On lineability of classes of functions with various degrees of (dis)continuity

Krzysztof Płotka University of Scranton

Prague, July 26, 2016

Main Results

Lineability Functions

Lineability

Problem

Krzysztof Płotka

Definitions and Examples Theorems Lineability Main Results Functions Proofs

Lineability

Problem

Let \mathcal{V} be a vector space and $\mathcal{W} \subseteq \mathcal{V}$ be its subset. Find the "largest" subspace contained in $\mathcal{W} \cup \{0\}$.

Lineability Functions

Lineability

Problem

Let \mathcal{V} be a vector space and $\mathcal{W} \subseteq \mathcal{V}$ be its subset. Find the "largest" subspace contained in $\mathcal{W} \cup \{0\}$.

Definitions

Krzysztof Płotka

Lineability Functions

Lineability

Problem

Let \mathcal{V} be a vector space and $\mathcal{W} \subseteq \mathcal{V}$ be its subset. Find the "largest" subspace contained in $\mathcal{W} \cup \{0\}$.

Definitions

Let $\mathcal{F} \subseteq \mathbb{R}^{\mathbb{R}}$, $E \subseteq \mathbb{R}$ be a field, and κ be a cardinal number. We say that \mathcal{F} is κ -lineable over E if $\mathcal{F} \cup \{0\}$ contains subspace of $\mathbb{R}^{\mathbb{R}}$ (considered as a space over E) of dimension κ .

Lineability Functions

Lineability

Problem

Let \mathcal{V} be a vector space and $\mathcal{W} \subseteq \mathcal{V}$ be its subset. Find the "largest" subspace contained in $\mathcal{W} \cup \{0\}$.

Definitions

Let $\mathcal{F} \subseteq \mathbb{R}^{\mathbb{R}}$, $E \subseteq \mathbb{R}$ be a field, and κ be a cardinal number. We say that \mathcal{F} is κ -lineable over E if $\mathcal{F} \cup \{0\}$ contains subspace of $\mathbb{R}^{\mathbb{R}}$ (considered as a space over E) of dimension κ .

We also define $\mathcal{L}_E(\mathcal{F})$, the lineability of the family \mathcal{F} over the field E as

 $\mathcal{L}_E(\mathcal{F}) = \min\{\kappa \colon \mathcal{F} \text{ is not } \kappa \text{-lineable over } E\}.$

In the case $E = \mathbb{R}$ we simply write $\mathcal{L}(\mathcal{F})$.

Definitions and Examples Theorems Lineability Main Results Functions Proofs

Lineability

Problem

Let \mathcal{V} be a vector space and $\mathcal{W} \subseteq \mathcal{V}$ be its subset. Find the "largest" subspace contained in $\mathcal{W} \cup \{0\}$.

Definitions

Let $\mathcal{F} \subseteq \mathbb{R}^{\mathbb{R}}$, $E \subseteq \mathbb{R}$ be a field, and κ be a cardinal number. We say that \mathcal{F} is κ -lineable over E if $\mathcal{F} \cup \{0\}$ contains subspace of $\mathbb{R}^{\mathbb{R}}$ (considered as a space over E) of dimension κ .

We also define $\mathcal{L}_E(\mathcal{F})$, the lineability of the family \mathcal{F} over the field E as

 $\mathcal{L}_E(\mathcal{F}) = \min\{\kappa \colon \mathcal{F} \text{ is not } \kappa \text{-lineable over } E\}.$

In the case $E = \mathbb{R}$ we simply write $\mathcal{L}(\mathcal{F})$.

Main Results

Lineability Functions

Lineability - examples

Examples

Krzysztof Płotka

Proofs

Lineability Functions

Lineability - examples

Examples

Let $\mathcal{W} \subseteq \mathcal{C}[0,1]$ be the set of continuous nowhere differentiable functions on [0,1] (Weiestrass' monsters).

> Main Results Proofs

Lineability Functions

Lineability - examples

Examples

Let $\mathcal{W} \subseteq \mathcal{C}[0,1]$ be the set of continuous nowhere differentiable functions on [0,1] (Weiestrass' monsters).

In 1966, Gurariy showed that W is lineable (ω-lineable). In 1999, Fonf, Gurariy, and Kadeč showed that W is spaceable (W ∪ {0} contains a closed infinite dimensional subspace of C[0, 1]).

> Main Results Proofs

Lineability Functions

Lineability - examples

Examples

Let $\mathcal{W} \subseteq \mathcal{C}[0,1]$ be the set of continuous nowhere differentiable functions on [0,1] (Weiestrass' monsters).

- In 1966, Gurariy showed that W is lineable (ω-lineable). In 1999, Fonf, Gurariy, and Kadeč showed that W is spaceable (W ∪ {0} contains a closed infinite dimensional subspace of C[0, 1]).
- In 2013, Jiménez-Rodríguez, Muñoz-Fernández, and Seoanne-Sepúlveda showed that W is c-lineable.

> Main Results Proofs

Lineability Functions

Lineability - examples

Examples

Let $\mathcal{W} \subseteq \mathcal{C}[0,1]$ be the set of continuous nowhere differentiable functions on [0,1] (Weiestrass' monsters).

- In 1966, Gurariy showed that W is lineable (ω-lineable). In 1999, Fonf, Gurariy, and Kadeč showed that W is spaceable (W ∪ {0} contains a closed infinite dimensional subspace of C[0, 1]).
- In 2013, Jiménez-Rodríguez, Muñoz-Fernández, and Seoanne-Sepúlveda showed that W is c-lineable.

Main Results

Lineability Functions

Lineability - examples

Examples

Krzysztof Płotka

Functions

Lineability - examples

Examples

It is known (White, 1960s) that if $f : \mathbb{R} \to \mathbb{R}$ maps compact sets into compact sets and connected sets into connected sets then f is continuous.

Definitions and Examples Theorems Lineability Main Results Functions Proofs

Lineability - examples

Examples

It is known (White, 1960s) that if $f : \mathbb{R} \to \mathbb{R}$ maps compact sets into compact sets and connected sets into connected sets then f is continuous.

In 2013, Gámez-Merino, Muñoz-Fernández, and Seoanne-Sepúlveda showed that:

Lineability Functions

Lineability - examples

Examples

It is known (White, 1960s) that if $f : \mathbb{R} \to \mathbb{R}$ maps compact sets into compact sets and connected sets into connected sets then f is continuous.

In 2013, Gámez-Merino, Muñoz-Fernández, and Seoanne-Sepúlveda showed that:

• There exists 2^c-dimensional subspace of ℝ^ℝ whose every nonzero element is a nowhere continuous function which transforms connected sets into connected sets.

Lineability Functions

Lineability - examples

Examples

It is known (White, 1960s) that if $f : \mathbb{R} \to \mathbb{R}$ maps compact sets into compact sets and connected sets into connected sets then f is continuous.

In 2013, Gámez-Merino, Muñoz-Fernández, and Seoanne-Sepúlveda showed that:

- There exists 2^c-dimensional subspace of ℝ^ℝ whose every nonzero element is a nowhere continuous function which transforms connected sets into connected sets.
- There exists 2^c-dimensional subspace of ℝ^ℝ whose every nonzero element is a nowhere continuous function which transforms compact sets into compact sets.

Krzysztof Płotka

Lineability Functions

Lineability - examples

Examples

It is known (White, 1960s) that if $f : \mathbb{R} \to \mathbb{R}$ maps compact sets into compact sets and connected sets into connected sets then f is continuous.

In 2013, Gámez-Merino, Muñoz-Fernández, and Seoanne-Sepúlveda showed that:

- There exists 2^c-dimensional subspace of ℝ^ℝ whose every nonzero element is a nowhere continuous function which transforms connected sets into connected sets.
- There exists 2^c-dimensional subspace of ℝ^ℝ whose every nonzero element is a nowhere continuous function which transforms compact sets into compact sets.

Krzysztof Płotka

Main Results

Proofs

Lineability Functions

Lineability - examples

Examples

Krzysztof Płotka

Definitions and Examples Theorems Lineability Main Results Functions Proofs

Lineability - examples

Examples

Let $\mathcal{D}\mathcal{N}\mathcal{M}$ be the set of differentiable nowhere monotone functions.

Krzysztof Płotka

> Main Results Proofs

Lineability Functions

Lineability - examples

Examples

Let \mathcal{DNM} be the set of differentiable nowhere monotone functions.

 In 2004, Aron, Gurariy, and Seoanne-Sepúlveda showed that *DNM*(ℝ) is lineable. The result was later improved to show that *DNM*([*a*, *b*]) contains an infinitely dimensional dense subspace of *C*([*a*, *b*]). However, *DNM*([*a*, *b*]) isn't spaceable.

> Main Results Proofs

Lineability Functions

Lineability - examples

Examples

Let \mathcal{DNM} be the set of differentiable nowhere monotone functions.

- In 2004, Aron, Gurariy, and Seoanne-Sepúlveda showed that *DNM*(ℝ) is lineable. The result was later improved to show that *DNM*([*a*, *b*]) contains an infinitely dimensional dense subspace of *C*([*a*, *b*]). However, *DNM*([*a*, *b*]) isn't spaceable.
- In 2010, it was proved that $\mathcal{DNM}(\mathbb{R})$ is c-lineable.

> Main Results Proofs

Lineability Functions

Lineability - examples

Examples

Let \mathcal{DNM} be the set of differentiable nowhere monotone functions.

- In 2004, Aron, Gurariy, and Seoanne-Sepúlveda showed that *DNM*(ℝ) is lineable. The result was later improved to show that *DNM*([*a*, *b*]) contains an infinitely dimensional dense subspace of *C*([*a*, *b*]). However, *DNM*([*a*, *b*]) isn't spaceable.
- In 2010, it was proved that $\mathcal{DNM}(\mathbb{R})$ is \mathfrak{c} -lineable.

Main Results

Lineability Functions

Families of functions

Definitions

Krzysztof Płotka

Lineability Functions

Families of functions

Definitions

A function $f: \mathbb{R} \to \mathbb{R}$ is:

Lineability Functions

Families of functions

Definitions

- A function $f: \mathbb{R} \to \mathbb{R}$ is:
 - almost continuous if each open subset of ℝ² containing f contains also the graph of a continuous function (f ∈ AC);

Lineability Functions

Families of functions

Definitions

- A function $f: \mathbb{R} \to \mathbb{R}$ is:
 - almost continuous if each open subset of ℝ² containing f contains also the graph of a continuous function (f ∈ AC);
 - Darboux if f[K] is a connected subset of ℝ (i.e., an interval) for every connected subset K ⊆ ℝ (f ∈ D);

Lineability Functions

Families of functions

Definitions

A function $f: \mathbb{R} \to \mathbb{R}$ is:

- almost continuous if each open subset of ℝ² containing f contains also the graph of a continuous function (f ∈ AC);
- Darboux if f[K] is a connected subset of R (i.e., an interval) for every connected subset K ⊆ R (f ∈ D);
- Sierpiński-Zygmund if for every set $Y \subseteq \mathbb{R}$ of cardinality continuum $\mathfrak{c}, f | Y$ is discontinuous $(f \in SZ)$.

Lineability Functions

Families of functions

Definitions

A function $f: \mathbb{R} \to \mathbb{R}$ is:

- almost continuous if each open subset of ℝ² containing f contains also the graph of a continuous function (f ∈ AC);
- **Darboux** if f[K] is a connected subset of \mathbb{R} (i.e., an interval) for every connected subset $K \subseteq \mathbb{R}$ ($f \in D$);
- Sierpiński-Zygmund if for every set Y ⊆ ℝ of cardinality continuum c, f|Y is discontinuous (f ∈ SZ).

Note: For any function $f : \mathbb{R} \to \mathbb{R}$, there exists a dense subset $S \subseteq \mathbb{R}$ such that the function f | S is continuous (Blumberg, 1922). AC \subsetneq D. In addition, AC \cap SZ $\neq \emptyset$ and D \cap SZ $\neq \emptyset$ are both independent of ZFC.

Lineability Functions

Families of functions

Definitions

- A function $f: \mathbb{R} \to \mathbb{R}$ is:
 - almost continuous if each open subset of ℝ² containing f contains also the graph of a continuous function (f ∈ AC);
 - Darboux if f[K] is a connected subset of R (i.e., an interval) for every connected subset K ⊆ R (f ∈ D);
 - Sierpiński-Zygmund if for every set $Y \subseteq \mathbb{R}$ of cardinality continuum \mathfrak{c} , f|Y is discontinuous $(f \in SZ)$.

Note: For any function $f : \mathbb{R} \to \mathbb{R}$, there exists a dense subset $S \subseteq \mathbb{R}$ such that the function f | S is continuous (Blumberg, 1922). AC \subsetneq D. In addition, AC \cap SZ $\neq \emptyset$ and D \cap SZ $\neq \emptyset$ are both independent of ZFC.

Lineability for AC, D, and SZ

Lineability for AC, D, and SZ

Theorem (Natkaniec)

$$\mathcal{L}(AC) = \mathcal{L}(D) = (2^{\mathfrak{c}})^+.$$

Lineability for AC, D, and SZ

Lineability for AC, D, and SZ

Theorem (Natkaniec)

 $\mathcal{L}(AC) = \mathcal{L}(D) = (2^{\mathfrak{c}})^+.$

Theorem (Bartoszewicz, Głąb, Pellegrino, Seoane-Sepúlveda)

 $\mathcal{L}(SZ) = (2^{c})^{+}$, provided there exists an almost disjoint family in \mathbb{R} of cardinality of 2^{c} .

Lineability for AC, D, and SZ

Lineability for AC, D, and SZ

Theorem (Natkaniec)

 $\mathcal{L}(AC) = \mathcal{L}(D) = (2^{\mathfrak{c}})^+.$

Theorem (Bartoszewicz, Głąb, Pellegrino, Seoane-Sepúlveda)

 $\mathcal{L}(SZ) = (2^{\mathfrak{c}})^+$, provided there exists an almost disjoint family in \mathbb{R} of cardinality of $2^{\mathfrak{c}}$.

Theorem (Gámez-Merino, Seoane-Sepúlveda)

L(SZ) = (2^c)⁺ is equivalent to the existence of an almost disjoint family in ℝ of cardinality of 2^c.

Lineability for AC, D, and SZ

Lineability for AC, D, and SZ

Theorem (Natkaniec)

 $\mathcal{L}(AC) = \mathcal{L}(D) = (2^{\mathfrak{c}})^+.$

Theorem (Bartoszewicz, Głąb, Pellegrino, Seoane-Sepúlveda)

 $\mathcal{L}(\mathrm{SZ})=(2^{\mathfrak{c}})^+,$ provided there exists an almost disjoint family in $\mathbb R$ of cardinality of $2^{\mathfrak{c}}.$

Theorem (Gámez-Merino, Seoane-Sepúlveda)

- *L*(SZ) = (2^c)⁺ is equivalent to the existence of an almost disjoint family in ℝ of cardinality of 2^c.
- $\mathcal{L}(SZ) = (2^{\mathfrak{c}})^+$ is independent of ZFC.

Lineability for AC, D, and SZ

Other structures

Krzysztof Płotka

Lineability for $\mathrm{AC},\mathrm{D},$ and SZ

Other structures

Fact

If $\mathcal{F} \subseteq \mathbb{R}^{\mathbb{R}}$ is star-like (i.e., $\alpha \mathcal{F} \subseteq \mathcal{F}$ for every $\alpha \in \mathbb{R} \setminus \{0\}$), then every additive group contained in $\mathcal{F} \cup \{0\}$ has cardinality less than $\mathcal{L}_{\mathbb{Q}}(\mathcal{F})$. Also, $\mathcal{L}_{\mathbb{Q}}(\mathcal{F}) \geq \mathfrak{c}^+$ for a nonempty \mathcal{F} .

Lineability for AC, D, and SZ

Other structures

Fact

If $\mathcal{F} \subseteq \mathbb{R}^{\mathbb{R}}$ is star-like (i.e., $\alpha \mathcal{F} \subseteq \mathcal{F}$ for every $\alpha \in \mathbb{R} \setminus \{0\}$), then every additive group contained in $\mathcal{F} \cup \{0\}$ has cardinality less than $\mathcal{L}_{\mathbb{Q}}(\mathcal{F})$. Also, $\mathcal{L}_{\mathbb{Q}}(\mathcal{F}) \geq \mathfrak{c}^+$ for a nonempty \mathcal{F} .

Theorem (Gámez-Merino, Seoane-Sepúlveda)

Let $\mathfrak{c} < \kappa \leq 2^{\mathfrak{c}}$. Then $\mathcal{L}(SZ) > \kappa$ is equivalent to the existence of an additive group in $SZ \cup \{0\}$ of cardinality κ .

Lineability for AC, D, and SZ

Other structures

Fact

If $\mathcal{F} \subseteq \mathbb{R}^{\mathbb{R}}$ is star-like (i.e., $\alpha \mathcal{F} \subseteq \mathcal{F}$ for every $\alpha \in \mathbb{R} \setminus \{0\}$), then every additive group contained in $\mathcal{F} \cup \{0\}$ has cardinality less than $\mathcal{L}_{\mathbb{Q}}(\mathcal{F})$. Also, $\mathcal{L}_{\mathbb{Q}}(\mathcal{F}) \geq \mathfrak{c}^+$ for a nonempty \mathcal{F} .

Theorem (Gámez-Merino, Seoane-Sepúlveda)

Let $\mathfrak{c} < \kappa \leq 2^{\mathfrak{c}}$. Then $\mathcal{L}(SZ) > \kappa$ is equivalent to the existence of an additive group in $SZ \cup \{0\}$ of cardinality κ .

Question

Does SZ contain an additive semigroup of cardinality 2^c in ZFC?

Krzysztof Płotka

Lineability for AC, D, and SZ

Other structures

Fact

If $\mathcal{F} \subseteq \mathbb{R}^{\mathbb{R}}$ is star-like (i.e., $\alpha \mathcal{F} \subseteq \mathcal{F}$ for every $\alpha \in \mathbb{R} \setminus \{0\}$), then every additive group contained in $\mathcal{F} \cup \{0\}$ has cardinality less than $\mathcal{L}_{\mathbb{Q}}(\mathcal{F})$. Also, $\mathcal{L}_{\mathbb{Q}}(\mathcal{F}) \geq \mathfrak{c}^+$ for a nonempty \mathcal{F} .

Theorem (Gámez-Merino, Seoane-Sepúlveda)

Let $\mathfrak{c} < \kappa \leq 2^{\mathfrak{c}}$. Then $\mathcal{L}(SZ) > \kappa$ is equivalent to the existence of an additive group in $SZ \cup \{0\}$ of cardinality κ .

Question

Does SZ contain an additive semigroup of cardinality 2^c in ZFC?

Krzysztof Płotka

Semigroup in $AC \cap SZ$ and $\mathcal{L}(AC \cap SZ)$

Main Results

Theorem

• SZ contains an additive semigroup of cardinality 2^c.

Semigroup in $AC \cap SZ$ and $\mathcal{L}(AC \cap SZ)$

Main Results

Theorem

- SZ contains an additive semigroup of cardinality 2^c.
- Assuming Continuum Hypothesis (CH), AC ∩ SZ contains an additive semigroup of cardinality 2^c.

Semigroup in $AC \cap SZ$ and $\mathcal{L}(AC \cap SZ)$

Main Results

Theorem

- SZ contains an additive semigroup of cardinality 2^c.
- Assuming Continuum Hypothesis (CH), AC ∩ SZ contains an additive semigroup of cardinality 2^c.

Theorem

Assume CH. Then $\mathcal{L}(AC \cap SZ) > \mathfrak{c}^+$.

Semigroup in $AC \cap SZ$ and $\mathcal{L}(AC \cap SZ)$

Main Results

Theorem

- SZ contains an additive semigroup of cardinality 2^c.
- Assuming Continuum Hypothesis (CH), AC ∩ SZ contains an additive semigroup of cardinality 2^c.

Theorem

Assume CH. Then $\mathcal{L}(AC \cap SZ) > \mathfrak{c}^+$.

Corollary

• It is consistent with ZFC that $\mathcal{L}(AC \cap SZ) = \mathcal{L}(SZ)$.

Semigroup in $AC \cap SZ$ and $\mathcal{L}(AC \cap SZ)$

Main Results

Theorem

- SZ contains an additive semigroup of cardinality 2^c.
- Assuming Continuum Hypothesis (CH), AC ∩ SZ contains an additive semigroup of cardinality 2^c.

Theorem

Assume CH. Then $\mathcal{L}(AC \cap SZ) > \mathfrak{c}^+$.

Corollary

- It is consistent with ZFC that $\mathcal{L}(AC \cap SZ) = \mathcal{L}(SZ)$.
- It is consistent with ZFC that $\mathcal{L}(AC \cap SZ) < \mathcal{L}(SZ)$.

Semigroup in $AC \cap SZ$ and $\mathcal{L}(AC \cap SZ)$

Main Results

Theorem

- SZ contains an additive semigroup of cardinality 2°.
- Assuming Continuum Hypothesis (CH), AC ∩ SZ contains an additive semigroup of cardinality 2^c.

Theorem

Assume CH. Then $\mathcal{L}(AC \cap SZ) > \mathfrak{c}^+$.

Corollary

- It is consistent with ZFC that $\mathcal{L}(AC \cap SZ) = \mathcal{L}(SZ)$.
- It is consistent with ZFC that $\mathcal{L}(AC \cap SZ) < \mathcal{L}(SZ)$.

Open Problem

Is $AC \cap SZ \neq \emptyset$ and $\mathcal{L}(AC \cap SZ) < \mathcal{L}(SZ)$ consistent with ZFC?

Krzysztof Płotka

Semigroups in SZ and $\mathrm{AC}\cap\mathrm{SZ}$ (CH) $\mathcal{L}(\mathrm{AC}\cap\mathrm{SZ})>\mathfrak{c}^+$

Existence of large semigroups in SZ and $AC \cap SZ$

Proof

• Semigroup of cardinality 2^c in SZ

 $\begin{array}{l} \mbox{Semigroups in SZ and } AC\cap SZ \\ (CH) \ \mathcal{L}(AC\cap SZ) > \mathfrak{c}^+ \end{array}$

Existence of large semigroups in SZ and $AC \cap SZ$

Proof

 Semigroup of cardinality 2^c in SZ Let h ∈ SZ. Then h + g ∈ SZ for any g: ℝ → ℤ and {zh + g: z ∈ ℤ₊, g: ℝ → ℤ} is the desired semigroup.

 $\begin{array}{l} \mbox{Semigroups in SZ and } AC\cap SZ \\ (CH) \ \mathcal{L}(AC\cap SZ) > \mathfrak{c}^+ \end{array}$

Existence of large semigroups in SZ and $AC \cap SZ$

- Semigroup of cardinality 2^c in SZ Let h ∈ SZ. Then h + g ∈ SZ for any g : ℝ → ℤ and {zh + g : z ∈ ℤ₊, g : ℝ → ℤ} is the desired semigroup.
- (CH) Semigroup of cardinality $2^{\mathfrak{c}}$ in $\mathrm{AC} \cap \mathrm{SZ}$

 $\begin{array}{l} \mbox{Semigroups in SZ and } AC\cap SZ \\ (CH) \ \mathcal{L}(AC\cap SZ) > \mathfrak{c}^+ \end{array}$

Existence of large semigroups in SZ and $AC \cap SZ$

- Semigroup of cardinality 2^c in SZ Let $h \in SZ$. Then $h + g \in SZ$ for any $g : \mathbb{R} \to \mathbb{Z}$ and $\{zh + g : z \in \mathbb{Z}_+, g : \mathbb{R} \to \mathbb{Z}\}$ is the desired semigroup.
- (CH) Semigroup of cardinality 2^c in AC ∩ SZ Assuming CH, there is a function h ∈ AC ∩ SZ and an X ⊆ ℝ of cardinality c which is h-negligible with respect to AC.

 $\begin{array}{l} \mbox{Semigroups in SZ and } AC\cap SZ \\ (CH) \ \mathcal{L}(AC\cap SZ) > \mathfrak{c}^+ \end{array}$

Existence of large semigroups in SZ and $AC \cap SZ$

- Semigroup of cardinality 2^c in SZ Let h ∈ SZ. Then h + g ∈ SZ for any g: ℝ → ℤ and {zh + g: z ∈ ℤ₊, g: ℝ → ℤ} is the desired semigroup.
- (CH) Semigroup of cardinality 2^c in AC ∩ SZ Assuming CH, there is a function h ∈ AC ∩ SZ and an X ⊆ ℝ of cardinality c which is h-negligible with respect to AC. Then h + g ∈ AC ∩ SZ for any g: ℝ → Z equal 0 on (ℝ \ X) and {zh + g: z ∈ Z₊, g: ℝ → Z, g|(ℝ \ X) ≡ 0} is the desired semigroup.

 $\begin{array}{l} \mbox{Semigroups in SZ and } AC\cap SZ \\ (CH) \ \mathcal{L}(AC\cap SZ) > \mathfrak{c}^+ \end{array}$

Existence of large semigroups in SZ and $AC \cap SZ$

- Semigroup of cardinality 2^c in SZ Let h ∈ SZ. Then h + g ∈ SZ for any g: ℝ → ℤ and {zh + g: z ∈ ℤ₊, g: ℝ → ℤ} is the desired semigroup.
- (CH) Semigroup of cardinality 2^c in AC ∩ SZ Assuming CH, there is a function h ∈ AC ∩ SZ and an X ⊆ ℝ of cardinality c which is h-negligible with respect to AC. Then h + g ∈ AC ∩ SZ for any g: ℝ → ℤ equal 0 on (ℝ \ X) and {zh + g: z ∈ ℤ₊, g: ℝ → ℤ, g|(ℝ \ X) ≡ 0} is the desired semigroup.

 $\begin{array}{l} \text{Semigroups in } \operatorname{SZ} \text{ and } \operatorname{AC} \cap \operatorname{SZ} \\ \text{(CH) } \mathcal{L}(\operatorname{AC} \cap \operatorname{SZ}) > \mathfrak{c}^+ \end{array}$

$(\mathsf{CH}) \ \overline{\mathcal{L}(\mathrm{AC} \cap \mathrm{SZ})} > \mathfrak{c}^+$

Proof

Krzysztof Płotka

Definitions and Examples Theorems Semigro Main Results (CH) C Proofs

Semigroups in SZ and $AC \cap SZ$ (CH) $\mathcal{L}(AC \cap SZ) > \mathfrak{c}^+$

 $(\mathsf{CH}) \ \mathcal{L}(\mathrm{AC} \cap \mathrm{SZ}) > \mathfrak{c}^+$

Proof

Let $\mathcal{F} = \{f_{\gamma} : \gamma < \mathfrak{c}\} \subseteq (AC \cap SZ) \cup \{0\}$ be a vector space of dimension $\leq \mathfrak{c}$. We will show that there exists an $h \in AC \cap SZ \setminus \mathcal{F}$ such that $h + \mathcal{F} \subseteq AC \cap SZ$.

Semigroups in SZ and $AC \cap SZ$ (CH) $\mathcal{L}(AC \cap SZ) > \mathfrak{c}^+$

$(\mathsf{CH}) \ \mathcal{L}(\mathrm{AC} \cap \mathrm{SZ}) > \mathfrak{c}^+$

Proof

Let $\mathcal{F} = \{f_{\gamma} : \gamma < \mathfrak{c}\} \subseteq (AC \cap SZ) \cup \{0\}$ be a vector space of dimension $\leq \mathfrak{c}$. We will show that there exists an $h \in AC \cap SZ \setminus \mathcal{F}$ such that $h + \mathcal{F} \subseteq AC \cap SZ$.

Let $\mathcal{G} = \{g_{\alpha} : \alpha < \mathfrak{c}\}$ be the set of all continuous functions defined on G_{δ} subsets of $\mathbb{R} = \{x_{\alpha} : \alpha < \mathfrak{c}\}$. For every $\alpha < \mathfrak{c}$ let U_{α} be the maximal open set such that dom $(g_{\alpha} \setminus \bigcup_{\xi < \alpha} g_{\xi})$ is residual in U_{α} .

Semigroups in SZ and $AC \cap SZ$ (CH) $\mathcal{L}(AC \cap SZ) > \mathfrak{c}^+$

$(\mathsf{CH}) \ \mathcal{L}(\mathrm{AC} \cap \mathrm{SZ}) > \mathfrak{c}^+$

Proof

Let $\mathcal{F} = \{f_{\gamma} : \gamma < \mathfrak{c}\} \subseteq (AC \cap SZ) \cup \{0\}$ be a vector space of dimension $\leq \mathfrak{c}$. We will show that there exists an $h \in AC \cap SZ \setminus \mathcal{F}$ such that $h + \mathcal{F} \subseteq AC \cap SZ$.

Let $\mathcal{G} = \{g_{\alpha} : \alpha < \mathfrak{c}\}$ be the set of all continuous functions defined on G_{δ} subsets of $\mathbb{R} = \{x_{\alpha} : \alpha < \mathfrak{c}\}$. For every $\alpha < \mathfrak{c}$ let U_{α} be the maximal open set such that dom $(g_{\alpha} \setminus \bigcup_{\xi < \alpha} g_{\xi})$ is residual in U_{α} . We construct a sequence of partial functions h_{α} ($\alpha < \mathfrak{c}$) such that:

(i)
$$h_{\xi} \subseteq h_{\alpha}$$
 for $\xi < \alpha$;

(ii)
$$|\mathsf{dom}(h_\alpha)| \leq \omega$$
 and $x_\alpha \in \mathsf{dom}(h_\alpha)$;

(iii)
$$(g_{\zeta} \cap (f_{\gamma} + h_{\alpha})) \subseteq (f_{\gamma} + h_{\xi})$$
 for $\zeta, \gamma \leq \xi < \alpha$;

(iv) $f_{\gamma} + h_{\alpha}$ is dense subset of $(g_{\zeta} \setminus \bigcup_{\xi < \zeta} g_{\xi}) | U_{\zeta}$ for $\zeta, \gamma \leq \alpha$.

Krzysztof Płotka

Semigroups in SZ and $AC \cap SZ$ (CH) $\mathcal{L}(AC \cap SZ) > \mathfrak{c}^+$

$(\mathsf{CH}) \ \mathcal{L}(\mathrm{AC} \cap \mathrm{SZ}) > \mathfrak{c}^+$

Proof

Let $\mathcal{F} = \{f_{\gamma} : \gamma < \mathfrak{c}\} \subseteq (AC \cap SZ) \cup \{0\}$ be a vector space of dimension $\leq \mathfrak{c}$. We will show that there exists an $h \in AC \cap SZ \setminus \mathcal{F}$ such that $h + \mathcal{F} \subseteq AC \cap SZ$.

Let $\mathcal{G} = \{g_{\alpha} : \alpha < \mathfrak{c}\}$ be the set of all continuous functions defined on G_{δ} subsets of $\mathbb{R} = \{x_{\alpha} : \alpha < \mathfrak{c}\}$. For every $\alpha < \mathfrak{c}$ let U_{α} be the maximal open set such that dom $(g_{\alpha} \setminus \bigcup_{\xi < \alpha} g_{\xi})$ is residual in U_{α} . We construct a sequence of partial functions h_{α} ($\alpha < \mathfrak{c}$) such that:

(i)
$$h_{\xi} \subseteq h_{\alpha}$$
 for $\xi < \alpha$;

(ii)
$$|\operatorname{dom}(h_{\alpha})| \leq \omega$$
 and $x_{\alpha} \in \operatorname{dom}(h_{\alpha})$;

(iii)
$$(g_{\zeta} \cap (f_{\gamma} + h_{\alpha})) \subseteq (f_{\gamma} + h_{\xi})$$
 for $\zeta, \gamma \leq \xi < \alpha$;

(iv) $f_{\gamma} + h_{\alpha}$ is dense subset of $(g_{\zeta} \setminus \bigcup_{\xi < \zeta} g_{\xi}) | U_{\zeta}$ for $\zeta, \gamma \leq \alpha$.

Krzysztof Płotka