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Abstract from the version, which was posted on the website
arXiv:1605.03608.

We introduce the notion of the center of distances of a metric
space, which is required for a generalization of the theorem by J.
von Neumann about permutations of two sequences with the same
set of cluster points in a compact metric space. Also, the
introduced notion is used to study sets of subsums of some
sequences of positive reals, as well for some impossibility proofs.
We compute the enter of distances of the Cantorval, which is the
set of subsums of the sequence3
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4n , . . ., and also

for some related subsets of the reals.
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Center of distances: Definition

Given a metric space X with the distance d , consider the set

S(X ) = {α : ∀x∈X∃y∈Xd(x , y) = α},

which will be called the center of distances of X .

Obviously: If X is an interval [a, b], then S([a, b]) = [0, b−a
2 ]; Also

S(Q) = Q, whenever Q is the sets of all rationals; But
S(R \Q) = R. In fact, the computation of the center of
distances— even for many well-known subsets of the reals—is not
an easy task because it requires skillful use of fractions.
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Generalization of a theorem by J. von Neumann

Theorem

Suppose that sequences {an}n∈ω and {bn}n∈ω have the same set of
cluster points C ⊆ X, where (X , d) is a compact metric space. If
α ∈ S(C ), then there exists a permutation π : ω → ω such that
limn→+∞ d(an, bπ(n)) = α.

Some proofs, but for α = 0, were given by J. von Neumann (1935),
P. R. Halmos (1968) or J. A. Yorke (1969). But the back-and-forth
method, which was developed by E. V. Huntington (1905 and
1917), shows that the center of distances is intuitive and natural.
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A proof by picture: define π(n)

How to define π(n), if needed, i.e.,
n /∈ {π−1(0), π−1(1), . . . , π−1(n − 1), }.

an

dist(an,C)

xn ∈ C
distance α

yn ∈ C

B(yn,
1
n )

bπ−1(n)
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Sets of subsums: achievement sets

If {an : n ∈ ω} is a sequence of reals, then the set

X = {
∑

n∈A an : A ⊆ ω}

is called the set of subsums of the sequence {an} (Some authors
used the name achievement set.)

Proposition

If X is the set of subsums of a sequence {an}n∈ω, then an ∈ S(X ),
for all n ∈ ω.

Proof.
Suppose x =

∑
n∈A an ∈ X . If n ∈ A, then x − an ∈ X and

d(x , x − an) = an. When n /∈ A, then x + an ∈ X and
d(x , x + an) = an.
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On some geometric sequences

The center of distances of the set of subsums of a given sequence
can sometimes easily be determined. For example, the unit interval
is the set of subsums of the sequence { 1

2n }n>0. So, [0, 1
2 ] is the

center of distances in this case. The following theorem works also
for the for the Cantor ternary set, if q = 3 and a = 2.

Theorem

If q > 2 and a > 0, then the center of distances of the set of
subsums of a geometric sequence { a

qn }n>0 consists of exactly the
terms of the sequence 0, a

q ,
a
q2 , . . ..

Proof.
See arXiv:1605.03608.
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An example of a Cantorval

Following A. Guthrie and J. E. Nymann (1988), consider the set of
subsums

X =
{∑

n>0
xn
4n : ∀n xn ∈ {0, 2, 3, 5}

}
.

Thus, X = C1 + C2, where C1 = {
∑

n∈A
2
4n : 0 /∈ A ⊆ ω} and

C2 = {
∑

n∈B
3
4n : 0 /∈ B ⊆ ω}. Following P. Mendes and F. Oliveira

(1994), because of its topological structure, one can call this set a
Cantorval (or anM-Cantorval). In fact, each Cantorval is a
regularly closed subset of the reals whit the boundary being a
homeomorphic copy of the Cantor set. An approximation of the
Cantorval X ⊂ [0, 5

3 ]:

0 5
48

1
8

7
24

5
16

5
12

1
2

29
48

5
8

2
3

25
24

17
16

7
6

5
4

65
48

11
8

37
24

25
16

5
3

5
6

1
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X-intervals and X-gaps

If Y is a closed subset of the reals, then any maximal interval (α, β)
disjoint from Y is called an Y-gap, but a maximal interval [α, β]
included in Y is called an Y-interval.
Thus, the interval [23 , 1] is the longest X-interval (for a proof see
Corollary 6 in arXiv:1605.03608). But intervals
( 5
12 ,

1
2) = (

∑
n=2

5
4n ,

1
2) and (7

6 ,
5
4) = (

∑
n=1

3
4n +

∑
n=2

2
4n ,

1
2 + 3

4)
are the longest X-gaps. Six X-gaps:
( 5
48 ,

1
8) = (

∑
n=3

5
4n ,

2
16),

( 7
24 ,

5
16) = ( 3

16 +
∑

n=3
5
4n ,

3
16 + 2

16) = ( 3
16 + 5

48 ,
3
16 + 1

8),
(29
48 ,

5
8) = (1

2 +
∑

n=3
5
4n ,

1
2 + 2

16) = (1
2 + 5

48 ,
1
2 + 1

8),
(25
24 ,

17
16) = (3

4 +
3
16 +

∑
n=3

5
4n ,

3
4 +

3
16 +

2
16) = (3

4 +
3
16 +

5
48 ,

3
4 +

5
16)

(65
48 ,

11
8 ) = (3

4 + 1
2 +

∑
n=3

5
4n ,

3
4 + 1

2 + 2
16) = (3

4 + 1
2 + 5

48 ,
5
4 + 1

8)

(37
24 ,

25
16) = (3

4 +
1
2 +

3
16 +

∑
n=5

5
4n ,

5
4 +

5
16) = (5

4 +
3
16 = 5

48 ,
5
4 +

5
16);

have the length 1
48 . To see these use the formula for the sum of an

infinite geometric series and rules of adding fractions!
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Thus, the interval [23 , 1] is the longest X-interval (for a proof see
Corollary 6 in arXiv:1605.03608). But intervals
( 5
12 ,

1
2) = (

∑
n=2

5
4n ,

1
2) and (7

6 ,
5
4) = (

∑
n=1

3
4n +

∑
n=2

2
4n ,

1
2 + 3

4)
are the longest X-gaps. Six X-gaps:
( 5
48 ,

1
8) = (

∑
n=3

5
4n ,

2
16),

( 7
24 ,

5
16) = ( 3

16 +
∑

n=3
5
4n ,

3
16 + 2

16) = ( 3
16 + 5

48 ,
3
16 + 1

8),
(29
48 ,

5
8) = (1

2 +
∑

n=3
5
4n ,

1
2 + 2

16) = (1
2 + 5

48 ,
1
2 + 1

8),
(25
24 ,

17
16) = (3

4 +
3
16 +

∑
n=3

5
4n ,

3
4 +

3
16 +

2
16) = (3

4 +
3
16 +

5
48 ,

3
4 +

5
16)

(65
48 ,

11
8 ) = (3

4 + 1
2 +

∑
n=3

5
4n ,

3
4 + 1

2 + 2
16) = (3

4 + 1
2 + 5

48 ,
5
4 + 1

8)

(37
24 ,

25
16) = (3

4 +
1
2 +

3
16 +

∑
n=5

5
4n ,

5
4 +

5
16) = (5

4 +
3
16 = 5

48 ,
5
4 +

5
16);

have the length 1
48 . To see these use the formula for the sum of an

infinite geometric series and rules of adding fractions!
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Affine properties of X-intervals

To determine X-intervals examine the affine properties of X. First
of all:
The involution h : X→ X defined by the formula

x 7→ h(x) = 5
3 − x

is the symmetry of X with respect to the point 5
6 . So, we get

X = 5
3 − X and X = h[X].

Since 1
4 · X = [0, 5

12 ] ∩ X, we can deduce that [16 ,
1
4 ] and [12

17 ,
3
2 ]

are X-intervals of the length 1
12 , which equals to the maximal

length of X-gaps. But if D = [0, 1
6 ]∩X, then we get the similarities

as shown below.

0

D 1
2 + D 5

4 + Dh[ 12 + D]h[ 54 + D] h[D]

1
6

1
4

5
12

1
2

2
3 1 7

6
5
4

5
3

17
12

3
2
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Lebesgue measure
Corollary

The Cantorval X ⊂ [0, 5
3 ] has Lebesgue measure 1, but it’s

boundary has Lebesgue measure 0.

Proof. There exists a one-to-one correspondence between X-gaps
and X-interval as it is shown below.

0

1
6

1
4

5
12

1
2

2
3 1

7
6

5
4

5
3

17
12

3
2

So, we calculate the sum of lengths of all X-gaps as follows:

1
6 + 6 · 1

3·42 + 1
8 ·

3
4 + . . .+ 1

8 ·
(3

4

)n
+ . . . = 1

6 + 1
8
∑

n>0
(3

4

)n
= 2

3 .

Thus, the sum of lengths of all X-intervals is one-third greater
than the previous sum, i.e., it equals 1. �
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The center of distances S(X)

Theorem

The center of distances of the Cantorval X consists of exactly the
terms of the sequence 0, 3

4 ,
1
2 , . . . ,

3
4n ,

2
4n , . . ..

Proof.
Move a X- gap (p, q) to the left by α searching for a point x ∈ X
such that α− x < 0 and p < α+ x < q. After several attempts,
find recursive formulas that allow you to find α /∈ S(X); See
arXiv:1605.03608 for details.
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The center of distances S([0, 5
3] \ IntX)

Theorem

The center of distances of the set [0, 5
3 ] \ IntX is trivial, i.e.,

S([0, 5
3 ] \ IntX) = {0}.

Proof.
Apply a method of the proof of the previous theorem.

Let us add that the set of subsums of the sequence { 1
4n }n∈ω is

included in X \ IntX. One can check this, observing that each
number

∑
n∈A

1
4n , where the nonempty set A ⊂ ω is finite, is the

right end of an X-interval.
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Impossibility

Theorem

S(X \ IntX) = {0} ∪ { 1
4n : n ∈ ω}, i.e., the center of distances of

the set X \ IntX consists of exactly of the terms of the sequence
0, 1

4 ,
1
16 , . . . ,

1
4n , . . ..

Proof.

Use the numbers 0, 1
4 ,

1
3 =

∑
n>0

5
42n ,

1
2 ,

17
32 and 1 which are in

X \ IntX. Then check that number 1
4n , where 0 < 1, belong to

S(X \ IntX).

Corollary

Neither the set [0, 5
3 ] \ IntX nor the set X \ IntX is the set of

subsums of a sequence. �
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Digital representation of points in the Cantorval X
Sequences {an}n>0 and {bn}n>0 are digital representations of a
point x ∈ X, whenever an, bn ∈ {0, 2, 3, 5} and∑

n>0
an
4n =

∑
n>0

bn
4n = x .

Theorem

Assume that x ∈ X has more than one digital representation. There
exists the finite or infinite sequence of positive natural numbers
n0 < n1 < . . . and exactly two digital representations {an}n>0 and
{bn}n>0 of x such that:

ak = bk , as far as 0 < k < n0;
an0 = 2 and bn0 = 3;
ank = 5 and bnk = 0, for odd k;
ank = 0 and bnk = 5, for even k > 0;
ai ∈ {3, 5} and ai − bi = 3, as far as n2k < i < n2k+1;
ai ∈ {0, 2} and bi − ai = 3, as far as n2k+1 < i < n2k+2.
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Some applications

Corollary

If x ∈ X has a digital representation {xn}n>0 such that xn = 2 and
xn+1 = 3 for infinitely many n, then this representation is unique.

Corollary

Let A ⊂ { 2
4n : n > 0} ∪ { 3

4n : n > 0} = B be such that B \ A and A
are infinite. Then the set of subsums of a sequence consisting of
different elements of A is homeomorphic to the Cantor set.

Proof.
Correct typing missprints in arXiv:1605.03608.
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Thanks

Thank you for your attention
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