Embedding cartesian products in symmetric products

Russell Aarón Quiñones-Estrella

Joint work with

Florencio Corona, Hugo Villanueva and Javier Sánchez

Facultad de Ciencias en Física y Matemáticas
Universidad Autónoma de Chiapas
México
TOPOSYM 2016, Prague

Structure of the talk

1 Basic definitions and notations

2 The case $\operatorname{Ram}(G)=\emptyset$
$3 G=T_{m}$ is a simple m-od

4 Some results

Embedding products in symmetric produ

1 Basic definitions and notations

$3 G=T_{m}$ is a simple m-od

4 Some results

Some notation

Continuum

A continuum X is a nonempty, compact, connected metric space.

Symmetric products

where $2^{X}=\{A \subset X: A$ is closed and nonempty $\}$
2^{X} is endowed with the Hausdorff metrie.

Some notation

Continuum

A continuum X is a nonempty, compact, connected metric space.

Symmetric products

$$
F_{n}(X)=\left\{A \in 2^{X}: A \text { contains at most } n \text { points }\right\}
$$

where $2^{X}=\{A \subset X: A$ is closed and nonempty $\}$.
2^{X} is endowed with the Hausdorff metric.

Some notation

Continuum

A continuum X is a nonempty, compact, connected metric space.

Symmetric products

$$
F_{n}(X)=\left\{A \in 2^{X}: A \text { contains at most } n \text { points }\right\}
$$

where $2^{X}=\{A \subset X: A$ is closed and nonempty $\}$.
2^{X} is endowed with the Hausdorff metric.

Finite graphs

A finite graph is a continuum which can be written as the union of finitely many arcs any two of which are either disjoint or intersect only in one or both of their end points

Some notatios on finite graphs

Finite graphs

A finite graph is a continuum which can be written as the union of finitely many arcs any two of which are either disjoint or intersect only in one or both of their end points

Some notatios on finite graphs
If G is a finite graph we denote by

- $\operatorname{deg}(x)$ the degree of a a point $x \in G$,

Finite graphs

A finite graph is a continuum which can be written as the union of finitely many arcs any two of which are either disjoint or intersect only in one or both of their end points

Some notatios on finite graphs
If G is a finite graph we denote by

- $\operatorname{deg}(x)$ the degree of a a point $x \in G$,
- $\operatorname{Ram}(G)$ the set of ramification points of G, i.e points with $\operatorname{deg}(x) \geq 3$.

Problem

Question

Is there an embedding $X^{n} \hookrightarrow F_{n}(X)$?
We study the case when $X=G$ is a finite graph

Problem

Question
 Is there an embedding $X^{n} \hookrightarrow F_{n}(X)$?

We study the case when $X=G$ is a finite graph.

Embedding products in symmetric produ

1 Basic definitions and notations

2 The case $\operatorname{Ram}(G)=\emptyset$
$3 G=T_{m}$ is a simple m-od

4 Some results

$\operatorname{Ram}(G)=\emptyset$

There are only two cases for wich $\operatorname{Ram}(G)=\emptyset: G \simeq[0,1]$ and $G \simeq S^{1}$.

Proposition
For each $n \in \mathbb{N}$ there is an embedding $[0,1]^{n} \hookrightarrow F_{n}([0,1])$.

$\operatorname{Ram}(G)=\emptyset$

Theorem

For each $n \geq 2$ there is no embedding $\mathbb{T}^{n}:=\left(S^{1}\right)^{n} \hookrightarrow F_{n}\left(S^{1}\right)$.

$\operatorname{Ram}(G)=\emptyset$

Theorem

For each $n \geq 2$ there is no embedding $\mathbb{T}^{n}:=\left(S^{1}\right)^{n} \hookrightarrow F_{n}\left(S^{1}\right)$.

- For $n=2, F_{2}\left(S^{1}\right)$ is the Möbius strip.
- The case $n=3$ is a result of E . Castañeda.
$n \geq 4$: Koyama and Chinen showed that $F_{n}\left(S^{1}\right)$ contains no copy of any orientable n-dimensional topological manifold.

$\operatorname{Ram}(G)=\emptyset$

Theorem

For each $n \geq 2$ there is no embedding $\mathbb{T}^{n}:=\left(S^{1}\right)^{n} \hookrightarrow F_{n}\left(S^{1}\right)$.

- For $n=2, F_{2}\left(S^{1}\right)$ is the Möbius strip.
- The case $n=3$ is a result of E. Castañeda.
n- $n \geq 4$: Koyama and Chinen showed that $F_{n}\left(S^{1}\right)$ contains no copy of any orientable n-dimensional topological manifold.

$\operatorname{Ram}(G)=\emptyset$

Theorem

For each $n \geq 2$ there is no embedding $\mathbb{T}^{n}:=\left(S^{1}\right)^{n} \hookrightarrow F_{n}\left(S^{1}\right)$.

- For $n=2, F_{2}\left(S^{1}\right)$ is the Möbius strip.
- The case $n=3$ is a result of E. Castañeda.
- $n \geq 4$: Koyama and Chinen showed that $F_{n}\left(S^{1}\right)$ contains no copy of any orientable n-dimensional topological manifold.

Embedding products in symmetric produ

1 Basic definitions and notations

2 The case $\operatorname{Ram}(G)=\emptyset$
$3 G=T_{m}$ is a simple m-od

4 Some results

The simple m-od

We denote by T_{m} the simple m-od.

Theorem (E. Castañeda, J. Sánchez)

For $m \geq 3$ there is no embedding
The proof uses the fact that T_{m}^{2} is homeomorphic to Cone $\left(K_{m, m}\right)$ and $F_{2}\left(T_{m}\right)$ is homeomorphic to Cone (Z), where Z is
homeomorphic to the complete graph K_{m} with some arcs at the vertices:

The simple m-od

We denote by T_{m} the simple m-od.
Theorem (E. Castañeda, J. Sánchez)
For $m \geq 3$ there is no embedding $T_{m}^{2} \hookrightarrow F_{2}\left(T_{m}\right)$.
The proof uses the fact that T_{m}^{2} is homeomorphic to Cone $\left(K_{m, m}\right)$ and $F_{2}\left(T_{m}\right)$ is homeomorphic to Cone (Z), where Z is
homeomorphic to the complete graph K_{m} with some arcs at the vertices:

The simple m-od

We denote by T_{m} the simple m-od.

Theorem (E. Castañeda, J. Sánchez)

For $m \geq 3$ there is no embedding $T_{m}^{2} \hookrightarrow F_{2}\left(T_{m}\right)$.
The proof uses the fact that T_{m}^{2} is homeomorphic to Cone $\left(K_{m, m}\right)$ and $F_{2}\left(T_{m}\right)$ is homeomorphic to Cone (Z), where Z is homeomorphic to the complete graph K_{m} with some arcs at the vertices:

Theorem

There is an embedding $T_{m}^{2} \hookrightarrow F_{3}\left(T_{m}\right)$
Proof: $F_{3}\left(T_{m}\right) \simeq$ Cone (\mathcal{A}), where

$$
\mathcal{A}=\left\{C \in F_{3}\left(T_{m}\right): C \cap\left\{x \in T_{m}: \operatorname{deg}(x)=1\right\} \neq \emptyset\right\}
$$

\mathcal{A} contains a copy of a torus with m transversal discs, say $T(m)$ If we get an embedding of $K_{m, m}$ in $T(m)$ we have done because we will get an embedding

$$
T_{m}^{2} \simeq \operatorname{Cone}\left(K_{m, m}\right) \hookrightarrow \operatorname{Cone}(T(m)) \hookrightarrow \operatorname{Cone}(\mathcal{A}) \simeq F_{3}\left(T_{m}\right)
$$

Theorem
There is an embedding $T_{m}^{2} \hookrightarrow F_{3}\left(T_{m}\right)$
Proof: $F_{3}\left(T_{m}\right) \simeq \operatorname{Cone}(\mathcal{A})$, where

$$
\mathcal{A}=\left\{C \in F_{3}\left(T_{m}\right): C \cap\left\{x \in T_{m}: \operatorname{deg}(x)=1\right\} \neq \emptyset\right\}
$$

\mathcal{A} contains a copy of a torus with m transversal discs, say $T(m)$ If we get an embedding of $K_{m, m}$ in $T(m)$ we have done because we will get an embedding

$$
T_{m}^{2} \simeq \operatorname{Cone}\left(K_{m, m}\right) \hookrightarrow \operatorname{Cone}(T(m)) \hookrightarrow \operatorname{Cone}(\mathcal{A}) \simeq F_{3}\left(T_{m}\right)
$$

Theorem

There is an embedding $T_{m}^{2} \hookrightarrow F_{3}\left(T_{m}\right)$
Proof: $F_{3}\left(T_{m}\right) \simeq \operatorname{Cone}(\mathcal{A})$, where

$$
\mathcal{A}=\left\{C \in F_{3}\left(T_{m}\right): C \cap\left\{x \in T_{m}: \operatorname{deg}(x)=1\right\} \neq \emptyset\right\} .
$$

\mathcal{A} contains a copy of a torus with m transversal discs, say $T(m)$ If we get an embedding of $K_{m, m}$ in $T(m)$ we have done because we will get an embedding

Theorem

There is an embedding $T_{m}^{2} \hookrightarrow F_{3}\left(T_{m}\right)$
Proof: $F_{3}\left(T_{m}\right) \simeq \operatorname{Cone}(\mathcal{A})$, where

$$
\mathcal{A}=\left\{C \in F_{3}\left(T_{m}\right): C \cap\left\{x \in T_{m}: \operatorname{deg}(x)=1\right\} \neq \emptyset\right\} .
$$

\mathcal{A} contains a copy of a torus with m transversal discs, say $T(m)$ If we get an embedding of $K_{m, m}$ in $T(m)$ we have done because we will get an embedding

$$
T_{m}^{2} \simeq \operatorname{Cone}\left(K_{m, m}\right) \hookrightarrow \operatorname{Cone}(T(m)) \hookrightarrow \operatorname{Cone}(\mathcal{A}) \simeq F_{3}\left(T_{m}\right)
$$

Embedding of $K_{m, m}$ in $T(m)$

Embedding products in symmetric produ

1 Basic definitions and notations

2 The case $\operatorname{Ram}(G)=\emptyset$
$3 G=T_{m}$ is a simple m-od

4 Some results

Some results

Theorem

There is no embedding $T_{m}^{3} \hookrightarrow F_{3}\left(T_{m}\right)$ for $m \geq 3$.
The same ideas can be used to proof
Theorem
If G is a graph with $|\operatorname{Ram}(G)| \geq 2$ there is no embedding

$$
G^{3} \hookrightarrow F_{3}(G) .
$$

Some results

Theorem

There is no embedding $T_{m}^{3} \hookrightarrow F_{3}\left(T_{m}\right)$ for $m \geq 3$.
The same ideas can be used to proof

Theorem

If G is a graph with $|\operatorname{Ram}(G)| \geq 2$ there is no embedding

$$
G^{3} \hookrightarrow F_{3}(G) .
$$

About the proof

Theorem

If G is a graph with $|\operatorname{Ram}(G)| \geq 2$ there is no embedding

$$
G^{3} \hookrightarrow F_{3}(G) .
$$

The key observation is about the type of neighbourhoods of $(p, q, r) \in G^{3}$, where $p, q, r \in \operatorname{Ram}(G)$: there is no embedding

$$
T_{m} \times T_{n} \times T_{s} \hookrightarrow\left(F_{2}\left(T_{k}\right) \times[0,1]\right) \cup\left(T_{j} \times[0,1]^{2}\right)
$$

if $k, j \leq \min \{m, n, s\}$

About the proof

Theorem

If G is a graph with $|\operatorname{Ram}(G)| \geq 2$ there is no embedding

$$
G^{3} \hookrightarrow F_{3}(G) .
$$

The key observation is about the type of neighbourhoods of $(p, q, r) \in G^{3}$, where $p, q, r \in \operatorname{Ram}(G)$: there is no embedding

$$
T_{m} \times T_{n} \times T_{s} \hookrightarrow\left(F_{2}\left(T_{k}\right) \times[0,1]\right) \cup\left(T_{j} \times[0,1]^{2}\right)
$$

if $k, j \leq \min \{m, n, s\}$

Lemma

Let G be a finite graph, $p, q \in \operatorname{Ram}(G), p \neq q$, with the property that $\operatorname{deg}(x) \leq \operatorname{deg} \min \{\operatorname{deg}(p), \operatorname{deg}(q)\}$ for all $x \in G$. Then for each embedding $h: G^{3} \longrightarrow F_{3}(G)$ we have

$$
|h(p, q, x) \cap \operatorname{Ram}(G)| \geq 2
$$

This proof that in the case $\operatorname{Ram}(G)=2$ there is no embedding

Lemma

Let G be a finite graph, $p, q \in \operatorname{Ram}(G), p \neq q$, with the property that $\operatorname{deg}(x) \leq \operatorname{deg} \min \{\operatorname{deg}(p), \operatorname{deg}(q)\}$ for all $x \in G$. Then for each embedding $h: G^{3} \longrightarrow F_{3}(G)$ we have

$$
|h(p, q, x) \cap \operatorname{Ram}(G)| \geq 2
$$

This proof that in the case $\operatorname{Ram}(G)=2$ there is no embedding.

Lemma
Let G be a finite graph, $p, q, r \in \operatorname{Ram}(G)$ distinct parwise and with the property that $\operatorname{deg}(x) \leq \operatorname{deg} \min \{\operatorname{deg}(p), \operatorname{deg}(q), \operatorname{deg}(r)\}$ for all $x \in G$. Then for each embedding $h: G^{3} \longrightarrow F_{3}(G)$ we have

$$
|h(p, q, r) \cap \operatorname{Ram}(G)|=3
$$

A consecuence...

We get a characterization of the arc as follows

Carollary

For a finite graph G, there is an embedding $G^{3} \hookrightarrow F_{3}(G)$ if and only if G is homeomorphic to the arc $[0,1]$

A consecuence...

We get a characterization of the arc as follows

Corollary

For a finite graph G, there is an embedding $G^{3} \hookrightarrow F_{3}(G)$ if and only if G is homeomorphic to the arc $[0,1]$.
E. Castañeda, Symmetric products as cones and products, Top. Proceedings 28 (2004) p. 235-244

圊 N. Chinen; A. Koyama, On the symmetric hyperspace of the circle, Topology and its Applications. Vol 157 (2010) p. 2613-2621

Thank you

