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Basic Definitions

X and Y are compact Hausdorff topological spaces;
C (X ) is the set of all continuous functions f : X → R.

Definition (Compatibility Ordering)

Let f , g ∈ C (X ). We write

f � g
def⇐⇒ f (x) = g(x) for each x ∈ supp f .

T : (C (X ),�)→ (C (Y ),�) is a compatibility morphism if

∀f , g ∈ C (X ) : f � g =⇒ Tf � Tg .

T is a compatibility isomorphism if it is bijective and ⇐⇒.

� is a partial order on C (X );
zero function is the least element (i.e. ∀f : 0 � f );
if T : C (X )→ C (Y ) is a c. isomorphism, then T (0) = 0.
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Main Theorem

Theorem (T.Kania & M.R.)

Let X and Y be compact Hausdorff spaces, and let there exist a
compatibility isomorphism T : C (X )→ C (Y ).
Then X and Y are homeomorphic.

Sketch of proof: T behaves nicely w.r.t. supports.
More precisely: Given f ∈ C (X ), set

σ(f ) = Int supp(f )

and define τ : {σ(f ) : f ∈ C (X )} → {σ(g) : g ∈ C (Y )} as

τ(σ(f )) := σ(Tf ).

Then τ is well-defined. And it is a ⊆-isomorphism between bases
of the topologies on X and Y .
Use this to define a homeomorphism.
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Corollaries in Functional Analysis 1

X and Y compact Hausdorff spaces, T : C (X )→ C (Y ) bijection.

Theorem (Gelfand–Kolmogorov, 1939)

T is a ring isomorphism =⇒ X ∼ Y .

Theorem (Milgram, 1949)

T is multiplicative =⇒ X ∼ Y .

Proof. We want: multiplicative bij. =⇒ compatibility iso.
Then we apply the Main Theorem to conclude X ∼ Y .
To that end, we need to observe:

f , g ∈ C (X ). Then f � g ⇐⇒ fg = f 2.
T multiplicative bijection =⇒ T−1 multiplicative.

It follows that T is a compatibility isomorphism.
By the Main Theorem, X and Y are homeo.
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Corollaries in Functional Analysis 2

X and Y compact Hausdorff spaces, T : C (X )→ C (Y ) bijection.

Theorem (Kaplansky, 1947)

T is a lattice isomorphism =⇒ X ∼ Y .

Lattice isomorphism ≡ for all f , g ∈ C (X ),
T (max{f , g}) = max{Tf ,Tg} and T (min{f , g}) = min{Tf ,Tg}.
Proof: We need to observe:

It is enough to consider f , g ≥ 0.
Then f � g ⇐⇒ f ≤ g & max{g − f , f } ≥ g .
Lattice isomorphism ≡ pointwise-order isomorphism.

It follows that any lattice isomorphism is compatibility isomorphism.
By the Main Theorem, X and Y are homeo.
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Corollaries in Functional Analysis 3

X and Y compact Hausdorff spaces, T : C (X )→ C (Y ) bijection.

Theorem (Jarosz, 1990)

T is linear, disjointness preserving =⇒ X ∼ Y .

Disjointness preserving ≡ ∀f , g ∈ C (X ) : f ·g = 0 =⇒ Tf ·Tg = 0.

Proof: Literature  T−1 disj. preserving.
We show that T preserves �; the proof for T−1 is the same.
Fix f , g ∈ C (X ) with f � g . Then g − f and f are
non-overlapping.
By the assumption on T , T (g − f ) and f are also disj. supp.
Hence Tg = T (g − f ) + Tf � Tf .
By the Main Theorem, X and Y are homeo.

Remark
We do not use: Maximal ideals in C (X ) are kernels of Diracs.
This fact is crucial in the original proofs of these theorems.
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Two partial results & Main Thm again

X and Y compact Hausdorff spaces, T : C (X )→ C (Y ) bijection.

Theorem (T.K. & M.R.)

Let X be sequentially compact and let all of its components be
nowhere dense. Then every compatibility isomorphism
T : C (X )→ C (Y ) is norm-continuous.

Theorem (T.K. & M.R.)

If X contains a locally connected open subset, then there exist
c. isomorphisms which are not continuous.

Observation leading to a proof

X connected and ∀x : f (x) 6= 0 =⇒ f minimal.

Thank you for your attention.
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