Fuzzy uniform structures

J. Rodríguez-López

Universitat Politècnica de València

3 ×

3 1 3

J. Rodríguez-López

TOPOSYM 2016

- R

Uniform structures

Definition

Let X be a nonempty set. A gauge or a uniform structure on X is a nonempty family D of pseudometrics on X such that:
(G1) if d, q ∈ D then d ∨ q ∈ D;
(G2) if e is a pseudometric on X and for each ε > 0 there exist d ∈ D and δ > 0 such that d(x, y) < δ implies e(x, y) < ε for all x, y ∈ X, then e ∈ D.

Definition

A function $f : (X, D) \to (Y, Q)$ between two spaces endowed with a uniform structure is **uniformly continuous** if $f : (X, \bigvee_{d \in D} U_d) \to (Y, \bigvee_{q \in Q} U_q)$ is uniformly continuous Uniform structures

Definition

Let X be a nonempty set. A gauge or a uniform structure on X is a nonempty family \mathcal{D} of pseudometrics on X such that: (G1) if $d, q \in \mathcal{D}$ then $d \lor q \in \mathcal{D}$;

(G2) if e is a pseudometric on X and for each $\varepsilon > 0$ there exist $d \in \mathcal{D}$ and $\delta > 0$ such that $d(x, y) < \delta$ implies $e(x, y) < \varepsilon$ for all $x, y \in X$, then $e \in \mathcal{D}$.

Definition

A function $f : (X, D) \to (Y, Q)$ between two spaces endowed with a uniform structure is uniformly continuous if $f : (X, \bigvee_{d \in D} U_d) \to (Y, \bigvee_{q \in Q} U_q)$ is uniformly continuous

Uniform structures

(ロ) (四) (注) (注) (注) [

Uniform structures

Unif
$$\xrightarrow{\Delta}$$
 SUnif

TOPOSYM 2016

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

Fuzzy metrics

Definition

A binary operation $*: [0,1] \times [0,1] \rightarrow [0,1]$ is called a continuous t-norm if ([0,1],*) is an Abelian topological monoid with unit 1, such that $a * b \le c * d$ whenever $a \le c$ and $b \le d$.

Example

•
$$a \wedge b = \min\{a, b\}$$

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}\mathbf{b}$$

•
$$a *_L b = \max\{a + b - 1, 0\}$$

 $< \leq \land$ for each continuous t-norm *.

イロン イヨン イヨン イヨン

Fuzzy metrics

Definition

A binary operation $*: [0,1] \times [0,1] \rightarrow [0,1]$ is called a continuous t-norm if ([0,1],*) is an Abelian topological monoid with unit 1, such that $a * b \le c * d$ whenever $a \le c$ and $b \le d$.

Example

•
$$a \wedge b = \min\{a, b\}$$

$$a \cdot b = ab$$

•
$$a *_L b = \max\{a + b - 1, 0\}$$

 $< \leq \land$ for each continuous t-norm *.

イロト イポト イヨト イヨト

Fuzzy metrics

Definition

A binary operation $*: [0,1] \times [0,1] \rightarrow [0,1]$ is called a continuous t-norm if ([0,1],*) is an Abelian topological monoid with unit 1, such that $a * b \le c * d$ whenever $a \le c$ and $b \le d$.

Example

•
$$a \wedge b = \min\{a, b\}$$

$$a \cdot b = ab$$

•
$$a *_L b = \max\{a + b - 1, 0\}$$

 $* \leq \wedge$ for each continuous t-norm *.

イロン イヨン イヨン イヨン

Fuzzy metrics

Definition

A fuzzy pseudometric (in the sense of Kramosil and Michalek) on a nonempty set X is a pair (M, *) such that * is a continuous t-norm and M is a fuzzy set in $X \times X \times [0, +\infty)$ such that for all $x, y, z \in X, t, s > 0$: (FM1) M(x, y, 0) = 0;(FM2) M(x, x, t) = 1;(FM3) M(x, y, t) = M(y, x, t);(FM4) $M(x, y, t) * M(y, z, s) \le M(x, z, t + s);$ (FM5) $M(x, y, \cdot) : [0, \infty) \rightarrow [0, 1]$ is left continuous;

3

Fuzzy metrics

Definition

A fuzzy pseudometric (in the sense of Kramosil and Michalek) on a nonempty set X is a pair (M, *) such that * is a continuous t-norm and M is a fuzzy set in $X \times X \times [0, +\infty)$ such that for all $x, y, z \in X, t, s > 0$: (FM1) M(x, y, 0) = 0;(FM2) M(x, x, t) = 1;(FM3) M(x, y, t) = M(y, x, t);(FM4) $M(x, y, t) * M(y, z, s) \le M(x, z, t + s);$ (FM5) $M(x, y, \cdot) : [0, \infty) \to [0, 1]$ is left continuous; If the fuzzy pseudometric (M, *) also satisfies: (FM2') M(x, y, t) = 1 for all t > 0 if and only if x = ythen (M, *) is said to be a fuzzy metric on X. In this case, (X, M, *) is said to be a fuzzy (pseudo)metric space.

æ

Fuzzy metrics

Every fuzzy (pseudo)metric (M, *) on X generates a uniformity U_M on X which has as a base the family $\{U_n : n \in \mathbb{N}\}$ where

$$U_n = \{(x, y) \in X \times X : M(x, y, 1/n) > 1 - 1/n\}.$$

★ ▲ → ★ → ★ → ★
TOPOSYM 2016

글 > 글

Fuzzy metrics

Standard fuzzy pseudometric

Example

Let (X, d) be a pseudometric space. Let M_d be the fuzzy set on $X \times X \times [0, \infty)$ given by

$$M_d(x, y, t) = \begin{cases} \frac{t}{t+d(x,y)} & \text{if } t > 0\\ 0 & \text{if } t = 0 \end{cases}.$$

For every continuous t-norm *, $(M_d, *)$ is a fuzzy pseudometric on X which is called the *standard fuzzy pseudometric* induced by d. Furthermore, we notice that $U_d = U_{M_d}$ where U_d is the uniformity generated by d.

Fuzzy metrics

Definition

A base of fuzzy pseudometrics on a nonempty set X is a pair $(\mathcal{B}, *)$ where * is a continuous t-norm and \mathcal{B} is family of fuzzy pseudometrics on X with respect to the t-norm * closed under finite infimum.

If no confusion arises, we will write $M \in \mathcal{B}$ whenever $(M, *) \in \mathcal{B}$.

Fuzzy metrics

Notation

If (M, *) is a fuzzy (pseudo)metric on X we will denote by M_t the function on $X \times X$ given by $M_t(x, y) = M(x, y, t)$ for all t > 0.

Definition

Let $(\mathcal{B}, *)$ be a base of fuzzy pseudometrics on a nonempty set X. We define:

- $\langle \mathcal{B} \rangle = \{ (N, *) \in \mathsf{FMet}(*) : \text{ for all } t > 0 \text{ there exists } M \in \mathcal{B} \text{ and } s > 0 \text{ such that } M_s \leq N_t \}.$
- $\mathcal{B} = \{(N, *) \in \mathsf{FMet}(*) : \text{ for all } \varepsilon \in]0, 1] \text{ and } t > 0 \text{ there exist } s > 0, M \in \mathcal{B} \text{ such that } M_s \varepsilon \leq N_t \}.$
- $\widehat{\mathcal{B}} = \{(N, *) \in \mathsf{FMet}(*) : \text{ for all } \varepsilon \in]0, 1] \text{ and } t > 0 \text{ there exist } \delta \in]0, 1], s > 0, M \in \mathcal{B} \text{ such that } M(x, y, s) > 1 \delta \text{ implies } N(x, y, t) > 1 \varepsilon\}.$

Э

Fuzzy metrics

Notation

If (M, *) is a fuzzy (pseudo)metric on X we will denote by M_t the function on $X \times X$ given by $M_t(x, y) = M(x, y, t)$ for all t > 0.

Definition

Let $(\mathcal{B}, *)$ be a base of fuzzy pseudometrics on a nonempty set X. We define:

- $\langle \mathcal{B} \rangle = \{ (N, *) \in \mathsf{FMet}(*) : \text{ for all } t > 0 \text{ there exists } M \in \mathcal{B} \text{ and } s > 0 \text{ such that } M_s \leq N_t \}.$
- $\widetilde{\mathcal{B}} = \{(N, *) \in \mathsf{FMet}(*) : \text{ for all } \varepsilon \in]0, 1] \text{ and } t > 0 \text{ there exist } s > 0, M \in \mathcal{B} \text{ such that } M_s \varepsilon \le N_t \}.$
- $\widehat{\mathcal{B}} = \{(N, *) \in \mathsf{FMet}(*) : \text{ for all } \varepsilon \in]0, 1] \text{ and } t > 0 \text{ there exist } \delta \in]0, 1], s > 0, M \in \mathcal{B} \text{ such that } M(x, y, s) > 1 \delta \text{ implies } N(x, y, t) > 1 \varepsilon\}.$

æ

Fuzzy metrics

Lemma

Let $(\mathcal{B}, *)$ be a base of fuzzy pseudometrics on a nonempty set X. Then:

$$\mathcal{B} \subseteq \langle \mathcal{B} \rangle \subseteq \widetilde{\mathcal{B}} \subseteq \widehat{\mathcal{B}}.$$

Furthermore, all these operators are idempotent.

(4回) (1日) (日)

Э

Fuzzy uniformities

Definition (Gutiérrez García, Romaguera and Sanchis, 2010)

Let X be a nonempty set and let * be a continuous t-norm. A fuzzy uniform structure for * is base of fuzzy pseudometrics $(\mathcal{M}, *)$ on X such that:

$$\widehat{\mathcal{M}} = \mathcal{M}.$$

A fuzzy uniform space is a triple $(X, \mathcal{M}, *)$ such that X is a nonempty set and $(\mathcal{M}, *)$ is a fuzzy uniform structure on X.

Fuzzy uniformities

Definition (Gutiérrez García, Romaguera and Sanchis, 2010)

Let $(X, \mathcal{M}, *)$ and $(Y, \mathcal{N}, *)$ be two fuzzy uniform spaces. A mapping $f : X \to Y$ is said to be uniformly continuous if for each $N \in \mathcal{N}, \varepsilon \in (0, 1)$ and t > 0 there exist $M \in \mathcal{M}, \delta \in (0, 1)$ and s > 0 such that $N(f(x), f(y), t) > 1 - \varepsilon$ whenever $M(x, y, s) > 1 - \delta$.

TOPOSYM 2016

 $FUnif \equiv$ category of fuzzy uniform spaces

J. Rodríguez-López

Fuzzy uniformities

Definition (Gutiérrez García, Romaguera and Sanchis, 2010)

Let $(X, \mathcal{M}, *)$ and $(Y, \mathcal{N}, *)$ be two fuzzy uniform spaces. A mapping $f : X \to Y$ is said to be uniformly continuous if for each $N \in \mathcal{N}, \varepsilon \in (0, 1)$ and t > 0 there exist $M \in \mathcal{M}, \delta \in (0, 1)$ and s > 0 such that $N(f(x), f(y), t) > 1 - \varepsilon$ whenever $M(x, y, s) > 1 - \delta$.

TOPOSYM 2016

 $FUnif \equiv$ category of fuzzy uniform spaces

J. Rodríguez-López

Fuzzy	/ unif	orm s	truct	ures

Fuzzy uniformities

J. Rodríguez-López

TOPOSYM 2016

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

-		-		
-11771	/ 11/2011	torm	struc	turoc
1 uzz y	/ unin		SLIUC	LUICS

- Fuzzy uniformities

J. Rodríguez-López

TOPOSYM 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Luzzy upitorm ctructu	roc
ruzzv unnorm structu	ii es

- Fuzzy uniformities

TOPOSYM 2016

<ロ> (四) (四) (三) (三) (三) (三)

Fuzzy uniformities

TOPOSYM 2016

-Fuzzy uniformities

Φ_{*}(U) = ⟨{M_d : d belongs to the uniform structure of U}⟩;
 Ψ(M) = ∨_{M∈M} U_M.

TOPOSYM 2016

Definition (Höhle 78, Katsaras 79)

A probabilistic uniformity on a nonempty set X is a pair $(\mathcal{U}, *)$, where * is a continuous *t*-norm and \mathcal{U} is a prefilter on $X \times X$ such that:

(FU1)
$$U(x,x) = 1$$
 for all $U \in \mathcal{U}$;

(FU2) if $U \in \mathcal{U}$ then $U^{-1} \in \mathcal{U}$ where $U^{-1}(x, y) = U(y, x)$;

(FU3) for each $U \in \mathcal{U}$ there exists $V \in \mathcal{U}$ such that

$$V^2 \leq U$$

where
$$V^{2}(x, y) = \sup_{z \in X} V(x, z) * V(z, y);$$

In this case we say that $(X, \mathcal{U}, *)$ is a probabilistic uniform space.

Definition (Lowen 81, Höhle 82)

A Lowen *-uniformity on a nonempty set X is a saturated probabilistic uniformity $(\mathcal{U}, *)$ on X, i. e. a probabilistic uniformity $(\mathcal{U}, *)$ such that

$$\sup_{\varepsilon\in [0,1]} \left(U_{\varepsilon} - \varepsilon \right) \in \mathfrak{U} \text{ whenever } \{ U_{\varepsilon} : \varepsilon \in]0,1] \} \subseteq \mathfrak{U}.$$

▲圖▶ ★ 国▶ ★ 国▶

Definition

A function $f : (X, \mathcal{U}, *) \to (Y, \mathcal{V}, *)$ between two probabilistic uniform spaces is said to be fuzzy uniformly continuous if for every $V \in \mathcal{V}$ we can find $U \in \mathcal{U}$ such that

 $U(x,y) \leq V(f(x), f(y))$ for all $x, y \in X$.

 $PUnif \equiv$ category of probabilistic uniform spaces $LUnif \equiv$ category of spaces endowed with a Lowen uniformity

Definition

A function $f : (X, \mathcal{U}, *) \to (Y, \mathcal{V}, *)$ between two probabilistic uniform spaces is said to be fuzzy uniformly continuous if for every $V \in \mathcal{V}$ we can find $U \in \mathcal{U}$ such that

$$U(x,y) \leq V(f(x), f(y))$$
 for all $x, y \in X$.

 $PUnif \equiv$ category of probabilistic uniform spaces $LUnif \equiv$ category of spaces endowed with a Lowen uniformity

(4月) (1日) (日)

Lowen functors

$\omega_* : \mathsf{Unif} \to \mathsf{LUnif}(*)$

$$\omega_*(\mathcal{U}) = \{ F \in I^{X \times X} : F^{-1}(]\varepsilon, 1] \} \in \mathcal{U} \text{ for all } \varepsilon \in [0, 1[\}$$

(ロ) (同) (E) (E) (E)

TOPOSYM 2016

$\iota : \mathsf{LUnif} \to \mathsf{Unif}$ $\iota(\mathcal{U}) = \{U^{-1}(]\varepsilon, 1]) : U \in \mathcal{U}, \varepsilon \in [0, 1[]\}$

• ω_* and ι are adjoint functors;

•
$$\iota(\omega_*(\mathcal{U})) = \mathcal{U};$$

 $\blacksquare \mathcal{U} \subseteq \omega_*(\iota(\mathcal{U})).$

Lowen functors

ω_* : Unif \rightarrow LUnif(*)

$$\omega_*(\mathcal{U}) = \{ F \in I^{X \times X} : F^{-1}(]\varepsilon, 1]) \in \mathcal{U} \text{ for all } \varepsilon \in [0, 1[\}$$

(ロ) (同) (E) (E) (E)

TOPOSYM 2016

$\iota: \mathsf{LUnif} \to \mathsf{Unif}$

$$\iota(\mathfrak{U}) = \{ U^{-1}(]\varepsilon, 1]) : U \in \mathfrak{U}, \varepsilon \in [0, 1[\}$$

• ω_* and ι are adjoint functors;

$$\iota(\omega_*(\mathcal{U})) = \mathcal{U};$$

 $\blacksquare \mathcal{U} \subseteq \omega_*(\iota(\mathcal{U})).$

Lowen functors

$\omega_*: \mathsf{Unif} \to \mathsf{LUnif}(*)$

$$\omega_*(\mathcal{U}) = \{ F \in I^{X \times X} : F^{-1}(]\varepsilon, 1]) \in \mathcal{U} \text{ for all } \varepsilon \in [0, 1[\}$$

・ロト ・回ト ・ヨト ・ヨト … ヨ

TOPOSYM 2016

$\iota: \mathsf{LUnif} \to \mathsf{Unif}$

$$\iota(\mathfrak{U}) = \{ U^{-1}(]\varepsilon, 1]) : U \in \mathfrak{U}, \varepsilon \in [0, 1[\}$$

•
$$\iota(\omega_*(\mathcal{U})) = \mathcal{U};$$

•
$$\mathcal{U} \subseteq \omega_*(\iota(\mathcal{U})).$$

J. Rodríguez-López

- Probabilistic uniform structures

Probabilistic uniform structures

Definition

Let X be a nonempty set and let * be a continuous t-norm. A probabilistic *-uniform structure (resp. Lowen *-uniform structure) on X is base of fuzzy pseudometrics $(\mathcal{M}, *)$ on X such that

$$\langle \mathcal{M} \rangle = \mathcal{M}$$

(resp.
$$\widetilde{\mathcal{M}} = \mathcal{M}$$
).

A space with a probabilistic *-uniform structure (resp. Lowen *-uniform structure) is a triple $(X, \mathcal{M}, *)$ such that X is a nonempty set and $(\mathcal{M}, *)$ is a probabilistic *-uniform structure (resp. Lowen *-uniform structure) on X (the t-norm * will be omitted if no confusion arises).

Probabilistic uniform structures

Definition

Let $(X, \mathcal{M}, *)$ and (Y, \mathcal{N}, \star) be two spaces endowed with two probabilistic uniform structures. A mapping $f : X \to Y$ is said to be fuzzy uniformly continuous if for every $(N, \star) \in \mathbb{N}$ and t > 0there exist $(M, *) \in \mathbb{M}$ and s > 0 such that $M(x, y, s) \leq N(f(x), f(y), t)$ for all $x, y \in X$.

PSUnif \equiv category of spaces endowed with a probabilistic uniform structure **LSUnif** \equiv category of spaces endowed with a Lowen uniform structure Probabilistic uniform structures

Definition

Let $(X, \mathcal{M}, *)$ and (Y, \mathcal{N}, \star) be two spaces endowed with two probabilistic uniform structures. A mapping $f : X \to Y$ is said to be fuzzy uniformly continuous if for every $(N, \star) \in \mathbb{N}$ and t > 0there exist $(M, *) \in \mathbb{M}$ and s > 0 such that $M(x, y, s) \leq N(f(x), f(y), t)$ for all $x, y \in X$.

 $\begin{array}{l} \mathsf{PSUnif} \equiv \mathsf{category} \ \mathsf{of} \ \mathsf{spaces} \ \mathsf{endowed} \ \mathsf{with} \ \mathsf{a} \ \mathsf{probabilistic} \ \mathsf{uniform} \\ \mathsf{structure} \\ \\ \mathsf{LSUnif} \equiv \mathsf{category} \ \mathsf{of} \ \mathsf{spaces} \ \mathsf{endowed} \ \mathsf{with} \ \mathsf{a} \ \mathsf{Lowen} \ \mathsf{uniform} \\ \mathsf{structure} \\ \\ \\ \end{array}$

▲祠 ▶ ▲ 臣 ▶ ★ 臣 ▶

LSUnif(*) is a coreflective subcategory of PSUnif(*) whose coreflector is the functor S_s : PSUnif(*) \rightarrow LSUnif(*) given by $S_s((X, \mathcal{M}, *)) = (X, \widetilde{\mathcal{M}}, *)$ and leaving morphisms unchanged.

Proposition

FUnif(*) is a coreflective subcategory of LSUnif(*) whose coreflector is the functor ι_s : LSUnif(*) \rightarrow FUnif(*) given by $\iota_s((X, \mathcal{M}, *)) = (X, \widehat{\mathcal{M}}, *)$ and leaving morphisms unchanged.

TOPOSYM 2016

・ 同 ト ・ ヨ ト ・ ヨ ト

LSUnif(*) is a coreflective subcategory of PSUnif(*) whose coreflector is the functor S_s : PSUnif(*) \rightarrow LSUnif(*) given by $S_s((X, \mathcal{M}, *)) = (X, \widetilde{\mathcal{M}}, *)$ and leaving morphisms unchanged.

Proposition

FUnif(*) is a coreflective subcategory of LSUnif(*) whose coreflector is the functor ι_s : LSUnif(*) \rightarrow FUnif(*) given by $\iota_s((X, \mathcal{M}, *)) = (X, \widehat{\mathcal{M}}, *)$ and leaving morphisms unchanged.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let us consider the map \mathfrak{S} : PUnif \rightarrow PSUnif given by

$$\mathfrak{S}((X,\mathfrak{U},*))=(X,\mathfrak{s}(\mathfrak{U}),*)=(X,\mathfrak{M}_{\mathfrak{U}},*)$$

where $(\mathfrak{s}(\mathfrak{U}), *) = (\mathfrak{M}_{\mathfrak{U}}, *)$ is the probabilistic uniform structure of all fuzzy pseudometrics (M, *) on X such that $M_t \in \mathfrak{U}$ for all t > 0 and

$$\mathfrak{S}(f)=f$$

for every morphism f in PUnif. Then \mathfrak{S} is a covariant fully faithful functor.

Let us consider the map Υ : PSUnif \rightarrow PUnif given by

$$\Upsilon((X,\mathfrak{M},*))=(X,\upsilon(\mathfrak{M}),*)=(X,\mathfrak{U}_{\mathfrak{M}},*)$$

where $(\mathcal{U}_{\mathcal{M}}, *)$ is the probabilistic uniformity which has as base the family $\{M_t : t > 0, (M, *) \in \mathcal{M}\}$ and

$$\Upsilon(f) = f$$

for every morphism f in PSUnif. Then Υ is a fully faithful covariant functor.

Theorem

 $\mathfrak{S} \circ \Upsilon = \mathbf{1}_{\mathsf{PSUnif}}$ and $\Upsilon \circ \mathfrak{S} = \mathbf{1}_{\mathsf{PUnif}}$ so the categories PSUnif and PUnif are isomorphic.

Theorem

 $\mathfrak{S} \circ \Upsilon = \mathbf{1}_{\mathsf{LSUnif}}$ and $\Upsilon \circ \mathfrak{S} = \mathbf{1}_{\mathsf{LUnif}}$ so the categories LSUnif and LUnif are isomorphic.

・ロン ・回 と ・ ヨ と ・ ヨ と

TOPOSYM 2016

3

Theorem

 $\mathfrak{S}\circ\Upsilon=1_{\mathsf{PSUnif}}$ and $\Upsilon\circ\mathfrak{S}=1_{\mathsf{PUnif}}$ so the categories PSUnif and PUnif are isomorphic.

Theorem

 $\mathfrak{S}\circ\Upsilon=1_{\mathsf{LSUnif}}$ and $\Upsilon\circ\mathfrak{S}=1_{\mathsf{LUnif}}$ so the categories LSUnif and LUnif are isomorphic.

TOPOSYM 2016

∃ >

J. Rodríguez-López

-The results

Theorem

The following diagram commutes:

where i denotes the inclusion functor.

J. Rodríguez-López

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

-The results

Theorem

The following diagram commutes:

TOPOSYM 2016

표 🕨 🗉 표

A ►