Group compactifications and Ramsey-type phenomena

Lionel Nguyen Van Thé

Université d'Aix-Marseille

Toposym 2016

L. Nguyen Van Thé (Aix-Marseille)

Compactifications and Ramsey

July 2016 1 / 33

Outline

L. Nguyen Van Thé (Aix-Marseille)

Compactifications and Ramsey

July 2016 2 / 33

Outline

- ► The Kechris-Pestov-Todorcevic correspondence.
- Making the KPT correspondence broader: two examples.
- ► Making the KPT correspondence broader: the general framework

Part I

The KPT correspondence

L. Nguyen Van Thé (Aix-Marseille)

Compactifications and Ramsey

▲ ■ ▶ ■ つへで July 2016 3 / 33

・ロト ・四ト ・ヨト ・ヨト

In what follows, all topological groups and spaces will be Hausdorff.

L. Nguyen Van Thé (Aix-Marseille)

July 2016 4 / 33

In what follows, all topological groups and spaces will be Hausdorff. Definition

Let G be a topological group.

- A G-flow is a continuous action of G on a compact space X.
 Notation: G へ X.
- ► G is extremely amenable when every G-flow has a fixed point.

In what follows, all topological groups and spaces will be Hausdorff. Definition

Let G be a topological group.

- A G-flow is a continuous action of G on a compact space X.
 Notation: G へ X.
- ► G is extremely amenable when every G-flow has a fixed point.

Question (Mitchell, 66)

Is there a non trivial extremely amenable group at all?

In what follows, all topological groups and spaces will be Hausdorff. Definition

Let G be a topological group.

- A G-flow is a continuous action of G on a compact space X.
 Notation: G へ X.
- ► G is extremely amenable when every G-flow has a fixed point.

Question (Mitchell, 66)

Is there a non trivial extremely amenable group at all?

Theorem (Herrer-Christensen, 75)

There is a Polish Abelian extremely amenable group.

L. Nguyen Van Thé (Aix-Marseille)

In what follows, all topological groups and spaces will be Hausdorff. Definition

Let G be a topological group.

- A G-flow is a continuous action of G on a compact space X. Notation: G へ X.
- ► G is extremely amenable when every G-flow has a fixed point.

Question (Mitchell, 66)

Is there a non trivial extremely amenable group at all?

Theorem (Herrer-Christensen, 75)

There is a Polish Abelian extremely amenable group.

Theorem (Veech, 77)

Let G be non-trivial and locally compact. Then G is not extremely amenable.

L. Nguyen Van Thé (Aix-Marseille)

L. Nguyen Van Thé (Aix-Marseille)

Compactifications and Ramsey

July 2016 5 / 33

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Examples

1. $O(\ell_2)$, pointwise convergence topology (Gromov-Milman, 84).

Examples

- 1. $O(\ell_2)$, pointwise convergence topology (Gromov-Milman, 84).
- 2. Measurable maps $[0,1] \rightarrow \mathbb{S}^1$ (Furstenberg-Weiss, unpub-Glasner, 98)

$$d(f,g) = \int_0^1 d(f(x),g(x))d\mu.$$

L. Nguyen Van Thé (Aix-Marseille)

Examples

- 1. $O(\ell_2)$, pointwise convergence topology (Gromov-Milman, 84).
- 2. Measurable maps $[0,1] \rightarrow \mathbb{S}^1$ (Furstenberg-Weiss, unpub-Glasner, 98)

$$d(f,g)=\int_0^1 d(f(x),g(x))d\mu.$$

3. Aut(\mathbb{Q} , <), product topology induced by $\mathbb{Q}^{\mathbb{Q}}$ (Pestov, 98).

L. Nguyen Van Thé (Aix-Marseille)

Compactifications and Ramsey

July 2016 5 / 33

Examples

- 1. $O(\ell_2)$, pointwise convergence topology (Gromov-Milman, 84).
- 2. Measurable maps $[0,1] \rightarrow \mathbb{S}^1$ (Furstenberg-Weiss, unpub-Glasner, 98)

$$d(f,g) = \int_0^1 d(f(x),g(x))d\mu.$$

- 3. Aut(\mathbb{Q} , <), product topology induced by $\mathbb{Q}^{\mathbb{Q}}$ (Pestov, 98).
- 4. Homeo₊([0,1]), Homeo₊(\mathbb{R}), ptwise conv top (Pestov, 98).

Examples

- 1. $O(\ell_2)$, pointwise convergence topology (Gromov-Milman, 84).
- 2. Measurable maps $[0,1] \rightarrow \mathbb{S}^1$ (Furstenberg-Weiss, unpub-Glasner, 98)

$$d(f,g) = \int_0^1 d(f(x),g(x))d\mu.$$

- 3. Aut(\mathbb{Q} , <), product topology induced by $\mathbb{Q}^{\mathbb{Q}}$ (Pestov, 98).
- 4. Homeo₊([0,1]), Homeo₊(\mathbb{R}), ptwise conv top (Pestov, 98).
- 5. iso(U), ptwise conv top, U the Urysohn metric space (Pestov, 02).

L. Nguyen Van Thé (Aix-Marseille)

July 2016 5 / 33

Examples

- 1. $O(\ell_2)$, pointwise convergence topology (Gromov-Milman, 84).
- 2. Measurable maps $[0,1] \rightarrow \mathbb{S}^1$ (Furstenberg-Weiss, unpub-Glasner, 98)

$$d(f,g) = \int_0^1 d(f(x),g(x))d\mu.$$

- 3. Aut(\mathbb{Q} , <), product topology induced by $\mathbb{Q}^{\mathbb{Q}}$ (Pestov, 98).
- 4. Homeo₊([0,1]), Homeo₊(\mathbb{R}), ptwise conv top (Pestov, 98).
- 5. iso(U), ptwise conv top, U the Urysohn metric space (Pestov, 02).

Remark

Examples 3, 4, and 5 by Pestov use some Ramsey theoretic results.

L. Nguyen Van Thé (Aix-Marseille)

The KPT correspondence

L. Nguyen Van Thé (Aix-Marseille)

Compactifications and Ramsey

July 2016 6 / 33

★ロト ★課 と ★注 と ★注 と 一注

The KPT correspondence

Theorem (Kechris - Pestov - Todorcevic, 05)

There is a link between extreme amenability and Ramsey theory when G is a closed subgroup of S_{∞} .

Definition S_{∞} : the group of permutations of \mathbb{N} . Basic open sets: $f \in S_{\infty}$, $F \subset \mathbb{N}$ finite.

$$U_{f,F} = \{g \in S_{\infty} : g \upharpoonright F = f \upharpoonright F\}.$$

This topology is Polish.

L. Nguyen Van Thé (Aix-Marseille)

July 2016 6 / 33

Fact

The closed subgroups of S_{∞} are exactly the automorphism groups of countable ultrahomogeneous first order structures...

Definition

...where a structure A is ultrahomogeneous when every isomorphism between finite substructures of A extends to an automorphism of A.

Fact

The closed subgroups of S_{∞} are exactly the automorphism groups of countable ultrahomogeneous first order structures...

Definition

...where a structure A is ultrahomogeneous when every isomorphism between finite substructures of A extends to an automorphism of A.

Examples

 \mathbb{N} , $(\mathbb{Q}, <)$, the random graph, the dense local order S(2), the countably-dimensional vector space over a given finite field, the countable atomless Boolean algebra,...

Every countable ultrahomogeneous structure \mathbb{F} is attached to:

- $Age(\mathbb{F})$ the set of finite substructures of \mathbb{F} .
- $Aut(\mathbb{F}) \leq S_{\infty}$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Fact

The closed subgroups of S_{∞} are exactly the automorphism groups of countable ultrahomogeneous first order structures...

Definition

...where a structure A is ultrahomogeneous when every isomorphism between finite substructures of A extends to an automorphism of A.

Examples

 \mathbb{N} , $(\mathbb{Q}, <)$, the random graph, the dense local order S(2), the countably-dimensional vector space over a given finite field, the countable atomless Boolean algebra,...

Every countable ultrahomogeneous structure \mathbb{F} is attached to:

- $Age(\mathbb{F})$ the set of finite substructures of \mathbb{F} .
- $Aut(\mathbb{F}) \leq S_{\infty}$.

The KPT correspondence expresses combinatorially, at the level of $Age(\mathbb{F})$, when $Aut(\mathbb{F})$ is extremely amenable.

L. Nguyen Van Thé (Aix-Marseille)

Compactifications and Ramsey

July 2016 7 / 33

Definition

A class \mathcal{K} of finite structures has the Ramsey property when for any $A, B \in \mathcal{K}, k \in \mathbb{N}$ there is $C \in \mathcal{K}$ so that: Whenever embeddings of A in C are colored with k colors, there is $\tilde{B} \cong B$ where all embeddings of A have same color.

When $\mathcal{K} = Age(\mathbb{F})$: Whenever embeddings of A in \mathbb{F} are colored with finitely many colors, there is $\tilde{B} \cong B$ where all embeddings of A have same color.

L. Nguyen Van Thé (Aix-Marseille)

Compactifications and Ramsey

July 2016 8 / 33

イロト イポト イヨト イヨト 二日

Definition

A class \mathcal{K} of finite structures has the Ramsey property when for any $A, B \in \mathcal{K}, k \in \mathbb{N}$ there is $C \in \mathcal{K}$ so that: Whenever embeddings of A in C are colored with k colors, there is $\tilde{B} \cong B$ where all embeddings of A have same color.

When $\mathcal{K} = Age(\mathbb{F})$: Whenever embeddings of A in \mathbb{F} are colored with finitely many colors, there is $\tilde{B} \cong B$ where all embeddings of A have same color.

Examples

- ▶ First example: Age(Q, <) (Ramsey, 30)</p>
- Boolean algebras (Graham-Rothschild, 71)
- Vector spaces over finite fields (Graham-Leeb-Rothschild, 72)
- Relational structures (Nešetřil-Rödl, 77 ; Abramson-Harrington, 78)
- Relational struct. with forbidden configurations (Nešetřil-Rödl, 77-83)
- ▶ Posets (Nešetřil-Rödl, ~83; published by Paoli-Trotter-Walker, 85))

L. Nguyen Van Thé (Aix-Marseille)

Let \mathbb{F} be a countable ultrahomogeneous structure. TFAE:

- i) $Aut(\mathbb{F})$ is extremely amenable.
- ii) $Age(\mathbb{F})$ has the Ramsey property.

Let \mathbb{F} be a countable ultrahomogeneous structure. TFAE:

- i) $Aut(\mathbb{F})$ is extremely amenable.
- ii) $Age(\mathbb{F})$ has the Ramsey property.
- ► Aforementioned Ramsey-type results led to numerous extremely amenable groups of the form Aut(𝔅) (e.g.: Aut(𝔅, <)), but not only (e.g. Homeo₊([0, 1]), iso(𝔅)).

Let \mathbb{F} be a countable ultrahomogeneous structure. TFAE:

- i) $Aut(\mathbb{F})$ is extremely amenable.
- ii) $Age(\mathbb{F})$ has the Ramsey property.
- ► Aforementioned Ramsey-type results led to numerous extremely amenable groups of the form Aut(F) (e.g.: Aut(Q, <)), but not only (e.g. Homeo₊([0, 1]), iso(U)).
- New motivation to prove Ramsey-type results, see work by: Bartosova-Kwiatkowska, Bartosova-Lopez-Abad-Mbombo, Bodirsky, Dorais et al., Foniok, Foniok-Böttcher, Jasiński, Jasiński-Laflamme-NVT-Woodrow, Kechris-Sokić, Kechris-Sokić-Todorcevic, Nešetřil, Nešetřil-Hubička, NVT, Sokić, Solecki, Solecki-Zhao,...

Let \mathbb{F} be a countable ultrahomogeneous structure. TFAE:

- i) $Aut(\mathbb{F})$ is extremely amenable.
- ii) $Age(\mathbb{F})$ has the Ramsey property.
- ► Aforementioned Ramsey-type results led to numerous extremely amenable groups of the form Aut(𝔅) (e.g.: Aut(𝔅, <)), but not only (e.g. Homeo₊([0, 1]), iso(𝔅)).
- New motivation to prove Ramsey-type results, see work by: Bartosova-Kwiatkowska, Bartosova-Lopez-Abad-Mbombo, Bodirsky, Dorais et al., Foniok, Foniok-Böttcher, Jasiński, Jasiński-Laflamme-NVT-Woodrow, Kechris-Sokić, Kechris-Sokić-Todorcevic, Nešetřil, Nešetřil-Hubička, NVT, Sokić, Solecki, Solecki-Zhao,...
- Explicit description of various dynamical objects, among which universal minimal flows.

L. Nguyen Van Thé (Aix-Marseille)

Motivation to make the KPT correspondence broader

Extreme amenability is a very strong property.

Is there a hope for a similar correspondence for other classical fixed point properties coming from dynamics?

Motivation to make the KPT correspondence broader

Extreme amenability is a very strong property.

Is there a hope for a similar correspondence for other classical fixed point properties coming from dynamics?

Good news: There is such a correspondence. Goal of this talk: Convince that Ramsey-type properties naturally appear when expressing combinatorially the existence of fixed points in certain compactifications.

Motivation to make the KPT correspondence broader

Extreme amenability is a very strong property.

Is there a hope for a similar correspondence for other classical fixed point properties coming from dynamics?

- Good news: There is such a correspondence. Goal of this talk: Convince that Ramsey-type properties naturally appear when expressing combinatorially the existence of fixed points in certain compactifications.
- Bad news: Very unclear whether this correspondence will be as useful as the original KPT in practice.

Part II

Making the KPT correspondence broader: two examples

L. Nguyen Van Thé (Aix-Marseille)

Compactifications and Ramsey

▲ 重 ▶ 重 ∽ へ ○
July 2016 11 / 33

イロト イポト イヨト イヨト

Some natural classes of flows to start with

L. Nguyen Van Thé (Aix-Marseille)

Compactifications and Ramsey

July 2016 12 / 33

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ① ○ ○ ○

Some natural classes of flows to start with

Definition

Let $G \curvearrowright X$ be a G-flow. An ordered pair $(x, y) \in X^2$ is:

- **proximal** when $g \cdot x$ and $g \cdot y$ can be made arbitrarily close.
- distal when it is not proximal.

Some natural classes of flows to start with

Definition

Let $G \curvearrowright X$ be a G-flow. An ordered pair $(x, y) \in X^2$ is:

- **proximal** when $g \cdot x$ and $g \cdot y$ can be made arbitrarily close.
- distal when it is not proximal.

Definition

A G-flow $G \curvearrowright X$ is:

- proximal when every $(x, y) \in X^2$ is proximal.
- distal when every $(x, y) \in X^2$ with $x \neq y$ is distal.

equicontinuous when

$$\forall U \in Unif(X) \ \exists V \in Unif(X) \ \forall x, y \in X$$

$$(x,y) \in V \Rightarrow \forall g \in G \ (g \cdot x, g \cdot y) \in U$$

L. Nguyen Van Thé (Aix-Marseille)

Compactifications and Ramsey

Fixed-points properties

Definition

Let G be a topological group. It is:

- strongly amenable when every proximal G-flow has a fixed point.
- minimally almost periodic when every equicontinuous G-flow has a fixed point ("equicontinuous" may be replaced by "distal").

(日) (周) (三) (三)

Fixed-points properties

Definition

Let G be a topological group. It is:

- strongly amenable when every proximal G-flow has a fixed point.
- minimally almost periodic when every equicontinuous G-flow has a fixed point ("equicontinuous" may be replaced by "distal").

Remark

Recall that a topological group G is amenable when every G-flow has an invariant Borel probability measure.

- Amenability is also a fixed point property: G is amenable iff every G-flow G ∩ X has a fixed point, provided G ∩ Prob(X) is proximal.
- ► Thus, every strongly amenable group G is amenable.
- ▶ KPT correspondence for amenability already considered by Tsankov and by Moore (~10). It is of slightly different flavor than what follows, probably more useful in practice (even if not used so far).

L. Nguyen Van Thé (Aix-Marseille)

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
Proximal colorings

Definition

Let \mathbb{F} be a countable ultrahomogeneous structure and $A \in Age(\mathbb{F})$. A finite coloring χ of the embeddings of A in \mathbb{F} is proximal when: For every $(g_m)_{m \in \mathbb{N}}$, $(h_m)_{m \in \mathbb{N}} \in Aut(\mathbb{F})$ that satisfy

$$(\chi(g_m \cdot a))_m$$
, $(\chi(h_m \cdot a))_m$ converge for every a,

There is $B \in Age(\mathbb{F})$ s.t. every $\tilde{B} \cong B$ contains some \tilde{a} s.t. :

$$\lim_{m} \chi(g_m \cdot \tilde{a}) = \lim_{m} \chi(h_m \cdot \tilde{a})$$

Proximal colorings

Definition

Let \mathbb{F} be a countable ultrahomogeneous structure and $A \in Age(\mathbb{F})$. A finite coloring χ of the embeddings of A in \mathbb{F} is proximal when: For every $(g_m)_{m \in \mathbb{N}}$, $(h_m)_{m \in \mathbb{N}} \in Aut(\mathbb{F})$ that satisfy

$$(\chi(g_m \cdot a))_m$$
, $(\chi(h_m \cdot a))_m$ converge for every a,

There is $B \in Age(\mathbb{F})$ s.t. every $\tilde{B} \cong B$ contains some \tilde{a} s.t. :

$$\lim_{m} \chi(g_m \cdot \tilde{a}) = \lim_{m} \chi(h_m \cdot \tilde{a})$$

Definition

A countable ultrahomogeneous structure \mathbb{F} has the proximal Ramsey property when: For every $A, B \in Age(\mathbb{F})$,

Whenever embeddings of A in \mathbb{F} are colored via a proximal finite coloring $\exists \tilde{B} \cong B$ where all embeddings of A have same color.

L. Nguyen Van Thé (Aix-Marseille)

Compactifications and Ramsey

July 2016 14 / 33

A (half) KPT correspondence for proximal flows

Theorem (NVT, 15)

Let \mathbb{F} be a countable ultrahomogeneous structure so that $Aut(\mathbb{F})$ is strongly amenable. Then \mathbb{F} has the proximal Ramsey property.

L. Nguyen Van Thé (Aix-Marseille)

Compactifications and Ramsey

July 2016 15 / 33

イロト 不得下 イヨト イヨト 二日

Definable colorings

Definition

Let \mathcal{K} be a class of finite structures.

- A (joint embedding) pattern (a, z) is a pair of embeddings of A, Z ∈ K into some common C ∈ K.
- Write $\langle a, z \rangle \cong \langle a', z' \rangle$ when there is an isomorphism $c : C \to C'$ s.t.: $a' = c \circ a, \quad z' = c \circ z$
- Fix A, C, Z ∈ K. A pattern (c, z) induces a coloring of the embeddings of A in C:

 $\chi(a) = isomorphism type of \langle a, z \rangle.$ (keeps track of how "a sees z").

- ► Also makes sense in case of finitely many Z¹,...,Z^k.
- Colorings that are obtained that way are definable.

L. Nguyen Van Thé (Aix-Marseille)

Definable Ramsey property, stable Ramsey property

Definition

A class of finite structures \mathcal{K} has the definable Ramsey property when: For every $A, B \in \mathcal{K}$, every $Z^1, ..., Z^k \in \mathcal{K}$, there exists $C \in \mathcal{K}$ s. t.

Whenever embeddings of A in C are colored via some $\langle c, z^1, ..., z^k \rangle$, $\exists \tilde{B} \cong B$ where all embeddings of A have same color.

Definable Ramsey property, stable Ramsey property

Definition

A class of finite structures \mathcal{K} has the definable Ramsey property when: For every $A, B \in \mathcal{K}$, every $Z^1, ..., Z^k \in \mathcal{K}$, there exists $C \in \mathcal{K}$ s. t.

Whenever embeddings of A in C are colored via some $\langle c, z^1, ..., z^k \rangle$, $\exists \tilde{B} \cong B$ where all embeddings of A have same color.

Definition

 \mathcal{K} has the stable Ramsey property when the definable Ramsey property is restricted to those $A, Z^1, ..., Z^k$ with all (A, Z^i) stable...

...where (A, Z) is stable when there is no $(a_m, z_m)_{m \in \mathbb{N}}$ and no pattern $\langle a, z \rangle$ s.t.:

$$\forall m, n \in \mathbb{N} \quad m < n \Leftrightarrow \langle a_m, z_n \rangle \cong \langle a, z \rangle$$

L. Nguyen Van Thé (Aix-Marseille)

Compactifications and Ramsey

July 2016 17 / 33

A KPT correspondence for equicontinuous/distal flows

Theorem (NVT, 15)

Let \mathbb{F} be a countable ultrahomogeneous structure.

Assume that that every pair of elements of $Age(\mathbb{F})$ only has finitely many joint embedding patterns (equiv. $Aut(\mathbb{F})$ is Roelcke precompact). TFAE:

- i) $Aut(\mathbb{F})$ is minimally almost periodic.
- ii) $Age(\mathbb{F})$ has the stable Ramsey property.

イロト 不得下 イヨト イヨト 二日

Part III

Making the KPT correspondence broader: the general framework

L. Nguyen Van Thé (Aix-Marseille)

Compactifications and Ramsey

July 2016 19 / 33

Main ideas

- Express the existence of fixed points in *G*-flows in terms of continuous functions.
- Specialize this to Gelfand compactifications.
- When $G = Aut(\mathbb{F})$, discretize to obtain a Ramsey-type property.
- Use this and additional properties to characterize fixed point properties.

イロト 不得 トイヨト イヨト 二日

Proposition

Let G be a topological group, $G \curvearrowright X$ a G-flow, and $x \in X$. TFAE:

- i) $\overline{G \cdot x}$ contains a fixed point.
- ii) For every $\mathcal{F} \subset C(X)$ finite, $\varepsilon > 0$, $F \subset G$ finite,

there exists a point in $G \cdot x$ is F-fixed up to \mathcal{F}, ε

イロト イポト イヨト イヨト 二日

Proposition

Let G be a topological group, $G \curvearrowright X$ a G-flow, and $x \in X$. TFAE:

i) $\overline{G \cdot x}$ contains a fixed point.

ii) For every $\mathcal{F} \subset C(X)$ finite, $\varepsilon > 0$, $F \subset G$ finite,

there exists a point in $G \cdot x$ is F-fixed up to \mathcal{F}, ε :

 $\exists g \in G \quad \forall h, h' \in F \quad \forall f \in \mathcal{F} \quad |f(h \cdot (g \cdot x)) - f(h' \cdot (g \cdot x))| < \varepsilon \quad (*)$

Proposition

Let G be a topological group, $G \curvearrowright X$ a G-flow, and $x \in X$. TFAE:

i) $\overline{G \cdot x}$ contains a fixed point.

ii) For every $\mathcal{F} \subset C(X)$ finite, $\varepsilon > 0$, $F \subset G$ finite,

there exists a point in $G \cdot x$ is F-fixed up to \mathcal{F}, ε :

 $\exists g \in G \quad \forall h, h' \in F \quad \forall f \in \mathcal{F} \quad |f(h \cdot (g \cdot x)) - f(h' \cdot (g \cdot x))| < \varepsilon \quad (*)$

Proof.

i) \Rightarrow ii): Approximate the fixed point by some point in $G \cdot x$.

ii) \Rightarrow i): Use compactness to obtain a true fixed point in $\overline{G \cdot x}$.

Proposition

Let G be a topological group, $G \curvearrowright X$ a G-flow, and $x \in X$. TFAE:

i) $\overline{G \cdot x}$ contains a fixed point.

ii) For every $\mathcal{F} \subset C(X)$ finite, $\varepsilon > 0$, $F \subset G$ finite,

there exists a point in $G \cdot x$ is F-fixed up to \mathcal{F}, ε :

 $\exists g \in G \quad \forall h, h' \in F \quad \forall f \in \mathcal{F} \quad |f(h \cdot (g \cdot x)) - f(h' \cdot (g \cdot x))| < \varepsilon \quad (*)$

Proof.

i) \Rightarrow ii): Approximate the fixed point by some point in $G \cdot x$. ii) \Rightarrow i): Use compactness to obtain a true fixed point in $\overline{G \cdot x}$.

Remark

(*) in ii) can be rephrased if we write $f_x : g \mapsto f(g \cdot x)$:

 $\exists g \in G \quad \forall f \in \mathcal{F} \quad f_x \text{ is constant on } Fg \text{ up to } \varepsilon$

L. Nguyen Van Thé (Aix-Marseille)

Compactifications and Ramsey

Proposition

Let G be a topological group, $G \curvearrowright X$ a G-flow, and $x \in X$. TFAE:

- i) $\overline{G \cdot x}$ contains a fixed point.
- ii') For every $\mathcal{F} \subset C(X)$ finite, $\varepsilon > 0$, $F \subset G$ finite

 $\exists g \in G \quad \forall f \in \mathcal{F} \quad f_x \text{ is constant on } Fg \text{ up to } \varepsilon$

L. Nguyen Van Thé (Aix-Marseille)

Proposition

Let G be a topological group, $G \curvearrowright X$ a G-flow, and $x \in X$. TFAE:

- i) $\overline{G \cdot x}$ contains a fixed point.
- ii') For every $\mathcal{F} \subset C(X)$ finite, $\varepsilon > 0$, $F \subset G$ finite

 $\exists g \in G \quad \forall f \in \mathcal{F} \quad f_x \text{ is constant on } Fg \text{ up to } \varepsilon$

Remark

• Every f_x is in $RUC_b(G)$ (C^* -alg of bdd unif conti fns $(G, U_R) \to \mathbb{C}$).

Proposition

Let G be a topological group, $G \curvearrowright X$ a G-flow, and $x \in X$. TFAE:

- i) $\overline{G \cdot x}$ contains a fixed point.
- ii') For every $\mathcal{F} \subset C(X)$ finite, $\varepsilon > 0$, $F \subset G$ finite

 $\exists g \in G \quad \forall f \in \mathcal{F} \quad f_x \text{ is constant on } Fg \text{ up to } \varepsilon$

Remark

- Every f_x is in $RUC_b(G)$ (C^* -alg of bdd unif conti fns $(G, U_R) \to \mathbb{C}$).
- If A is a unital subalgebra of RUC_b(G) that is invariant under g ⋅ f(x) = f(g⁻¹ ⋅ x)

the action $G \curvearrowright G$ by left translations extends continuously to $G \curvearrowright G^{\mathcal{A}}$ (Gelfand compactification)

L. Nguyen Van Thé (Aix-Marseille)

Proposition

Let G be a topological group, $G \curvearrowright X$ a G-flow, and $x \in X$. TFAE:

- i) $\overline{G \cdot x}$ contains a fixed point.
- ii') For every $\mathcal{F} \subset C(X)$ finite, $\varepsilon > 0$, $F \subset G$ finite

 $\exists g \in G \quad \forall f \in \mathcal{F} \quad f_x \text{ is constant on } Fg \text{ up to } \varepsilon$

Remark

- Every f_x is in $RUC_b(G)$ (C^* -alg of bdd unif conti fns $(G, U_R) \to \mathbb{C}$).
- If A is a unital subalgebra of RUC_b(G) that is invariant under g ⋅ f(x) = f(g⁻¹ ⋅ x)

the action $G \curvearrowright G$ by left translations extends continuously to $G \curvearrowright G^{\mathcal{A}}$ (Gelfand compactification)

• Furthermore, if $x = e_G$, then $\{f_x : f \in C(G^A)\} = A$.

Proposition

Let G be a topological group, $G \curvearrowright X$ a G-flow, and $x \in X$. TFAE:

- i) $\overline{G \cdot x}$ contains a fixed point.
- ii') For every $\mathcal{F} \subset C(X)$ finite, $\varepsilon > 0$, $F \subset G$ finite

 $\exists g \in G \quad \forall f \in \mathcal{F} \quad f_x \text{ is constant on } Fg \text{ up to } \varepsilon$

Remark

- Every f_x is in $RUC_b(G)$ (C^* -alg of bdd unif conti fns $(G, U_R) \to \mathbb{C}$).
- If A is a unital subalgebra of RUC_b(G) that is invariant under g ⋅ f(x) = f(g⁻¹ ⋅ x)

the action $G \curvearrowright G$ by left translations extends continuously to $G \curvearrowright G^{\mathcal{A}}$ (Gelfand compactification)

• Furthermore, if $x = e_G$, then $\{f_x : f \in C(G^A)\} = A$.

► So the previous proposition applied to the G-flow G ⊂ GA gives: L. Nguyen Van Thé (Aix-Marseille) Compactifications and Ramsey July 2016 22 / 33 Fixed points in G-flows: Gelfand compactifications

Proposition

Let G be a top. gp, A a unital, left-invariant subalg of $RUC_b(G)$. TFAE: i) $G \curvearrowright G^A$ has a fixed point.

ii") For every $\mathcal{F} \subset \mathcal{A}$ finite, $\varepsilon > 0$, $F \subset G$ finite

 $\exists g \in G \quad \forall f \in \mathcal{F} \quad f \text{ is constant on } Fg \text{ up to } \varepsilon$

L. Nguyen Van Thé (Aix-Marseille)

Compactifications and Ramsey

July 2016 24 / 33

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

• Let \mathbb{F} be a ctble ultrahomogeneous structure, $G = Aut(\mathbb{F})$.

July 2016 24 / 33

- Let \mathbb{F} be a ctble ultrahomogeneous structure, $G = Aut(\mathbb{F})$.
- ▶ For finite $A \subset \mathbb{F}$, the ptwise stabilizer $Stab(A) \subset Aut(\mathbb{F})$ is clopen.

- Let \mathbb{F} be a ctble ultrahomogeneous structure, $G = Aut(\mathbb{F})$.
- ▶ For finite $A \subset \mathbb{F}$, the ptwise stabilizer $Stab(A) \subset Aut(\mathbb{F})$ is clopen.
- ▶ For $g \in G$, its equivalence class in $Stab(A) \setminus Aut(\mathbb{F})$ can be viewed as:
 - ▶ the "A-nbhd around g" wrt right uniform structure.
 - $g^{-1} \upharpoonright A$, ie an embedding of A into \mathbb{F} .

- Let \mathbb{F} be a ctble ultrahomogeneous structure, $G = Aut(\mathbb{F})$.
- ▶ For finite $A \subset \mathbb{F}$, the ptwise stabilizer $Stab(A) \subset Aut(\mathbb{F})$ is clopen.
- ▶ For $g \in G$, its equivalence class in $Stab(A) \setminus Aut(\mathbb{F})$ can be viewed as:
 - ▶ the "A-nbhd around g" wrt right uniform structure.
 - $g^{-1} \upharpoonright A$, ie an embedding of A into \mathbb{F} .
- A finite coloring *χ* of the embeddings of *A* into 𝔽 is just an element of *RUC_b(Aut(𝔅))*, constant on *A*-nbhds.

- Let \mathbb{F} be a ctble ultrahomogeneous structure, $G = Aut(\mathbb{F})$.
- ▶ For finite $A \subset \mathbb{F}$, the ptwise stabilizer $Stab(A) \subset Aut(\mathbb{F})$ is clopen.
- ▶ For $g \in G$, its equivalence class in $Stab(A) \setminus Aut(\mathbb{F})$ can be viewed as:
 - ▶ the "A-nbhd around g" wrt right uniform structure.
 - $g^{-1} \upharpoonright A$, ie an embedding of A into \mathbb{F} .
- A finite coloring *χ* of the embeddings of *A* into 𝔽 is just an element of *RUC_b(Aut(𝔅))*, constant on *A*-nbhds.
- Let $F \subset Aut(\mathbb{F})$ finite. In $Stab(A) \setminus Aut(\mathbb{F})$:
 - it is a finite set of embeddings of A into \mathbb{F} . WLOG, of the form $\binom{B}{A}$.
 - Fg is another finite set of embeddings, namely $\binom{B}{A}$ with $\tilde{B} = g^{-1}(B)$.

- Let \mathbb{F} be a ctble ultrahomogeneous structure, $G = Aut(\mathbb{F})$.
- ▶ For finite $A \subset \mathbb{F}$, the ptwise stabilizer $Stab(A) \subset Aut(\mathbb{F})$ is clopen.
- ▶ For $g \in G$, its equivalence class in $Stab(A) \setminus Aut(\mathbb{F})$ can be viewed as:
 - ▶ the "A-nbhd around g" wrt right uniform structure.
 - $g^{-1} \upharpoonright A$, ie an embedding of A into \mathbb{F} .
- A finite coloring *χ* of the embeddings of *A* into 𝔽 is just an element of *RUC_b(Aut(𝔅))*, constant on *A*-nbhds.
- Let $F \subset Aut(\mathbb{F})$ finite. In $Stab(A) \setminus Aut(\mathbb{F})$:
 - it is a finite set of embeddings of A into \mathbb{F} . WLOG, of the form $\binom{B}{A}$.
 - Fg is another finite set of embeddings, namely $\binom{B}{A}$ with $\tilde{B} = g^{-1}(B)$.
- For small enough $\varepsilon > 0$, TFAE:
 - χ is constant up to ε on Fg as a right-uniformly continuous function.
 - χ is truly constant on some $\binom{B}{A}$.

L. Nguyen Van Thé (Aix-Marseille)

July 2016 24 / 33

- Let \mathbb{F} be a ctble ultrahomogeneous structure, $G = Aut(\mathbb{F})$.
- ▶ For finite $A \subset \mathbb{F}$, the ptwise stabilizer $Stab(A) \subset Aut(\mathbb{F})$ is clopen.
- ▶ For $g \in G$, its equivalence class in $Stab(A) \setminus Aut(\mathbb{F})$ can be viewed as:
 - ▶ the "A-nbhd around g" wrt right uniform structure.
 - $g^{-1} \upharpoonright A$, ie an embedding of A into \mathbb{F} .
- A finite coloring *χ* of the embeddings of *A* into 𝔽 is just an element of *RUC_b(Aut(𝔅))*, constant on *A*-nbhds.
- Let $F \subset Aut(\mathbb{F})$ finite. In $Stab(A) \setminus Aut(\mathbb{F})$:
 - it is a finite set of embeddings of A into \mathbb{F} . WLOG, of the form $\binom{B}{A}$.
 - Fg is another finite set of embeddings, namely $({}^{B}_{A})$ with $\tilde{B} = g^{-1}(B)$.
- For small enough $\varepsilon > 0$, TFAE:
 - χ is constant up to ε on Fg as a right-uniformly continuous function.
 - χ is truly constant on some $\binom{B}{A}$.
- So when colorings are dense in \mathcal{A} ...

L. Nguyen Van Thé (Aix-Marseille)

July 2016 24 / 33

Consequence when colorings are dense in \mathcal{A}

...ii") from previous Proposition ii") For every $F \subset G$ finite, $\mathcal{F} \subset \mathcal{A}$ finite, $\varepsilon > 0$, $\exists g \in G \quad \forall f \in \mathcal{F} \quad f \text{ is constant on } Fg \text{ up to } \varepsilon$

...becomes:

Consequence when colorings are dense in \mathcal{A}

...ii") from previous Proposition

```
ii") For every F \subset G finite, \mathcal{F} \subset \mathcal{A} finite, \varepsilon > 0,
```

 $\exists g \in G \quad \forall f \in \mathcal{F} \quad f \text{ is constant on } Fg \text{ up to } \varepsilon$

...becomes:

iii) \mathbb{F} has the Ramsey property for colorings in \mathcal{A} : For every $A, B \in Age(\mathbb{F}), \mathcal{F}$ finite set of colorings of $\binom{\mathbb{F}}{A}$ st $\mathcal{F} \subset \mathcal{A}$. $\exists \tilde{B} \cong B \quad \forall \chi \in \mathcal{F}$ all embeddings of A have same χ -color.

Consequence when colorings are dense in $\ensuremath{\mathcal{A}}$

...ii") from previous Proposition

```
ii") For every F \subset G finite, \mathcal{F} \subset \mathcal{A} finite, \varepsilon > 0,
```

 $\exists g \in G \quad \forall f \in \mathcal{F} \quad f \text{ is constant on } Fg \text{ up to } \varepsilon$

...becomes:

iii) \mathbb{F} has the Ramsey property for colorings in \mathcal{A} : For every $A, B \in Age(\mathbb{F}), \mathcal{F}$ finite set of colorings of $\binom{\mathbb{F}}{A}$ st $\mathcal{F} \subset \mathcal{A}$. $\exists \tilde{B} \cong B \quad \forall \chi \in \mathcal{F}$ all embeddings of A have same χ -color.

...and from previous slides, these are equivalent to:

i) $G \curvearrowright G^{\mathcal{A}}$ has a fixed point.

L. Nguyen Van Thé (Aix-Marseille)

Fixed points in Gelfand compactifications

Theorem (NVT, 16)

Let $G = Aut(\mathbb{F})$, \mathcal{A} unital, left-invariant subalg of $RUC_b(G)$. If $G \curvearrowright G^{\mathcal{A}}$ has a fixed point, then \mathbb{F} has the Ramsey property for colorings in \mathcal{A} .

If colorings are dense in A, the converse also holds.

Fixed points in Gelfand compactifications

Theorem (NVT, 16)

Let $G = Aut(\mathbb{F})$, \mathcal{A} unital, left-invariant subalg of $RUC_b(G)$. If $G \curvearrowright G^{\mathcal{A}}$ has a fixed point, then \mathbb{F} has the Ramsey property for colorings in \mathcal{A} .

If colorings are dense in \mathcal{A} , the converse also holds.

When colorings are not dense in \mathcal{A} , another equivalence holds at the cost of an approximation:

Fixed points in Gelfand compactifications

Theorem (NVT, 16)

Let $G = Aut(\mathbb{F})$, \mathcal{A} unital, left-invariant subalg of $RUC_b(G)$. If $G \curvearrowright G^{\mathcal{A}}$ has a fixed point, then \mathbb{F} has the Ramsey property for colorings in \mathcal{A} .

If colorings are dense in \mathcal{A} , the converse also holds.

When colorings are not dense in \mathcal{A} , another equivalence holds at the cost of an approximation:

Theorem (NVT, 16)

Let $G = Aut(\mathbb{F})$, \mathcal{A} unital, left-invariant subalg of $RUC_b(G)$. TFAE: i) $G \curvearrowright G^{\mathcal{A}}$ has a fixed point.

ii) \mathbb{F} has the approximate Ramsey property for colorings in \mathcal{A} : $\forall A, B \in Age(\mathbb{F}), \varepsilon > 0, \mathcal{F}$ finite set of colorings of $\binom{\mathbb{F}}{A}$ st $\mathcal{F} \subset (\mathcal{A})_{\varepsilon}$

 $\exists \tilde{B} \cong B \ \, \forall \chi \in \mathcal{F} \ \, \text{all embeddings of A have same } \chi\text{-color up to } 2\varepsilon.$

How to apply this in concrete situations

Let (P) be a property of *G*-flows.

Under identified assumptions, (P) admits a universal object $G \curvearrowright X$:

- $G \curvearrowright X$ has (P).
- Every G-flow with (P) is a factor of G ∩ X, ie If G ∩ Y has (P), there is π : X → Y continuous and equivariant.

Every such object is of the form $G \curvearrowright G^{\mathcal{A}}$.

Examples

- Being a G-flow.
- Being proximal.
- Being distal.
- Being equicontinuous.

So: To express that every such G-flow has a fixed point, it suffices to find out the relevant A.

L. Nguyen Van Thé (Aix-Marseille)

Looking for \mathcal{A}

Proposition

Let G be a top gp. The (algebraic) action on \mathbb{C}^{G} defined by

$$g \cdot f(x) = f(xg)$$

is continuous on every $\overline{G \cdot f}$ for $f \in RUC_b(G)$. The corresponding G-flow is denoted $G \curvearrowright X_f$.

Proposition (de Vries)

Let (P) be a "good" property of G-flows, attached to $\mathcal{A} \subset RUC_b(G)$. TFAE for $f \in RUC_b(G)$:

i)
$$f \in \mathcal{A}$$

ii) $G \curvearrowright X_f$ has (P).

L. Nguyen Van Thé (Aix-Marseille)

イロト イポト イヨト イヨト 二日

Application: original KPT correspondence

Let \mathbb{F} be a countable ultrahomogeneous structure, $G = Aut(\mathbb{F})$.

- ▶ (P): Being a G-flow. This is "good".
- Fixed point property: Extreme amenability.
- $\mathcal{A} = RUC_b(G)$
- Colorings are dense in \mathcal{A} .
- So by Theorem, TFAE:
 - i) $Aut(\mathbb{F})$ is extremely amenable.
 - ii) $Age(\mathbb{F})$ has the Ramsey property for all colorings.

L. Nguyen Van Thé (Aix-Marseille)

Compactifications and Ramsey

July 2016 29 / 33
Application: Proximal KPT correspondence

Let \mathbb{F} be a countable ultrahomogeneous structure, $G = Aut(\mathbb{F})$.

- ▶ (P): Being a proximal G-flow. This is "good".
- Fixed point property: strong amenability.

►
$$\mathcal{A} = Prox(G)$$
. $f \in Prox(G)$ when:
 $\forall (h_n)_n, (h'_n)_n \subset G$ $(h_n \cdot f)_n, (h'_n \cdot f)_n$ converge pointwise
 $\Rightarrow \forall \varepsilon > 0$ $\{g \in G : |\lim_n f(gh_n) - \lim_n f(gh'_n)| < \varepsilon\}$ is syndetic

A finite coloring \(\chi\) of the embeddings of A in \(\mathbb{F}\) is in Prox(G) when: for every (h_n)_{n∈ℕ}, (h'_n)_{n∈ℕ} ∈ Aut(\(\mathbb{F}\)) that satisfy

 $(\chi(h_n \cdot a))_n$, $(\chi(h'_n \cdot a))_n$ converge for every a,

there is $B \in Age(\mathbb{F})$ s.t. every $\tilde{B} \cong B$ contains some \tilde{a} s.t. :

$$\lim_{n} \chi(h_n \cdot \tilde{a}) = \lim_{n} \chi(h'_n \cdot \tilde{a})$$

- Not clear that colorings are dense in A.
- So if Aut(𝑘) is strongly amenable, then Age(𝑘) has the Ramsey property for proximal colorings.

L. Nguyen Van Thé (Aix-Marseille)

Compactifications and Ramsey

July 2016 30 / 33

= 900

Application: Distal/equicontinuous KPT correspondence

Let \mathbb{F} be a countable ultrahomogeneous structure, st $G = Aut(\mathbb{F})$ is oligomorphic.

- ▶ (P): Being a distal G-flow. This is "good".
- ► Fixed point property: minimal almost periodicity.
- ► $\mathcal{A} = Dist(G)$. $f \in Dist(G)$ when: $\forall (h_n)_n, (h'_n)_n \subset G \quad (h_n \cdot f)_n, (h'_n \cdot f)_n$ converge ptwise to distinct elts $\Rightarrow \exists \varepsilon > 0 \quad \forall g \in G \quad |\lim_n f(gh_n) - \lim_n f(gh'_n)| \ge \varepsilon$
- A finite coloring \(\chi\) of the embeddings of A in \(\mathbb{F}\) is in Dist(G) when: for every (h_n)_{n∈ℕ}, (h'_n)_{n∈ℕ} ∈ Aut(\(\mathbb{F}\)) that satisfy

 $(\chi(h_n \cdot a))_n$, $(\chi(h'_n \cdot a))_n$ converge for every a,

for every $B \in Age(\mathbb{F})$ there is $\tilde{B} \cong B$ where every \tilde{a} satisfies: $\lim_{n} \chi(h_n \cdot \tilde{a}) \neq \lim_{n} \chi(h'_n \cdot \tilde{a})$

- Not clear that colorings are dense in \mathcal{A} .
- So if Aut(𝑘) is minimally almost periodic, then Age(𝑘) has the Ramsey property for distal colorings.

L. Nguyen Van Thé (Aix-Marseille)

Compactifications and Ramsey

▲ ■ ▶ ■ のへの July 2016 31 / 33

BUT...

 ...It is known that replacing A by another algebra WAP(G), the corresponding fixed point property stays unchanged.

Thanks to some recent results of Ben Yaacov-Tsankov:

- A finite coloring *χ* of the embeddings of *A* in 𝔽 is in *WAP(G)* when it is stable: *χ(a)* = ⟨*a*, *z*⟩ for some stable (*A*, *Z*).
- Colorings are dense in WAP(G).
- So by Theorem, TFAE:
 - i) $Aut(\mathbb{F})$ is minimally almost periodic.
 - ii) $Age(\mathbb{F})$ has the Ramsey property for stable colorings.

L. Nguyen Van Thé (Aix-Marseille)

Compactifications and Ramsey

July 2016 32 / 33

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

...Very unclear that these results will be as useful as the original KPT correspondence.

July 2016 33 / 33

- ...Very unclear that these results will be as useful as the original KPT correspondence.
- ► To prove strong amenability, easier to use the original KPT correspondence to compute the universal minimal flow of G, and then to use a result by (Melleray-NVT-Tsankov, 15).
- ► To prove minimal almost periodicity, one can do the same.

- ...Very unclear that these results will be as useful as the original KPT correspondence.
- To prove strong amenability, easier to use the original KPT correspondence to compute the universal minimal flow of G, and then to use a result by (Melleray-NVT-Tsankov, 15).
- ► To prove minimal almost periodicity, one can do the same.
- ► However, this only works when the universal minimal flow is metrizable, and it is unknown for which F this holds.

- ...Very unclear that these results will be as useful as the original KPT correspondence.
- To prove strong amenability, easier to use the original KPT correspondence to compute the universal minimal flow of G, and then to use a result by (Melleray-NVT-Tsankov, 15).
- ► To prove minimal almost periodicity, one can do the same.
- ► However, this only works when the universal minimal flow is metrizable, and it is unknown for which F this holds.
- For minimal almost periodicity, the most powerful method is to use the classification of unitary representations (Tsankov, 12).

- ...Very unclear that these results will be as useful as the original KPT correspondence.
- To prove strong amenability, easier to use the original KPT correspondence to compute the universal minimal flow of G, and then to use a result by (Melleray-NVT-Tsankov, 15).
- ► To prove minimal almost periodicity, one can do the same.
- ► However, this only works when the universal minimal flow is metrizable, and it is unknown for which F this holds.
- For minimal almost periodicity, the most powerful method is to use the classification of unitary representations (Tsankov, 12).