma$, such that:

- (i) The set $q_s(D_s)$ is dense in X_s .
- (ii) If $s, t \in \Gamma$ and $s \leq t$, then there exists a continuous onto map $p_{t,s}: X_t \to X_s$ such that $q_s = p_{t,s} \circ q_t$.
- (iii) The assignment $s \to D_s$ is ω -monotone.

If in addition $C_p(X) = \bigcup_{s \in \Gamma} q_s^*(C_p(X_s))$, then we say that the *q*-skeleton is *full*.

うして ふゆう ふほう ふほう ふしつ

It seems to be that the following notion is the right.

Definition

A q-skeleton on X is a family of pairs $\{(q_s, D_s) : s \in \Gamma\}$, where $q_s : X \to X_s$ is an \mathbb{R} -quotient map and $D_s \in [X]^{\leq \omega}$ for each $s \in \Gamma$, such that:

- (i) The set $q_s(D_s)$ is dense in X_s .
- (ii) If $s, t \in \Gamma$ and $s \leq t$, then there exists a continuous onto map $p_{t,s}: X_t \to X_s$ such that $q_s = p_{t,s} \circ q_t$.
- (iii) The assignment $s \to D_s$ is ω -monotone.

If in addition $C_p(X) = \bigcup_{s \in \Gamma} q_s^*(C_p(X_s))$, then we say that the *q*-skeleton is *full*.

うして ふゆう ふほう ふほう ふしつ
Definition

A q-skeleton on X is a family of pairs $\{(q_s, D_s) : s \in \Gamma\}$, where $q_s : X \to X_s$ is an \mathbb{R} -quotient map and $D_s \in [X]^{\leq \omega}$ for each $s \in \Gamma$, such that:

- (i) The set $q_s(D_s)$ is dense in X_s .
- (ii) If $s, t \in \Gamma$ and $s \leq t$, then there exists a continuous onto map $p_{t,s}: X_t \to X_s$ such that $q_s = p_{t,s} \circ q_t$.
- (iii) The assignment $s \to D_s$ is ω -monotone.

If in addition $C_p(X) = \bigcup_{s \in \Gamma} q_s^*(C_p(X_s))$, then we say that the *q*-skeleton is *full*.

Definition

A q-skeleton on X is a family of pairs $\{(q_s, D_s) : s \in \Gamma\}$, where $q_s : X \to X_s$ is an \mathbb{R} -quotient map and $D_s \in [X]^{\leq \omega}$ for each $s \in \Gamma$, such that:

- (i) The set $q_s(D_s)$ is dense in X_s .
- (ii) If $s, t \in \Gamma$ and $s \leq t$, then there exists a continuous onto map $p_{t,s}: X_t \to X_s$ such that $q_s = p_{t,s} \circ q_t$.
- (iii) The assignment $s \to D_s$ is ω -monotone.

If in addition $C_p(X) = \bigcup_{s \in \Gamma} q_s^*(C_p(X_s))$, then we say that the *q*-skeleton is *full*.

Definition

A q-skeleton on X is a family of pairs $\{(q_s, D_s) : s \in \Gamma\}$, where $q_s : X \to X_s$ is an \mathbb{R} -quotient map and $D_s \in [X]^{\leq \omega}$ for each $s \in \Gamma$, such that:

- (i) The set $q_s(D_s)$ is dense in X_s .
- (ii) If $s, t \in \Gamma$ and $s \leq t$, then there exists a continuous onto map $p_{t,s} : X_t \to X_s$ such that $q_s = p_{t,s} \circ q_t$.
- (iii) The assignment $s \to D_s$ is ω -monotone.

If in addition $C_p(X) = \bigcup_{s \in \Gamma} q_s^*(C_p(X_s))$, then we say that the *q*-skeleton is *full*.

Definition

A q-skeleton on X is a family of pairs $\{(q_s, D_s) : s \in \Gamma\}$, where $q_s : X \to X_s$ is an \mathbb{R} -quotient map and $D_s \in [X]^{\leq \omega}$ for each $s \in \Gamma$, such that:

- (i) The set $q_s(D_s)$ is dense in X_s .
- (ii) If $s, t \in \Gamma$ and $s \leq t$, then there exists a continuous onto map $p_{t,s}: X_t \to X_s$ such that $q_s = p_{t,s} \circ q_t$.

(iii) The assignment $s \to D_s$ is ω -monotone.

If in addition $C_p(X) = \bigcup_{s \in \Gamma} q_s^*(C_p(X_s))$, then we say that the *q*-skeleton is *full*.

Definition

A q-skeleton on X is a family of pairs $\{(q_s, D_s) : s \in \Gamma\}$, where $q_s : X \to X_s$ is an \mathbb{R} -quotient map and $D_s \in [X]^{\leq \omega}$ for each $s \in \Gamma$, such that:

- (i) The set $q_s(D_s)$ is dense in X_s .
- (ii) If $s, t \in \Gamma$ and $s \leq t$, then there exists a continuous onto map $p_{t,s} : X_t \to X_s$ such that $q_s = p_{t,s} \circ q_t$.
- (iii) The assignment $s \to D_s$ is ω -monotone.

If in addition $C_p(X) = \bigcup_{s \in \Gamma} q_s^*(C_p(X_s))$, then we say that the *q*-skeleton is *full*.

If X has a full q-skeleton, then every countably compact subspace of $C_p(X)$ has a full r-skeleton. In particular, every compact subspace of $C_p(X)$ is Corson.

Theorem

If X is monotonically ω -stable, then X has a full q-skeleton. In particular, whenever X is either Lindelöf Σ or pseudocompact.

Theorem

If K is compact and X is a closed subspace of $(L_{\kappa})^{\omega} \times K$, then X has a full q-skeleton.

Corollary (Bandlow, 1994)

Let K and X be compact; suppose that $C_p(X)$ is a continuous image of a closed subspace of $(L_{\kappa})^{\omega} \times K$. Then X is Corson.

If X has a full q-skeleton, then every countably compact subspace of $C_p(X)$ has a full r-skeleton. In particular, every compact subspace of $C_p(X)$ is Corson.

Theorem

If X is monotonically ω -stable, then X has a full q-skeleton. In particular, whenever X is either Lindelöf Σ or pseudocompact.

Theorem

If K is compact and X is a closed subspace of $(L_{\kappa})^{\omega} \times K$, then X has a full q-skeleton.

Corollary (Bandlow, 1994)

Let K and X be compact; suppose that $C_p(X)$ is a continuous image of a closed subspace of $(L_{\kappa})^{\omega} \times K$. Then X is Corson.

If X has a full q-skeleton, then every countably compact subspace of $C_p(X)$ has a full r-skeleton. In particular, every compact subspace of $C_p(X)$ is Corson.

Theorem

If X is monotonically ω -stable, then X has a full q-skeleton. In particular, whenever X is either Lindelöf Σ or pseudocompact.

Theorem

If K is compact and X is a closed subspace of $(L_{\kappa})^{\omega} \times K$, then X has a full q-skeleton.

Corollary (Bandlow, 1994)

Let K and X be compact; suppose that $C_p(X)$ is a continuous image of a closed subspace of $(L_{\kappa})^{\omega} \times K$. Then X is Corson.

If X has a full q-skeleton, then every countably compact subspace of $C_p(X)$ has a full r-skeleton. In particular, every compact subspace of $C_p(X)$ is Corson.

Theorem

If X is monotonically ω -stable, then X has a full q-skeleton. In particular, whenever X is either Lindelöf Σ or pseudocompact.

Theorem

If K is compact and X is a closed subspace of $(L_{\kappa})^{\omega} \times K$, then X has a full q-skeleton.

Corollary (Bandlow, 1994)

Let K and X be compact; suppose that $C_p(X)$ is a continuous image of a closed subspace of $(L_{\kappa})^{\omega} \times K$. Then X is Corson.

If X has a full q-skeleton, then every countably compact subspace of $C_p(X)$ has a full r-skeleton. In particular, every compact subspace of $C_p(X)$ is Corson.

Theorem

If X is monotonically ω -stable, then X has a full q-skeleton. In particular, whenever X is either Lindelöf Σ or pseudocompact.

Theorem

If K is compact and X is a closed subspace of $(L_{\kappa})^{\omega} \times K$, then X has a full q-skeleton.

Corollary (Bandlow, 1994)

Let K and X be compact; suppose that $C_p(X)$ is a continuous image of a closed subspace of $(L_{\kappa})^{\omega} \times K$. Then X is Corson.

If X has a full q-skeleton, then every countably compact subspace of $C_p(X)$ has a full r-skeleton. In particular, every compact subspace of $C_p(X)$ is Corson.

Theorem

If X is monotonically ω -stable, then X has a full q-skeleton. In particular, whenever X is either Lindelöf Σ or pseudocompact.

Theorem

If K is compact and X is a closed subspace of $(L_{\kappa})^{\omega} \times K$, then X has a full q-skeleton.

Corollary (Bandlow, 1994)

Let K and X be compact; suppose that $C_p(X)$ is a continuous image of a closed subspace of $(L_{\kappa})^{\omega} \times K$. Then X is Corson.

Definition

A *c*-skeleton on X is a family of pairs $\{(F_s, \mathcal{B}_s) : s \in \Gamma\}$, where F_s is a closed in X and $\mathcal{B}_s \in [\tau(X)]^{\leq \omega}$ for each $s \in \Gamma$, which satisfy:

- (i) for each $s \in \Gamma$, \mathcal{B}_s is a base for a topology on τ_s on X and there exist a Tychonoff space Z_s and a continuous map $g_s: (X, \tau_s) \to Z_s$ which separates the points of F_s ,
- (ii) if $s, t \in \Gamma$ and $s \leq t$, then $F_s \subset F_t$, and

(iii) the assignment $s \to \mathcal{B}_s$ is ω -monotone.

In addition, if $X = \bigcup_{s \in \Gamma} F_s$, then we say that the *c*-skeleton is *full*.

Definition

A *c*-skeleton on X is a family of pairs $\{(F_s, \mathcal{B}_s) : s \in \Gamma\}$, where F_s is a closed in X and $\mathcal{B}_s \in [\tau(X)]^{\leq \omega}$ for each $s \in \Gamma$, which satisfy:

- (i) for each $s \in \Gamma$, \mathcal{B}_s is a base for a topology on τ_s on X and there exist a Tychonoff space Z_s and a continuous map $g_s: (X, \tau_s) \to Z_s$ which separates the points of F_s ,
- (ii) if $s, t \in \Gamma$ and $s \leq t$, then $F_s \subset F_t$, and

(iii) the assignment $s \to \mathcal{B}_s$ is ω -monotone.

In addition, if $X = \bigcup_{s \in \Gamma} F_s$, then we say that the *c*-skeleton is *full*.

Definition

A *c*-skeleton on *X* is a family of pairs $\{(F_s, \mathcal{B}_s) : s \in \Gamma\}$, where F_s is a closed in *X* and $\mathcal{B}_s \in [\tau(X)]^{\leq \omega}$ for each $s \in \Gamma$, which satisfy:

- (i) for each s ∈ Γ, B_s is a base for a topology on τ_s on X and there exist a Tychonoff space Z_s and a continuous map g_s : (X, τ_s) → Z_s which separates the points of F_s,
- (ii) if $s, t \in \Gamma$ and $s \leq t$, then $F_s \subset F_t$, and

(iii) the assignment $s \to \mathcal{B}_s$ is ω -monotone.

In addition, if $X = \bigcup_{s \in \Gamma} F_s$, then we say that the *c*-skeleton is *full*.

Definition

A *c*-skeleton on X is a family of pairs $\{(F_s, \mathcal{B}_s) : s \in \Gamma\}$, where F_s is a closed in X and $\mathcal{B}_s \in [\tau(X)]^{\leq \omega}$ for each $s \in \Gamma$, which satisfy:

 (i) for each s ∈ Γ, B_s is a base for a topology on τ_s on X and there exist a Tychonoff space Z_s and a continuous map g_s : (X, τ_s) → Z_s which separates the points of F_s,

(ii) if $s, t \in \Gamma$ and $s \leq t$, then $F_s \subset F_t$, and

(iii) the assignment $s \to \mathcal{B}_s$ is ω -monotone.

In addition, if $X = \bigcup_{s \in \Gamma} F_s$, then we say that the *c*-skeleton is *full*.

Definition

A *c*-skeleton on X is a family of pairs $\{(F_s, \mathcal{B}_s) : s \in \Gamma\}$, where F_s is a closed in X and $\mathcal{B}_s \in [\tau(X)]^{\leq \omega}$ for each $s \in \Gamma$, which satisfy:

- (i) for each $s \in \Gamma$, \mathcal{B}_s is a base for a topology on τ_s on X and there exist a Tychonoff space Z_s and a continuous map $g_s: (X, \tau_s) \to Z_s$ which separates the points of F_s ,
- (ii) if $s, t \in \Gamma$ and $s \leq t$, then $F_s \subset F_t$, and

(iii) the assignment $s \to \mathcal{B}_s$ is ω -monotone.

In addition, if $X = \bigcup_{s \in \Gamma} F_s$, then we say that the *c*-skeleton is *full*.

Definition

A *c*-skeleton on X is a family of pairs $\{(F_s, \mathcal{B}_s) : s \in \Gamma\}$, where F_s is a closed in X and $\mathcal{B}_s \in [\tau(X)]^{\leq \omega}$ for each $s \in \Gamma$, which satisfy:

- (i) for each $s \in \Gamma$, \mathcal{B}_s is a base for a topology on τ_s on X and there exist a Tychonoff space Z_s and a continuous map $g_s: (X, \tau_s) \to Z_s$ which separates the points of F_s ,
- (ii) if $s, t \in \Gamma$ and $s \leq t$, then $F_s \subset F_t$, and
- (iii) the assignment $s \to \mathcal{B}_s$ is ω -monotone.

In addition, if $X = \bigcup_{s \in \Gamma} F_s$, then we say that the *c*-skeleton is *full*.

Definition

A *c*-skeleton on X is a family of pairs $\{(F_s, \mathcal{B}_s) : s \in \Gamma\}$, where F_s is a closed in X and $\mathcal{B}_s \in [\tau(X)]^{\leq \omega}$ for each $s \in \Gamma$, which satisfy:

- (i) for each $s \in \Gamma$, \mathcal{B}_s is a base for a topology on τ_s on X and there exist a Tychonoff space Z_s and a continuous map $g_s: (X, \tau_s) \to Z_s$ which separates the points of F_s ,
- (ii) if $s, t \in \Gamma$ and $s \leq t$, then $F_s \subset F_t$, and

(iii) the assignment $s \to \mathcal{B}_s$ is ω -monotone.

In addition, if $X = \bigcup_{s \in \Gamma} F_s$, then we say that the *c*-skeleton is *full*.

If X has a (full) c-skeleton, then $C_p(X)$ has a (full) q-skeleton.

Theorem

If X has a (full) q-skeleton, then $C_p(X)$ has a (full) c-skeleton.

Corollary

A compact space X is Corson iff has a full c-skeleton.

Question

Let X be a countably compact space, is it true X has a full c-skeleton iff X has a full r-skeleton.

If X has a (full) c-skeleton, then $C_p(X)$ has a (full) q-skeleton.

Theorem

If X has a (full) q-skeleton, then $C_p(X)$ has a (full) c-skeleton.

Corollary

A compact space X is Corson iff has a full c-skeleton.

Question

Let X be a countably compact space, is it true X has a full c-skeleton iff X has a full r-skeleton.

If X has a (full) c-skeleton, then $C_p(X)$ has a (full) q-skeleton.

Theorem

If X has a (full) q-skeleton, then $C_p(X)$ has a (full) c-skeleton.

Corollary

A compact space X is Corson iff has a full c-skeleton.

Question

Let X be a countably compact space, is it true X has a full c-skeleton iff X has a full r-skeleton.

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

If X has a (full) c-skeleton, then $C_p(X)$ has a (full) q-skeleton.

Theorem

If X has a (full) q-skeleton, then $C_p(X)$ has a (full) c-skeleton.

Corollary

A compact space X is Corson iff has a full c-skeleton.

Question

Let X be a countably compact space, is it true X has a full c-skeleton iff X has a full r-skeleton.

If X has a (full) c-skeleton, then $C_p(X)$ has a (full) q-skeleton.

Theorem

If X has a (full) q-skeleton, then $C_p(X)$ has a (full) c-skeleton.

Corollary

A compact space X is Corson iff has a full c-skeleton.

Question

Let X be a countably compact space, is it true X has a full c-skeleton iff X has a full r-skeleton.

If X has a (full) c-skeleton, then $C_p(X)$ has a (full) q-skeleton.

Theorem

If X has a (full) q-skeleton, then $C_p(X)$ has a (full) c-skeleton.

Corollary

A compact space X is Corson iff has a full c-skeleton.

Question

Let X be a countably compact space, is it true X has a full c-skeleton iff X has a full r-skeleton.

▶ In the nth round, \mathscr{O} chooses an open superset O_n of H, and \mathscr{P} chooses a point $p_n \in O_n$.

The player \mathscr{O} wins the game if $p_n \to H$. We say that H is a W-set in X if \mathscr{O} has a winning strategy for G(H, X).

Theorem

Let X be a countably compact which admits a full r-skeleton. If H is non-empty and closed in X then H is a W-set in X.

Corollary

Suppose that X is countably compact and admits a full r-skelton. Then X has a W-set diagonal.

▶ In the nth round, \mathscr{O} chooses an open superset O_n of H, and \mathscr{P} chooses a point $p_n \in O_n$.

The player \mathscr{O} wins the game if $p_n \to H$. We say that H is a W-set in X if \mathscr{O} has a winning strategy for G(H, X).

Theorem

Let X be a countably compact which admits a full r-skeleton. If H is non-empty and closed in X then H is a W-set in X.

Corollary

Suppose that X is countably compact and admits a full r-skelton. Then X has a W-set diagonal.

▶ In the nth round, \mathscr{O} chooses an open superset O_n of H, and \mathscr{P} chooses a point $p_n \in O_n$.

The player \mathscr{O} wins the game if $p_n \to H$. We say that H is a W-set in X if \mathscr{O} has a winning strategy for G(H, X).

Theorem

Let X be a countably compact which admits a full r-skeleton. If H is non-empty and closed in X then H is a W-set in X.

Corollary

Suppose that X is countably compact and admits a full r-skelton. Then X has a W-set diagonal.

▶ In the nth round, \mathscr{O} chooses an open superset O_n of H, and \mathscr{P} chooses a point $p_n \in O_n$.

The player \mathscr{O} wins the game if $p_n \to H$. We say that H is a W-set in X if \mathscr{O} has a winning strategy for G(H, X).

Theorem

Let X be a countably compact which admits a full r-skeleton. If H is non-empty and closed in X then H is a W-set in X.

Corollary

Suppose that X is countably compact and admits a full r-skelton. Then X has a W-set diagonal.

▶ In the nth round, \mathscr{O} chooses an open superset O_n of H, and \mathscr{P} chooses a point $p_n \in O_n$.

The player \mathcal{O} wins the game if $p_n \to H$. We say that H is a W-set in X if \mathcal{O} has a winning strategy for G(H, X).

Theorem

Let X be a countably compact which admits a full r-skeleton. If H is non-empty and closed in X then H is a W-set in X.

Corollary

Suppose that X is countably compact and admits a full r-skelton. Then X has a W-set diagonal.

▶ In the nth round, \mathscr{O} chooses an open superset O_n of H, and \mathscr{P} chooses a point $p_n \in O_n$.

The player \mathcal{O} wins the game if $p_n \to H$. We say that H is a W-set in X if \mathcal{O} has a winning strategy for G(H, X).

Theorem

Let X be a countably compact which admits a full r-skeleton. If H is non-empty and closed in X then H is a W-set in X.

Corollary

Suppose that X is countably compact and admits a full r-skelton. Then X has a W-set diagonal.

ション ふゆ マ キャット マックシン

▶ In the nth round, \mathscr{O} chooses an open superset O_n of H, and \mathscr{P} chooses a point $p_n \in O_n$.

The player \mathcal{O} wins the game if $p_n \to H$. We say that H is a W-set in X if \mathcal{O} has a winning strategy for G(H, X).

Theorem

Let X be a countably compact which admits a full r-skeleton. If H is non-empty and closed in X then H is a W-set in X.

Corollary

Suppose that X is countably compact and admits a full r-skelton. Then X has a W-set diagonal.

The proximal game $Prox_{D,P}(X)$ of length ω played on a uniform space X with two players \mathcal{D}, \mathcal{P} proceeds as follows:

- ▶ In the initial round 0, \mathscr{D} chooses an open symmetric entourage D_0 , followed by \mathscr{P} choosing a point $p_0 \in X$.
- ▶ In round n + 1, \mathscr{D} chooses an open symmetric entourage $D_{n+1} \subset D_n$, followed by \mathscr{P} choosing a point $p_{n+1} \in X$ such that $p_{n+1} \in D_n[p_n] := \{y \in X : (p_n, y) \in D_n\}.$

At the conclusion of the game, the player \mathscr{D} wins if either $\bigcap \{D_n[p_n] : n \in \omega\} = \emptyset$ or $\{p_n : n \in \mathbb{N}\}$ converges, and \mathscr{P} wins otherwise.

The proximal game $Prox_{D,P}(X)$ of length ω played on a uniform space X with two players \mathcal{D}, \mathcal{P} proceeds as follows:

- ▶ In the initial round 0, \mathscr{D} chooses an open symmetric entourage D_0 , followed by \mathscr{P} choosing a point $p_0 \in X$.
- ▶ In round n + 1, \mathscr{D} chooses an open symmetric entourage $D_{n+1} \subset D_n$, followed by \mathscr{P} choosing a point $p_{n+1} \in X$ such that $p_{n+1} \in D_n[p_n] := \{y \in X : (p_n, y) \in D_n\}.$

At the conclusion of the game, the player \mathscr{D} wins if either $\bigcap \{D_n[p_n] : n \in \omega\} = \emptyset$ or $\{p_n : n \in \mathbb{N}\}$ converges, and \mathscr{P} wins otherwise.

The proximal game $Prox_{D,P}(X)$ of length ω played on a uniform space X with two players \mathcal{D} , \mathcal{P} proceeds as follows:

- ▶ In the initial round 0, \mathscr{D} chooses an open symmetric entourage D_0 , followed by \mathscr{P} choosing a point $p_0 \in X$.
- ▶ In round n + 1, \mathscr{D} chooses an open symmetric entourage $D_{n+1} \subset D_n$, followed by \mathscr{P} choosing a point $p_{n+1} \in X$ such that $p_{n+1} \in D_n[p_n] := \{y \in X : (p_n, y) \in D_n\}.$

At the conclusion of the game, the player \mathscr{D} wins if either $\bigcap \{D_n[p_n] : n \in \omega\} = \emptyset$ or $\{p_n : n \in \mathbb{N}\}$ converges, and \mathscr{P} wins otherwise.

The proximal game $Prox_{D,P}(X)$ of length ω played on a uniform space X with two players \mathcal{D} , \mathcal{P} proceeds as follows:

- ▶ In the initial round 0, \mathscr{D} chooses an open symmetric entourage D_0 , followed by \mathscr{P} choosing a point $p_0 \in X$.
- ▶ In round n + 1, \mathscr{D} chooses an open symmetric entourage $D_{n+1} \subset D_n$, followed by \mathscr{P} choosing a point $p_{n+1} \in X$ such that $p_{n+1} \in D_n[p_n] := \{y \in X : (p_n, y) \in D_n\}.$

At the conclusion of the game, the player \mathscr{D} wins if either $\bigcap \{D_n[p_n] : n \in \omega\} = \emptyset$ or $\{p_n : n \in \mathbb{N}\}$ converges, and \mathscr{P} wins otherwise.

The proximal game $Prox_{D,P}(X)$ of length ω played on a uniform space X with two players \mathcal{D} , \mathcal{P} proceeds as follows:

- ▶ In the initial round 0, \mathscr{D} chooses an open symmetric entourage D_0 , followed by \mathscr{P} choosing a point $p_0 \in X$.
- ▶ In round n + 1, \mathscr{D} chooses an open symmetric entourage $D_{n+1} \subset D_n$, followed by \mathscr{P} choosing a point $p_{n+1} \in X$ such that $p_{n+1} \in D_n[p_n] := \{y \in X : (p_n, y) \in D_n\}.$

At the conclusion of the game, the player \mathscr{D} wins if either $\bigcap \{D_n[p_n] : n \in \omega\} = \emptyset$ or $\{p_n : n \in \mathbb{N}\}$ converges, and \mathscr{P} wins otherwise.
Definition (J. Bell, 2014)

The proximal game $Prox_{D,P}(X)$ of length ω played on a uniform space X with two players \mathcal{D} , \mathcal{P} proceeds as follows:

- ▶ In the initial round 0, \mathscr{D} chooses an open symmetric entourage D_0 , followed by \mathscr{P} choosing a point $p_0 \in X$.
- ▶ In round n + 1, \mathscr{D} chooses an open symmetric entourage $D_{n+1} \subset D_n$, followed by \mathscr{P} choosing a point $p_{n+1} \in X$ such that $p_{n+1} \in D_n[p_n] := \{y \in X : (p_n, y) \in D_n\}.$

At the conclusion of the game, the player \mathscr{D} wins if either $\bigcap \{D_n[p_n] : n \in \omega\} = \emptyset$ or $\{p_n : n \in \mathbb{N}\}$ converges, and \mathscr{P} wins otherwise.

A topological space is **proximal** iff it admits a compatible uniformity in which \mathscr{D} has a winning strategy for $Prox_{D,P}(X)$.

Definition (J. Bell, 2014)

The proximal game $Prox_{D,P}(X)$ of length ω played on a uniform space X with two players \mathcal{D} , \mathcal{P} proceeds as follows:

- ▶ In the initial round 0, \mathscr{D} chooses an open symmetric entourage D_0 , followed by \mathscr{P} choosing a point $p_0 \in X$.
- ▶ In round n + 1, \mathscr{D} chooses an open symmetric entourage $D_{n+1} \subset D_n$, followed by \mathscr{P} choosing a point $p_{n+1} \in X$ such that $p_{n+1} \in D_n[p_n] := \{y \in X : (p_n, y) \in D_n\}.$

At the conclusion of the game, the player \mathscr{D} wins if either $\bigcap \{D_n[p_n] : n \in \omega\} = \emptyset$ or $\{p_n : n \in \mathbb{N}\}$ converges, and \mathscr{P} wins otherwise.

A topological space is **proximal** iff it admits a compatible uniformity in which \mathscr{D} has a winning strategy for $Prox_{D,P}(X)$.

Theorem

Let X be a countably compact which admits a full r-skeleton. Then X is proximal.

For countably compact spaces we have:

r-skeleton \longrightarrow Proximal \longrightarrow W-space

うして ふゆう ふほう ふほう ふしつ

Question

Theorem

Let X be a countably compact which admits a full r-skeleton. Then X is proximal.

For countably compact spaces we have:

r-skeleton \longrightarrow Proximal \longrightarrow W-space

うして ふゆう ふほう ふほう ふしつ

Question

Theorem

Let X be a countably compact which admits a full r-skeleton. Then X is proximal.

For countably compact spaces we have:

r-skeleton \longrightarrow Proximal \longrightarrow W-space

うして ふゆう ふほう ふほう ふしつ

Question

Theorem

Let X be a countably compact which admits a full r-skeleton. Then X is proximal.

For countably compact spaces we have:

r-skeleton \longrightarrow Proximal \longrightarrow W-space

ション ふゆ マ キャット マックシン

Question

Theorem

Let X be a countably compact which admits a full r-skeleton. Then X is proximal.

For countably compact spaces we have:

r-skeleton \longrightarrow Proximal \longrightarrow W-space

ション ふゆ マ キャット マックシン

Question

Theorem

Let X be a countably compact which admits a full r-skeleton. Then X is proximal.

For countably compact spaces we have:

r-skeleton \longrightarrow Proximal \longrightarrow W-space

ション ふゆ マ キャット マックシン

Question

Given a space X, a subspace Y of X is **monotonically re**tractable in X if we can assign to each $A \in [Y]^{\leq \omega}$ a retraction $r_A : X \to Y$ and a family $\mathcal{N}(A) \in [\mathcal{P}(Y)]^{\leq \omega}$ such that:

(i)
$$A \subseteq r_A(X);$$

- (ii) $\mathcal{N}(A)$ is a network of $r_A \upharpoonright Y$; and
- (iii) \mathcal{N} is ω -monotone.

If in addition $r_A \circ r_B = r_B \circ r_A$ for each $A, B \in [Y]^{\leq \omega}$, we say that Y is **commutatively monotonically retractable** in X.

Theorem

Given a space X, a subspace Y of X is **monotonically re**tractable in X if we can assign to each $A \in [Y]^{\leq \omega}$ a retraction $r_A : X \to Y$ and a family $\mathcal{N}(A) \in [\mathcal{P}(Y)]^{\leq \omega}$ such that:

(i)
$$A \subseteq r_A(X);$$

- (ii) $\mathcal{N}(A)$ is a network of $r_A \upharpoonright Y$; and
- (iii) \mathcal{N} is ω -monotone.

If in addition $r_A \circ r_B = r_B \circ r_A$ for each $A, B \in [Y]^{\leq \omega}$, we say that Y is **commutatively monotonically retractable** in X.

Theorem

Given a space X, a subspace Y of X is **monotonically re**tractable in X if we can assign to each $A \in [Y]^{\leq \omega}$ a retraction $r_A: X \to Y$ and a family $\mathcal{N}(A) \in [\mathcal{P}(Y)]^{\leq \omega}$ such that:

(i)
$$A \subseteq r_A(X);$$

(ii) $\mathcal{N}(A)$ is a network of $r_A \upharpoonright Y$; and

(iii) \mathcal{N} is ω -monotone.

If in addition $r_A \circ r_B = r_B \circ r_A$ for each $A, B \in [Y]^{\leq \omega}$, we say that Y is **commutatively monotonically retractable** in X.

Theorem

Given a space X, a subspace Y of X is **monotonically re**tractable in X if we can assign to each $A \in [Y]^{\leq \omega}$ a retraction $r_A: X \to Y$ and a family $\mathcal{N}(A) \in [\mathcal{P}(Y)]^{\leq \omega}$ such that: (i) $A \subseteq r_A(X)$;

(ii) $\mathcal{N}(A)$ is a network of $r_A \upharpoonright Y$; and

(iii) \mathcal{N} is ω -monotone.

If in addition $r_A \circ r_B = r_B \circ r_A$ for each $A, B \in [Y]^{\leq \omega}$, we say that Y is **commutatively monotonically retractable** in X.

Theorem

Given a space X, a subspace Y of X is **monotonically re**tractable in X if we can assign to each $A \in [Y]^{\leq \omega}$ a retraction $r_A: X \to Y$ and a family $\mathcal{N}(A) \in [\mathcal{P}(Y)]^{\leq \omega}$ such that: (i) $A \subseteq r_A(X)$;

- (ii) $\mathcal{N}(A)$ is a network of $r_A \upharpoonright Y$; and
- (iii) \mathcal{N} is ω -monotone.

If in addition $r_A \circ r_B = r_B \circ r_A$ for each $A, B \in [Y]^{\leq \omega}$, we say that Y is **commutatively monotonically retractable** in X.

Theorem

Given a space X, a subspace Y of X is **monotonically re**tractable in X if we can assign to each $A \in [Y]^{\leq \omega}$ a retraction $r_A: X \to Y$ and a family $\mathcal{N}(A) \in [\mathcal{P}(Y)]^{\leq \omega}$ such that:

(1)
$$A \subseteq r_A(X);$$

- (ii) $\mathcal{N}(A)$ is a network of $r_A \upharpoonright Y$; and
- (iii) \mathcal{N} is ω -monotone.

If in addition $r_A \circ r_B = r_B \circ r_A$ for each $A, B \in [Y]^{\leq \omega}$, we say that Y is **commutatively monotonically retractable** in X.

Theorem

Given a space X, a subspace Y of X is **monotonically re**tractable in X if we can assign to each $A \in [Y]^{\leq \omega}$ a retraction $r_A: X \to Y$ and a family $\mathcal{N}(A) \in [\mathcal{P}(Y)]^{\leq \omega}$ such that: (i) $A \subseteq r_A(X)$; (ii) $\mathcal{N}(A)$ is a network of $r_A \upharpoonright Y$; and

(iii) \mathcal{N} is ω -monotone.

If in addition $r_A \circ r_B = r_B \circ r_A$ for each $A, B \in [Y]^{\leq \omega}$, we say that Y is **commutatively monotonically retractable** in X.

Theorem

A compact space X is Valdivia if and only if it has a dense subset Y which is monotonically retractable in X.

Given a space X, a subspace Y of X is **monotonically re**tractable in X if we can assign to each $A \in [Y]^{\leq \omega}$ a retraction $r_A: X \to Y$ and a family $\mathcal{N}(A) \in [\mathcal{P}(Y)]^{\leq \omega}$ such that: (i) $A \subseteq r_A(X)$;

- (ii) $\mathcal{N}(A)$ is a network of $r_A \upharpoonright Y$; and
- (iii) \mathcal{N} is ω -monotone.

If in addition $r_A \circ r_B = r_B \circ r_A$ for each $A, B \in [Y]^{\leq \omega}$, we say that Y is **commutatively monotonically retractable** in X.

Theorem

Thank you

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thank you

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ