

# Embedding cartesian products in symmetric products

# Russell Aarón Quiñones-Estrella

Joint work with

Florencio Corona, Hugo Villanueva and Javier Sánchez

Facultad de Ciencias en Física y Matemáticas Universidad Autónoma de Chiapas México

### TOPOSYM 2016, Prague



# Structure of the talk



- **1** Basic definitions and notations
- **2** The case  $\operatorname{Ram}(G) = \emptyset$
- **3**  $G = T_m$  is a simple *m*-od
- 4 Some results

イロト イポト イヨト イヨト 三日

# Embedding products in symmetric product,

### **1** Basic definitions and notations

**2** The case  $\operatorname{Ram}(G) = \emptyset$ 

- $3 \quad G = T_m \text{ is a simple } m \text{-od}$
- 4 Some results

イロト イポト イヨト イヨト 三日

UNAC

m

# Some notation



### Continuum

A continuum X is a nonempty, compact, connected metric space.

#### Symmetric products

 $F_n(X) = \{A \in 2^X : A \text{ contains at most } n \text{ points}\}$ 

where  $2^X = \{A \subset X : A \text{ is closed and nonempty}\}.$ 

 $2^{X}$  is endowed with the Hausdorff metric.

・ロン ・四 と ・ ヨ と ・ ヨ ・ - ヨ ・

# Some notation



### Continuum

A continuum X is a nonempty, compact, connected metric space.

### Symmetric products

$$F_n(X) = \{A \in 2^X : A \text{ contains at most } n \text{ points}\}$$

where  $2^X = \{A \subset X : A \text{ is closed and nonempty}\}.$ 

 $2^{X}$  is endowed with the Hausdorff metric.

<ロ> (四) (四) (三) (三) (三) (三)

# Some notation



### Continuum

A continuum X is a nonempty, compact, connected metric space.

### Symmetric products

$$F_n(X) = \{A \in 2^X : A \text{ contains at most } n \text{ points}\}$$

where  $2^X = \{A \subset X : A \text{ is closed and nonempty}\}.$ 

 $2^{\boldsymbol{X}}$  is endowed with the Hausdorff metric.

# Finite graphs



A finite graph is a continuum which can be written as the union of finitely many arcs any two of which are either disjoint or intersect only in one or both of their end points

#### Some notatios on finite graphs

If G is a finite graph we denote by

- $\blacksquare$  deg(x) the degree of a a point  $x \in G$ ,
- Ram(G) the set of ramification points of G, i.e points with deg(x) ≥ 3.

# Finite graphs



A finite graph is a continuum which can be written as the union of finitely many arcs any two of which are either disjoint or intersect only in one or both of their end points

### Some notatios on finite graphs

If G is a finite graph we denote by

- deg(x) the degree of a point  $x \in G$ ,
- Ram(G) the set of ramification points of G, i.e points with deg(x) ≥ 3.

# Finite graphs



A finite graph is a continuum which can be written as the union of finitely many arcs any two of which are either disjoint or intersect only in one or both of their end points

### Some notatios on finite graphs

If G is a finite graph we denote by

- deg(x) the degree of a a point  $x \in G$ ,
- Ram(G) the set of ramification points of G, i.e points with deg(x) ≥ 3.

# Problem



#### Question

### Is there an embedding $X^n \hookrightarrow F_n(X)$ ?

We study the case when X = G is a finite graph.

R.A. Quiñones-Estrella — Embedding cartesian products in symmetric products

# Problem



#### Question

Is there an embedding  $X^n \hookrightarrow F_n(X)$ ?

We study the case when X = G is a finite graph.

R.A. Quiñones-Estrella — Embedding cartesian products in symmetric products

# Embedding products in symmetric product,

### 1 Basic definitions and notations

**2** The case  $\operatorname{Ram}(G) = \emptyset$ 

 $3 \quad G = T_m \text{ is a simple } m \text{-od}$ 

4 Some results

イロト イポト イヨト イヨト 三日

UNAC

m



There are only two cases for wich  $\operatorname{Ram}(G) = \emptyset$ :  $G \simeq [0,1]$  and  $G \simeq S^1$ .

#### Proposition

For each  $n \in \mathbb{N}$  there is an embedding  $[0,1]^n \hookrightarrow F_n([0,1])$ .

$$\mathsf{Ram}(G) = \emptyset$$



#### Theorem

For each  $n \ge 2$  there is no embedding  $\mathbb{T}^n := (S^1)^n \hookrightarrow F_n(S^1)$ .

- For n = 2,  $F_2(S^1)$  is the Möbius strip.
- The case n = 3 is a result of E. Castañeda.
- n ≥ 4: Koyama and Chinen showed that F<sub>n</sub>(S<sup>1</sup>) contains no copy of any orientable n-dimensional topological manifold.

イロト イポト イヨト イヨト 三日

$$\mathsf{Ram}(G) = \emptyset$$



#### Theorem

For each  $n \ge 2$  there is no embedding  $\mathbb{T}^n := (S^1)^n \hookrightarrow F_n(S^1)$ .

# For n = 2, $F_2(S^1)$ is the Möbius strip.

- The case n = 3 is a result of E. Castañeda.
- n ≥ 4: Koyama and Chinen showed that F<sub>n</sub>(S<sup>1</sup>) contains no copy of any orientable n-dimensional topological manifold.

イロト イヨト イヨト イヨト 三日

$$\mathsf{Ram}(G) = \emptyset$$



#### Theorem

For each  $n \ge 2$  there is no embedding  $\mathbb{T}^n := (S^1)^n \hookrightarrow F_n(S^1)$ .

- For n = 2,  $F_2(S^1)$  is the Möbius strip.
- The case *n* = 3 is a result of E. Castañeda.
- n ≥ 4: Koyama and Chinen showed that F<sub>n</sub>(S<sup>1</sup>) contains no copy of any orientable n-dimensional topological manifold.

イロト イヨト イヨト イヨト 三日

 $\mathsf{Ram}(G) = \emptyset$ 



#### Theorem

For each  $n \ge 2$  there is no embedding  $\mathbb{T}^n := (S^1)^n \hookrightarrow F_n(S^1)$ .

- For n = 2,  $F_2(S^1)$  is the Möbius strip.
- The case n = 3 is a result of E. Castañeda.
- $n \ge 4$ : Koyama and Chinen showed that  $F_n(S^1)$  contains no copy of any orientable *n*-dimensional topological manifold.

(ロ) (部) (E) (E) (E) (の)(

# Embedding products in symmetric product,

### 1 Basic definitions and notations

**2** The case  $\operatorname{Ram}(G) = \emptyset$ 

- **3**  $G = T_m$  is a simple *m*-od
- 4 Some results

イロト イポト イヨト イヨト 三日

UNAC

m

# The simple *m*-od



We denote by  $T_m$  the simple *m*-od.

Theorem (E. Castañeda, J. Sánchez)

For  $m \ge 3$  there is no embedding  $T_m^2 \hookrightarrow F_2(T_m)$ .

The proof uses the fact that  $T_m^2$  is homeomorphic to  $Cone(K_{m,m})$ and  $F_2(T_m)$  is homeomorphic to Cone(Z), where Z is homeomorphic to the complete graph  $K_m$  with some arcs at the vertices:



# The simple *m*-od



We denote by  $T_m$  the simple *m*-od.

Theorem (E. Castañeda, J. Sánchez)

For  $m \ge 3$  there is no embedding  $T_m^2 \hookrightarrow F_2(T_m)$ .

The proof uses the fact that  $T_m^2$  is homeomorphic to  $Cone(K_{m,m})$  and  $F_2(T_m)$  is homeomorphic to Cone(Z), where Z is homeomorphic to the complete graph  $K_m$  with some arcs at the vertices:



# The simple *m*-od



We denote by  $T_m$  the simple *m*-od.

Theorem (E. Castañeda, J. Sánchez)

For  $m \ge 3$  there is no embedding  $T_m^2 \hookrightarrow F_2(T_m)$ .

The proof uses the fact that  $T_m^2$  is homeomorphic to  $\text{Cone}(K_{m,m})$ and  $F_2(T_m)$  is homeomorphic to Cone(Z), where Z is homeomorphic to the complete graph  $K_m$  with some arcs at the vertices:



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

### Theorem

There is an embedding  $T_m^2 \hookrightarrow F_3(T_m)$ 

**Proof:**  $F_3(T_m) \simeq \text{Cone}(\mathcal{A})$ , where

 $\mathcal{A} = \{ C \in F_3(T_m) : C \cap \{ x \in T_m : \deg(x) = 1 \} \neq \emptyset \}.$ 

 $\mathcal{A}$  contains a copy of a torus with m transversal discs, say  $\mathcal{T}(m)$  If we get an embedding of  $K_{m,m}$  in  $\mathcal{T}(m)$  we have done because we will get an embedding

$$T_m^2 \simeq \operatorname{Cone}(K_{m,m}) \hookrightarrow \operatorname{Cone}(T(m)) \hookrightarrow \operatorname{Cone}(\mathcal{A}) \simeq F_3(T_m).$$

<ロ> (四) (四) (三) (三) (三) (三)



#### Theore<u>m</u>

# There is an embedding $T_m^2 \hookrightarrow F_3(T_m)$

### **Proof:** $F_3(T_m) \simeq \text{Cone}(\mathcal{A})$ , where

 $\mathcal{A} = \{ C \in F_3(T_m) : C \cap \{ x \in T_m : \deg(x) = 1 \} \neq \emptyset \}.$ 

 $\mathcal{A}$  contains a copy of a torus with m transversal discs, say  $\mathcal{T}(m)$  If we get an embedding of  $K_{m,m}$  in  $\mathcal{T}(m)$  we have done because we will get an embedding

$$T_m^2 \simeq \operatorname{Cone}(K_{m,m}) \hookrightarrow \operatorname{Cone}(T(m)) \hookrightarrow \operatorname{Cone}(\mathcal{A}) \simeq F_3(T_m).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへの



#### Theorem

There is an embedding  $T_m^2 \hookrightarrow F_3(T_m)$ 

**Proof:**  $F_3(T_m) \simeq \text{Cone}(\mathcal{A})$ , where

$$\mathcal{A} = \{ C \in F_3(T_m) : C \cap \{ x \in T_m : \deg(x) = 1 \} \neq \emptyset \}.$$

 $\mathcal{A}$  contains a copy of a torus with m transversal discs, say T(m)If we get an embedding of  $K_{m,m}$  in T(m) we have done because we will get an embedding

$$T_m^2 \simeq \operatorname{Cone}(K_{m,m}) \hookrightarrow \operatorname{Cone}(T(m)) \hookrightarrow \operatorname{Cone}(\mathcal{A}) \simeq F_3(T_m).$$

<ロ> (四) (四) (三) (三) (三) (三)



### Theorem

There is an embedding  $T_m^2 \hookrightarrow F_3(T_m)$ 

**Proof:**  $F_3(T_m) \simeq \text{Cone}(\mathcal{A})$ , where

$$\mathcal{A} = \{ C \in F_3(T_m) : C \cap \{ x \in T_m : \deg(x) = 1 \} \neq \emptyset \}.$$

 $\mathcal{A}$  contains a copy of a torus with m transversal discs, say  $\mathcal{T}(m)$ If we get an embedding of  $\mathcal{K}_{m,m}$  in  $\mathcal{T}(m)$  we have done because we will get an embedding

$$T_m^2 \simeq \operatorname{Cone}(K_{m,m}) \hookrightarrow \operatorname{Cone}(T(m)) \hookrightarrow \operatorname{Cone}(\mathcal{A}) \simeq F_3(T_m).$$



# Embedding of $K_{m,m}$ in T(m)





# Embedding of $K_{m,m}$ in T(m)





R.A. Quiñones-Estrella — Embedding cartesian products in symmetric products

# Embedding products in symmetric product,

### 1 Basic definitions and notations

**2** The case  $\operatorname{Ram}(G) = \emptyset$ 

 $G = T_m \text{ is a simple } m \text{-od}$ 

### 4 Some results

イロト イポト イヨト イヨト 三日



# Some results



#### Theorem

There is no embedding  $T_m^3 \hookrightarrow F_3(T_m)$  for  $m \ge 3$ .

The same ideas can be used to proof

#### Theorem

If G is a graph with  $|\text{Ram}(G)| \ge 2$  there is no embedding

 $G^3 \hookrightarrow F_3(G).$ 

 $\mathsf{R.A.} \ \mathsf{Quiñones}\text{-}\mathsf{Estrella} \ - \ \mathsf{Embedding} \ \mathsf{cartesian} \ \mathsf{products} \ \mathsf{in} \ \mathsf{symmetric} \ \mathsf{products}$ 

<ロ> (四) (四) (注) (注) (注) (三)

# Some results



#### Theorem

There is no embedding  $T_m^3 \hookrightarrow F_3(T_m)$  for  $m \ge 3$ .

The same ideas can be used to proof

#### Theorem

If G is a graph with  $|Ram(G)| \ge 2$  there is no embedding

 $G^3 \hookrightarrow F_3(G).$ 

R.A. Quiñones-Estrella — Embedding cartesian products in symmetric products

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへの

# About the proof



#### Theorem

If G is a graph with  $|Ram(G)| \ge 2$  there is no embedding

 $G^3 \hookrightarrow F_3(G).$ 

The key observation is about the type of neighbourhoods of  $(p, q, r) \in G^3$ , where  $p, q, r \in \text{Ram}(G)$ : there is no embedding

 $T_m \times T_n \times T_s \hookrightarrow (F_2(T_k) \times [0,1]) \cup (T_j \times [0,1]^2)$ if  $k, j \le \min\{m, n, s\}$ 

# About the proof



#### Theorem

If G is a graph with  $|Ram(G)| \ge 2$  there is no embedding

 $G^3 \hookrightarrow F_3(G).$ 

The key observation is about the type of neighbourhoods of  $(p, q, r) \in G^3$ , where  $p, q, r \in \text{Ram}(G)$ : there is no embedding

$$T_m \times T_n \times T_s \hookrightarrow (F_2(T_k) \times [0,1]) \cup (T_j \times [0,1]^2)$$
  
if  $k, j \le \min\{m, n, s\}$ 

<ロ> (四) (四) (三) (三) (三) (三)





#### Lemma

Let G be a finite graph,  $p, q \in \text{Ram}(G)$ ,  $p \neq q$ , with the property that  $\text{deg}(x) \leq \text{deg min}\{\text{deg}(p), \text{deg}(q)\}$  for all  $x \in G$ . Then for each embedding  $h : G^3 \longrightarrow F_3(G)$  we have

 $|h(p,q,x) \cap \operatorname{Ram}(G)| \geq 2$ 

This proof that in the case  $\mathsf{Ram}(G)=2$  there is no embedding.

<ロ> (四) (四) (三) (三) (三) (三)





#### Lemma

Let G be a finite graph,  $p, q \in \text{Ram}(G)$ ,  $p \neq q$ , with the property that  $\text{deg}(x) \leq \text{deg min}\{\text{deg}(p), \text{deg}(q)\}$  for all  $x \in G$ . Then for each embedding  $h : G^3 \longrightarrow F_3(G)$  we have

 $|h(p,q,x) \cap \operatorname{Ram}(G)| \geq 2$ 

This proof that in the case Ram(G) = 2 there is no embedding.



#### Lemma

Let G be a finite graph,  $p, q, r \in \text{Ram}(G)$  distinct parwise and with the property that  $\deg(x) \leq \deg\min\{\deg(p), \deg(q), \deg(r)\}$ for all  $x \in G$ . Then for each embedding  $h : G^3 \longrightarrow F_3(G)$  we have

 $|h(p,q,r) \cap \mathsf{Ram}(G)| = 3$ 

### A consecuence...



### We get a characterization of the arc as follows

#### Corollary

For a finite graph G, there is an embedding  $G^3 \hookrightarrow F_3(G)$  if and only if G is homeomorphic to the arc [0, 1].

イロト イポト イヨト イヨト 三日



### A consecuence...



### We get a characterization of the arc as follows

#### Corollary

For a finite graph G, there is an embedding  $G^3 \hookrightarrow F_3(G)$  if and only if G is homeomorphic to the arc [0, 1].

R.A. Quiñones-Estrella — Embedding cartesian products in symmetric products

イロト イロト イヨト イヨト 三日



- E. Castañeda, Symmetric products as cones and products, Top. Proceedings 28 (2004) p.235-244
- N. Chinen; A. Koyama, On the symmetric hyperspace of the circle, Topology and its Applications. Vol 157 (2010) p. 2613-2621







イロト イポト イモト イモト 一日