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Part I

The KPT correspondence
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Extremely amenable groups
In what follows, all topological groups and spaces will be Hausdorff.

Definition
Let G be a topological group.

I A G -flow is a continuous action of G on a compact space X .
Notation: G y X .

I G is extremely amenable when every G -flow has a fixed point.

Question (Mitchell, 66)

Is there a non trivial extremely amenable group at all?

Theorem (Herrer-Christensen, 75)

There is a Polish Abelian extremely amenable group.

Theorem (Veech, 77)

Let G be non-trivial and locally compact.
Then G is not extremely amenable.
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Extremely amenable groups: examples everywhere!

Examples

1. O(`2), pointwise convergence topology (Gromov-Milman, 84).

2. Measurable maps [0, 1]→ S1 (Furstenberg-Weiss, unpub-Glasner, 98)

d(f , g) =

∫ 1

0
d(f (x), g(x))dµ.

3. Aut(Q, <), product topology induced by QQ (Pestov, 98).

4. Homeo+([0, 1]), Homeo+(R), ptwise conv top (Pestov, 98).

5. iso(U), ptwise conv top, U the Urysohn metric space (Pestov, 02).

Remark
Examples 3, 4, and 5 by Pestov use some Ramsey theoretic results.

L. Nguyen Van Thé (Aix-Marseille) Compactifications and Ramsey July 2016 5 / 33



Extremely amenable groups: examples everywhere!

Examples

1. O(`2), pointwise convergence topology (Gromov-Milman, 84).

2. Measurable maps [0, 1]→ S1 (Furstenberg-Weiss, unpub-Glasner, 98)

d(f , g) =

∫ 1

0
d(f (x), g(x))dµ.

3. Aut(Q, <), product topology induced by QQ (Pestov, 98).

4. Homeo+([0, 1]), Homeo+(R), ptwise conv top (Pestov, 98).

5. iso(U), ptwise conv top, U the Urysohn metric space (Pestov, 02).

Remark
Examples 3, 4, and 5 by Pestov use some Ramsey theoretic results.
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The KPT correspondence

Theorem (Kechris - Pestov - Todorcevic, 05)

There is a link between extreme amenability and Ramsey theory when G is
a closed subgroup of S∞.

Definition
S∞: the group of permutations of N.
Basic open sets: f ∈ S∞, F ⊂ N finite.

Uf ,F = {g ∈ S∞ : g � F = f � F}.

This topology is Polish.
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Fact
The closed subgroups of S∞ are exactly the automorphism groups of
countable ultrahomogeneous first order structures...

Definition
...where a structure A is ultrahomogeneous when every isomorphism
between finite substructures of A extends to an automorphism of A.

Examples

N, (Q, <), the random graph, the dense local order S(2), the
countably-dimensional vector space over a given finite field, the countable
atomless Boolean algebra,...

Every countable ultrahomogeneous structure F is attached to:

I Age(F) the set of finite substructures of F.

I Aut(F) ≤ S∞.

The KPT correspondence expresses combinatorially, at the level of
Age(F), when Aut(F) is extremely amenable.
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Definition
A class K of finite structures has the Ramsey property when for any
A,B ∈ K, k ∈ N there is C ∈ K so that:

Whenever embeddings of A in C are colored with k colors,
there is B̃ ∼= B where all embeddings of A have same color.

When K = Age(F):
Whenever embeddings of A in F are colored with finitely many colors,

there is B̃ ∼= B where all embeddings of A have same color.

Examples
I First example: Age(Q, <) (Ramsey, 30)

I Boolean algebras (Graham-Rothschild, 71)

I Vector spaces over finite fields (Graham-Leeb-Rothschild, 72)

I Relational structures (Nešeťril-Rödl, 77 ; Abramson-Harrington, 78)

I Relational struct. with forbidden configurations (Nešeťril-Rödl, 77-83)

I Posets (Nešeťril-Rödl, ∼83; published by Paoli-Trotter-Walker, 85))

I ...
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Theorem (Kechris-Pestov-Todorcevic, 05)

Let F be a countable ultrahomogeneous structure. TFAE:

i) Aut(F) is extremely amenable.

ii) Age(F) has the Ramsey property.

I Aforementioned Ramsey-type results led to numerous extremely
amenable groups of the form Aut(F) (e.g.: Aut(Q, <)), but not only
(e.g. Homeo+([0, 1]), iso(U)).

I New motivation to prove Ramsey-type results, see work by:
Bartosova-Kwiatkowska, Bartosova-Lopez-Abad-Mbombo, Bodirsky,
Dorais et al., Foniok, Foniok-Böttcher, Jasiński,
Jasiński-Laflamme-NVT-Woodrow, Kechris-Sokić,
Kechris-Sokić-Todorcevic, Nešeťril, Nešeťril-Hubička, NVT, Sokić,
Solecki, Solecki-Zhao,...

I Explicit description of various dynamical objects, among which
universal minimal flows.
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Motivation to make the KPT correspondence broader

Extreme amenability is a very strong property.
Is there a hope for a similar correspondence for other classical fixed point
properties coming from dynamics?

I Good news: There is such a correspondence.
Goal of this talk: Convince that Ramsey-type properties naturally
appear when expressing combinatorially the existence of fixed points
in certain compactifications.

I Bad news: Very unclear whether this correspondence will be as useful
as the original KPT in practice.
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Part II

Making the KPT correspondence broader:

two examples
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Some natural classes of flows to start with

Definition
Let G y X be a G -flow. An ordered pair (x , y) ∈ X 2 is:

I proximal when g · x and g · y can be made arbitrarily close.

I distal when it is not proximal.

Definition
A G -flow G y X is:

I proximal when every (x , y) ∈ X 2 is proximal.

I distal when every (x , y) ∈ X 2 with x 6= y is distal.

I equicontinuous when

∀U ∈ Unif (X ) ∃V ∈ Unif (X ) ∀x , y ∈ X

(x , y) ∈ V ⇒ ∀g ∈ G (g · x , g · y) ∈ U
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Fixed-points properties

Definition
Let G be a topological group. It is:

I strongly amenable when every proximal G -flow has a fixed point.

I minimally almost periodic when every equicontinuous G-flow has a
fixed point (“equicontinuous ”may be replaced by “distal”).

Remark
Recall that a topological group G is amenable when every G -flow has an
invariant Borel probability measure.

I Amenability is also a fixed point property: G is amenable iff every
G -flow G y X has a fixed point, provided G y Prob(X ) is proximal.

I Thus, every strongly amenable group G is amenable.

I KPT correspondence for amenability already considered by Tsankov
and by Moore (∼10). It is of slightly different flavor than what
follows, probably more useful in practice (even if not used so far).
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L. Nguyen Van Thé (Aix-Marseille) Compactifications and Ramsey July 2016 13 / 33



Proximal colorings

Definition
Let F be a countable ultrahomogeneous structure and A ∈ Age(F).
A finite coloring χ of the embeddings of A in F is proximal when:
For every (gm)m∈N, (hm)m∈N ∈ Aut(F) that satisfy

(χ(gm · a))m, (χ(hm · a))m converge for every a,

There is B ∈ Age(F) s.t. every B̃ ∼= B contains some ã s.t. :

lim
m
χ(gm · ã) = lim

m
χ(hm · ã)

Definition
A countable ultrahomogeneous structure F has the proximal Ramsey
property when: For every A,B ∈ Age(F),

Whenever embeddings of A in F are colored via a proximal finite coloring
∃B̃ ∼= B where all embeddings of A have same color.
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A (half) KPT correspondence for proximal flows

Theorem (NVT, 15)

Let F be a countable ultrahomogeneous structure so that Aut(F) is
strongly amenable. Then F has the proximal Ramsey property.
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Definable colorings

Definition
Let K be a class of finite structures.

I A (joint embedding) pattern 〈a, z〉 is a pair of embeddings of
A,Z ∈ K into some common C ∈ K.

I Write 〈a, z〉 ∼= 〈a′, z ′〉 when there is an isomorphism c : C → C ′ s.t.:

a′ = c ◦ a, z ′ = c ◦ z

I Fix A,C ,Z ∈ K. A pattern 〈c , z〉 induces a coloring of the
embeddings of A in C :

χ(a) = isomorphism type of 〈a, z〉.
(keeps track of how “a sees z”).

I Also makes sense in case of finitely many Z 1,...,Z k .

I Colorings that are obtained that way are definable.
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Definable Ramsey property, stable Ramsey property

Definition
A class of finite structures K has the definable Ramsey property when:
For every A,B ∈ K, every Z 1, ...,Z k ∈ K, there exists C ∈ K s. t.

Whenever embeddings of A in C are colored via some 〈c , z1, ..., zk〉,
∃B̃ ∼= B where all embeddings of A have same color.

Definition
K has the stable Ramsey property when the definable Ramsey property is
restricted to those A,Z 1, ...,Z k with all (A,Z i ) stable...

...where (A,Z ) is stable when there is no (am, zm)m∈N and no pattern
〈a, z〉 s.t.:

∀m, n ∈ N m < n⇔ 〈am, zn〉 ∼= 〈a, z〉
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Whenever embeddings of A in C are colored via some 〈c , z1, ..., zk〉,
∃B̃ ∼= B where all embeddings of A have same color.

Definition
K has the stable Ramsey property when the definable Ramsey property is
restricted to those A,Z 1, ...,Z k with all (A,Z i ) stable...

...where (A,Z ) is stable when there is no (am, zm)m∈N and no pattern
〈a, z〉 s.t.:

∀m, n ∈ N m < n⇔ 〈am, zn〉 ∼= 〈a, z〉
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A KPT correspondence for equicontinuous/distal flows

Theorem (NVT, 15)

Let F be a countable ultrahomogeneous structure.
Assume that that every pair of elements of Age(F) only has finitely many
joint embedding patterns (equiv. Aut(F) is Roelcke precompact). TFAE:

i) Aut(F) is minimally almost periodic.

ii) Age(F) has the stable Ramsey property.
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Part III

Making the KPT correspondence broader:

the general framework
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Main ideas

I Express the existence of fixed points in G -flows in terms of continuous
functions.

I Specialize this to Gelfand compactifications.

I When G = Aut(F), discretize to obtain a Ramsey-type property.

I Use this and additional properties to characterize fixed point
properties.
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Fixed points in G -flows

Proposition

Let G be a topological group, G y X a G -flow, and x ∈ X . TFAE:

i) G · x contains a fixed point.

ii) For every F ⊂ C (X ) finite, ε > 0, F ⊂ G finite,

there exists a point in G · x is F -fixed up to F , ε

:

∃g ∈ G ∀h, h′ ∈ F ∀f ∈ F |f (h · (g · x))− f (h′ · (g · x))| < ε (∗)

Proof.
i)⇒ii): Approximate the fixed point by some point in G · x .
ii)⇒i): Use compactness to obtain a true fixed point in G · x .

Remark
(∗) in ii) can be rephrased if we write fx : g 7→ f (g · x):

∃g ∈ G ∀f ∈ F fx is constant on Fg up to ε

L. Nguyen Van Thé (Aix-Marseille) Compactifications and Ramsey July 2016 21 / 33



Fixed points in G -flows

Proposition

Let G be a topological group, G y X a G -flow, and x ∈ X . TFAE:

i) G · x contains a fixed point.

ii) For every F ⊂ C (X ) finite, ε > 0, F ⊂ G finite,

there exists a point in G · x is F -fixed up to F , ε:

∃g ∈ G ∀h, h′ ∈ F ∀f ∈ F |f (h · (g · x))− f (h′ · (g · x))| < ε (∗)

Proof.
i)⇒ii): Approximate the fixed point by some point in G · x .
ii)⇒i): Use compactness to obtain a true fixed point in G · x .

Remark
(∗) in ii) can be rephrased if we write fx : g 7→ f (g · x):

∃g ∈ G ∀f ∈ F fx is constant on Fg up to ε
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Fixed points in G -flows

Proposition

Let G be a topological group, G y X a G -flow, and x ∈ X . TFAE:

i) G · x contains a fixed point.

ii’) For every F ⊂ C (X ) finite, ε > 0, F ⊂ G finite

∃g ∈ G ∀f ∈ F fx is constant on Fg up to ε

Remark

I Every fx is in RUCb(G ) (C∗-alg of bdd unif conti fns (G ,UR)→ C).

I If A is a unital subalgebra of RUCb(G ) that is invariant under

g · f (x) = f (g−1 · x)

the action G y G by left translations extends continuously to

G y GA (Gelfand compactification)

I Furthermore, if x = eG , then {fx : f ∈ C (GA)} = A.

I So the previous proposition applied to the G -flow G y GA gives:
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L. Nguyen Van Thé (Aix-Marseille) Compactifications and Ramsey July 2016 22 / 33



Fixed points in G -flows

Proposition

Let G be a topological group, G y X a G -flow, and x ∈ X . TFAE:

i) G · x contains a fixed point.

ii’) For every F ⊂ C (X ) finite, ε > 0, F ⊂ G finite

∃g ∈ G ∀f ∈ F fx is constant on Fg up to ε

Remark

I Every fx is in RUCb(G ) (C∗-alg of bdd unif conti fns (G ,UR)→ C).

I If A is a unital subalgebra of RUCb(G ) that is invariant under

g · f (x) = f (g−1 · x)

the action G y G by left translations extends continuously to

G y GA (Gelfand compactification)

I Furthermore, if x = eG , then {fx : f ∈ C (GA)} = A.

I So the previous proposition applied to the G -flow G y GA gives:
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Fixed points in G -flows: Gelfand compactifications

Proposition

Let G be a top. gp, A a unital, left-invariant subalg of RUCb(G ). TFAE:

i) G y GA has a fixed point.

ii”) For every F ⊂ A finite, ε > 0, F ⊂ G finite

∃g ∈ G ∀f ∈ F f is constant on Fg up to ε
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Discretization

I Let F be a ctble ultrahomogeneous structure, G = Aut(F).

I For finite A ⊂ F, the ptwise stabilizer Stab(A) ⊂ Aut(F) is clopen.
I For g ∈ G , its equivalence class in Stab(A)\Aut(F) can be viewed as:

I the “A-nbhd around g” wrt right uniform structure.
I g−1 � A, ie an embedding of A into F.

I A finite coloring χ of the embeddings of A into F is just
an element of RUCb(Aut(F)), constant on A-nbhds.

I Let F ⊂ Aut(F) finite. In Stab(A)\Aut(F):
I it is a finite set of embeddings of A into F. WLOG, of the form

(
B
A

)
.

I Fg is another finite set of embeddings, namely
(
B̃
A

)
with B̃ = g−1(B).

I For small enough ε > 0, TFAE:
I χ is constant up to ε on Fg as a right-uniformly continuous function.
I χ is truly constant on some

(
B̃
A

)
.

I So when colorings are dense in A...
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Consequence when colorings are dense in A

...ii”) from previous Proposition

ii”) For every F ⊂ G finite, F ⊂ A finite, ε > 0,

∃g ∈ G ∀f ∈ F f is constant on Fg up to ε

...becomes:

iii) F has the Ramsey property for colorings in A:
For every A,B ∈ Age(F), F finite set of colorings of

(F
A

)
st F ⊂ A.

∃B̃ ∼= B ∀χ ∈ F all embeddings of A have same χ-color.

...and from previous slides, these are equivalent to:

i) G y GA has a fixed point.

L. Nguyen Van Thé (Aix-Marseille) Compactifications and Ramsey July 2016 25 / 33



Consequence when colorings are dense in A

...ii”) from previous Proposition

ii”) For every F ⊂ G finite, F ⊂ A finite, ε > 0,

∃g ∈ G ∀f ∈ F f is constant on Fg up to ε

...becomes:

iii) F has the Ramsey property for colorings in A:
For every A,B ∈ Age(F), F finite set of colorings of

(F
A

)
st F ⊂ A.

∃B̃ ∼= B ∀χ ∈ F all embeddings of A have same χ-color.

...and from previous slides, these are equivalent to:

i) G y GA has a fixed point.
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Fixed points in Gelfand compactifications

Theorem (NVT, 16)

Let G = Aut(F), A unital, left-invariant subalg of RUCb(G ).
If G y GA has a fixed point, then F has the Ramsey property for
colorings in A.
If colorings are dense in A, the converse also holds.

When colorings are not dense in A, another equivalence holds at the cost
of an approximation:

Theorem (NVT, 16)

Let G = Aut(F), A unital, left-invariant subalg of RUCb(G ). TFAE:

i) G y GA has a fixed point.

ii) F has the approximate Ramsey property for colorings in A:
∀A,B ∈ Age(F), ε > 0, F finite set of colorings of

(F
A

)
st F ⊂ (A)ε

∃B̃ ∼= B ∀χ ∈ F all embeddings of A have same χ-color up to 2ε.
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How to apply this in concrete situations

Let (P) be a property of G -flows.
Under identified assumptions, (P) admits a universal object G y X :

I G y X has (P).

I Every G -flow with (P) is a factor of G y X , ie
If G y Y has (P), there is π : X � Y continuous and equivariant.

Every such object is of the form G y GA.

Examples

I Being a G-flow.

I Being proximal.

I Being distal.

I Being equicontinuous.

So: To express that every such G -flow has a fixed point, it suffices to find
out the relevant A.
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Looking for A

Proposition

Let G be a top gp. The (algebraic) action on CG defined by

g · f (x) = f (xg)

is continuous on every G · f for f ∈ RUCb(G ).
The corresponding G-flow is denoted G y Xf .

Proposition (de Vries)

Let (P) be a “good” property of G -flows, attached to A ⊂ RUCb(G ).
TFAE for f ∈ RUCb(G ):

i) f ∈ A.

ii) G y Xf has (P).
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Application: original KPT correspondence

Let F be a countable ultrahomogeneous structure, G = Aut(F).

I (P): Being a G -flow. This is “good”.

I Fixed point property: Extreme amenability.

I A = RUCb(G )

I Colorings are dense in A.

I So by Theorem, TFAE:

i) Aut(F) is extremely amenable.
ii) Age(F) has the Ramsey property for all colorings.
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Application: Proximal KPT correspondence
Let F be a countable ultrahomogeneous structure, G = Aut(F).

I (P): Being a proximal G -flow. This is “good”.
I Fixed point property: strong amenability.
I A = Prox(G ). f ∈ Prox(G ) when:

∀(hn)n, (h′n)n ⊂ G (hn · f )n, (h′n · f )n converge pointwise
⇒ ∀ε > 0 {g ∈ G : | lim

n
f (ghn)− lim

n
f (gh′n)| < ε} is syndetic

I A finite coloring χ of the embeddings of A in F is in Prox(G ) when:
for every (hn)n∈N, (h′n)n∈N ∈ Aut(F) that satisfy

(χ(hn · a))n, (χ(h′n · a))n converge for every a,

there is B ∈ Age(F) s.t. every B̃ ∼= B contains some ã s.t. :

lim
n
χ(hn · ã) = lim

n
χ(h′n · ã)

I Not clear that colorings are dense in A.
I So if Aut(F) is strongly amenable,

then Age(F) has the Ramsey property for proximal colorings.
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Application: Distal/equicontinuous KPT correspondence
Let F be a countable ultrahomogeneous structure, st G = Aut(F) is
oligomorphic.

I (P): Being a distal G -flow. This is “good”.
I Fixed point property: minimal almost periodicity.
I A = Dist(G ). f ∈ Dist(G ) when:

∀(hn)n, (h′n)n ⊂ G (hn · f )n, (h′n · f )n converge ptwise to distinct elts
⇒ ∃ε > 0 ∀g ∈ G | lim

n
f (ghn)− lim

n
f (gh′n)| ≥ ε

I A finite coloring χ of the embeddings of A in F is in Dist(G ) when:
for every (hn)n∈N, (h′n)n∈N ∈ Aut(F) that satisfy

(χ(hn · a))n, (χ(h′n · a))n converge for every a,

for every B ∈ Age(F) there is B̃ ∼= B where every ã satisfies:

lim
n
χ(hn · ã) 6= lim

n
χ(h′n · ã)

I Not clear that colorings are dense in A.
I So if Aut(F) is minimally almost periodic,

then Age(F) has the Ramsey property for distal colorings.

L. Nguyen Van Thé (Aix-Marseille) Compactifications and Ramsey July 2016 31 / 33



BUT...

I ...It is known that replacing A by another algebra WAP(G ),
the corresponding fixed point property stays unchanged.

Thanks to some recent results of Ben Yaacov-Tsankov:

I A finite coloring χ of the embeddings of A in F is in WAP(G ) when it
is stable: χ(a) = 〈a, z〉 for some stable (A,Z ).

I Colorings are dense in WAP(G ).

I So by Theorem, TFAE:

i) Aut(F) is minimally almost periodic.
ii) Age(F) has the Ramsey property for stable colorings.

L. Nguyen Van Thé (Aix-Marseille) Compactifications and Ramsey July 2016 32 / 33



In practice...

I ...Very unclear that these results will be as useful as the original KPT
correspondence.

I To prove strong amenability, easier to use the original KPT
correspondence to compute the universal minimal flow of G , and then
to use a result by (Melleray-NVT-Tsankov, 15).

I To prove minimal almost periodicity, one can do the same.

I However, this only works when the universal minimal flow is
metrizable, and it is unknown for which F this holds.

I For minimal almost periodicity, the most powerful method is to use
the classification of unitary representations (Tsankov, 12).
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