Q_B -sets and $\mathscr{P}(\lambda)/$ ctble $\mathscr{P}(2^{\kappa})/\mathscr{I}_{\kappa^+}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Automorphisms of $\mathcal{P}(\lambda)/\mathcal{I}_{\kappa}$

Paul McKenney Joint work with Paul Larson

Miami University Toposym 2016

July 28, 2016

• $\mathcal{P}(X)$ is the power set of X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Notation and conventions:

- $\mathcal{P}(X)$ is the power set of X.
- \mathscr{I}_{κ} is the ideal of sets of size $< \kappa$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Notation and conventions:

- $\mathcal{P}(X)$ is the power set of X.
- \mathscr{I}_{κ} is the ideal of sets of size $< \kappa$.

• fin =
$$\mathscr{I}_{\omega}$$
, ctble = \mathscr{I}_{ω_1} .

- $\mathcal{P}(X)$ is the power set of X.
- \mathscr{I}_{κ} is the ideal of sets of size $< \kappa$.
- fin = \mathscr{I}_{ω} , ctble = \mathscr{I}_{ω_1} .
- We will be working with the Boolean algebras $\mathscr{P}(\lambda)/\mathscr{I}_{\kappa}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- $\mathcal{P}(X)$ is the power set of X.
- \mathscr{I}_{κ} is the ideal of sets of size $< \kappa$.
- fin = \mathscr{I}_{ω} , ctble = \mathscr{I}_{ω_1} .
- We will be working with the Boolean algebras $\mathscr{P}(\lambda)/\mathscr{I}_{\kappa}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• [A] will denote the equivalence class of a set $A \subseteq \lambda$.

- $\mathcal{P}(X)$ is the power set of X.
- \mathscr{I}_{κ} is the ideal of sets of size $< \kappa$.
- fin = \mathscr{I}_{ω} , ctble = \mathscr{I}_{ω_1} .
- We will be working with the Boolean algebras $\mathscr{P}(\lambda)/\mathscr{I}_{\kappa}$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- [A] will denote the equivalence class of a set $A \subseteq \lambda$.
- Every Question is open (as far as I know).

 Q_B -sets and $\mathscr{P}(\lambda)/$ ctble $\mathscr{P}(2^{\kappa})/\mathscr{I}_{\kappa^+}$ One last question

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Question

Consider the Boolean algebras $\mathscr{P}(\kappa)/fin$, where κ is an infinite cardinal. Are any two of them (consistently) isomorphic?

 Q_B -sets and $\mathscr{P}(\lambda)/$ ctble $\mathscr{P}(2^{\kappa})/\mathscr{I}_{\kappa^+}$ One last question

(ロ) (同) (三) (三) (三) (○) (○)

Question

Consider the Boolean algebras $\mathscr{P}(\kappa)/fin$, where κ is an infinite cardinal. Are any two of them (consistently) isomorphic?

This problem was almost completely solved in the 1970's:

Theorem (Balcar-Frankiewicz, 1978)

Suppose $\kappa < \lambda$ and $\mathscr{P}(\kappa)$ /fin and $\mathscr{P}(\lambda)$ /fin are isomorphic. Then $\kappa = \omega$ and $\lambda = \omega_1$.

 Q_{B} -sets and $\mathscr{P}(\lambda)/$ ctble $\mathscr{P}(2^{\kappa})/\mathscr{I}_{\kappa^{+}}$

Question

Consider the Boolean algebras $\mathscr{P}(\kappa)/fin$, where κ is an infinite cardinal. Are any two of them (consistently) isomorphic?

This problem was almost completely solved in the 1970's:

Theorem (Balcar-Frankiewicz, 1978)

Suppose $\kappa < \lambda$ and $\mathscr{P}(\kappa)$ /fin and $\mathscr{P}(\lambda)$ /fin are isomorphic. Then $\kappa = \omega$ and $\lambda = \omega_1$.

Question (The Katowice Problem)

Is it consistent with ZFC that $\mathcal{P}(\omega)/\text{ fin and } \mathcal{P}(\omega_1)/\text{ fin are}$ isomorphic?

(ロ) (同) (三) (三) (三) (○) (○)

Theorem (Chodounský, Dow, Hart, de Vries, 2015)

Suppose $\mathscr{P}(\omega)/\text{ fin and } \mathscr{P}(\omega_1)/\text{ fin are isomorphic. Then there is a nontrivial automorphism of <math>\mathscr{P}(\omega)/\text{ fin.}$

(An automorphism π of $\mathscr{P}(X)/\mathscr{I}$ is trivial if there is a function $f: X \to X$ such that $\pi([A]) = [f''(A)]$ for all $A \subseteq X$.)

(ロ) (同) (三) (三) (三) (○) (○)

Theorem (Chodounský, Dow, Hart, de Vries, 2015)

Suppose $\mathscr{P}(\omega)/\text{ fin and } \mathscr{P}(\omega_1)/\text{ fin are isomorphic. Then there is a nontrivial automorphism of <math>\mathscr{P}(\omega)/\text{ fin.}$

(An automorphism π of $\mathscr{P}(X)/\mathscr{I}$ is trivial if there is a function $f: X \to X$ such that $\pi([A]) = [f''(A)]$ for all $A \subseteq X$.)

A natural question to ask is: what effect does an isomorphism $\mathscr{P}(\omega)/\operatorname{fin} \simeq \mathscr{P}(\omega_1)/\operatorname{fin}$ have on the automorphism group of $\mathscr{P}(\omega_1)/\operatorname{fin}$?

A D F A 同 F A E F A E F A Q A

Theorem (Chodounský, Dow, Hart, de Vries, 2015)

Suppose $\mathscr{P}(\omega)$ /fin and $\mathscr{P}(\omega_1)$ /fin are isomorphic. Then there is a nontrivial automorphism of $\mathscr{P}(\omega)$ /fin.

(An automorphism π of $\mathscr{P}(X)/\mathscr{I}$ is trivial if there is a function $f: X \to X$ such that $\pi([A]) = [f''(A)]$ for all $A \subseteq X$.)

A natural question to ask is: what effect does an isomorphism $\mathscr{P}(\omega)/\operatorname{fin} \simeq \mathscr{P}(\omega_1)/\operatorname{fin}$ have on the automorphism group of $\mathscr{P}(\omega_1)/\operatorname{fin}$?

In particular, what automorphisms of $\mathscr{P}(\omega)/$ fin have properties that are interesting when given to automorphisms of $\mathscr{P}(\omega_1)/$ fin?

(日) (日) (日) (日) (日) (日) (日)

For example: if σ is the shift automorphism of $\mathscr{P}(\omega)/$ fin, i.e.

$$\sigma([A]) = [\{n+1 \mid n \in A\}]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

then σ has no fixed points other than $[\emptyset]$ and $[\omega]$.

For example: if σ is the shift automorphism of $\mathscr{P}(\omega)/$ fin, i.e.

$$\sigma([A]) = [\{n+1 \mid n \in A\}]$$

then σ has no fixed points other than $[\emptyset]$ and $[\omega]$.

Question

Is it consistent with ZFC that there exists an automorphism of $\mathscr{P}(\omega_1)/$ fin whose only fixed points are $[\emptyset]$ and $[\omega_1]$?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A caveat for our results is that they only apply to cardinality-preserving automorphisms.

A caveat for our results is that they only apply to cardinality-preserving automorphisms.

Definition

An automorphism π of $\mathscr{P}(\lambda)/\mathscr{I}$ is cardinality-preserving if for every $A \subseteq \lambda$ there is $B \subseteq \lambda$ with the same cardinality such that $\pi([A]) = [B]$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A caveat for our results is that they only apply to cardinality-preserving automorphisms.

Definition

An automorphism π of $\mathscr{P}(\lambda)/\mathscr{I}$ is cardinality-preserving if for every $A \subseteq \lambda$ there is $B \subseteq \lambda$ with the same cardinality such that $\pi([A]) = [B]$.

(An automorphism of $\mathscr{P}(\omega_1)/\text{ fin could take a countable set to}$ an uncountable set, or vice-versa, if $\mathscr{P}(\omega)/\text{ fin} \simeq \mathscr{P}(\omega_1)/\text{ fin}$).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (M.-Larson)

Suppose there is a cardinality-preserving automorphism of $\mathcal{P}(\omega_1)$ / fin whose set of ordinal fixed points is nonstationary. Then $2^{\omega} = 2^{\omega_1}$.

Theorem (M.-Larson)

Suppose there is a cardinality-preserving automorphism of $\mathcal{P}(\omega_1)$ fin whose set of ordinal fixed points is nonstationary. Then $2^{\omega} = 2^{\omega_1}$.

The proof goes through ladder systems.

Definition

A ladder system on a set S of ordinals is a collection $L_{\alpha} \subset \alpha$ $(\alpha \in S)$ such that each L_{α} is cofinal in α and has order-type $cf(\alpha)$.

Definition

A ladder system L_{α} ($\alpha \in S$) has κ -uniformization if for every family of colorings $f_{\alpha}: L_{\alpha} \to \kappa$, there is a function $F : \sup(S) \to \kappa$ such that for all $\alpha \in S$, $F \upharpoonright L_{\alpha} =^* f_{\alpha}$.

 Q_{B} -sets and $\mathscr{P}(\lambda)/$ ctble $\mathscr{P}(2^{\kappa})/\mathscr{I}_{\kappa^{+}}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem (M.-Larson)

Let π be a cardinality-preserving automorphism of $\mathscr{P}(\omega_1)/\operatorname{fin}$, and let

$$S_0 = \{ \alpha < \omega_1 \mid \pi([\alpha]) \not\leq [\alpha] \}$$

$$S_1 = \{ \alpha < \omega_1 \mid \pi([\alpha]) \not\geq [\alpha] \}$$

Then for each i < 2 there is a ladder system on a club subset of S_i which satisfies 2-uniformization.

 $\mathcal{P}(2^{\kappa})/\mathcal{I}_{\kappa^+}$

Theorem (M.-Larson)

Let π be a cardinality-preserving automorphism of $\mathscr{P}(\omega_1)/\operatorname{fin}$, and let

$$S_0 = \{ \alpha < \omega_1 \mid \pi([\alpha]) \not\leq [\alpha] \}$$

$$S_1 = \{ \alpha < \omega_1 \mid \pi([\alpha]) \not\geq [\alpha] \}$$

Then for each i < 2 there is a ladder system on a club subset of S_i which satisfies 2-uniformization.

Theorem (Devlin-Shelah)

Suppose S_0 and S_1 are subsets of ω_1 such that $S_0 \cup S_1$ contains a club, and each S_i supports a ladder system with 2-uniformization. Then $2^{\omega} = 2^{\omega_1}$.

Proof (for S_0): Suppose $\pi([\alpha]) \leq [\alpha]$ but $\pi([\beta]) \leq [\alpha]$ for all $\beta < \alpha$. (This is where we need a club subset of S_0 .)

Proof (for S_0): Suppose $\pi([\alpha]) \leq [\alpha]$ but $\pi([\beta]) \leq [\alpha]$ for all $\beta < \alpha$. (This is where we need a club subset of S_0 .)

Proof (for S_0): Suppose $\pi([\alpha]) \leq [\alpha]$ but $\pi([\beta]) \leq [\alpha]$ for all $\beta < \alpha$. (This is where we need a club subset of S_0 .)

The *excess*, when pulled back through π^{-1} , is infinite and has finite intersection with every $\beta < \alpha$, hence is cofinal in α and has order-type ω . Call this set L_{α} .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 Q_B -sets and $\mathscr{P}(\lambda)/$ ctble $\mathscr{P}(2^{\kappa})/\mathscr{I}_{\kappa^+}$

Now suppose a coloring $f_{\alpha} : L_{\alpha} \to 2$ is given for each such α . Then π defines colorings on each excess set.

Now suppose a coloring $f_{\alpha} : L_{\alpha} \to 2$ is given for each such α . Then π defines colorings on each excess set.

Since each excess set is countable and lies above its α , we can thin out the α s to make the excess sets disjoint.

・ コット (雪) ・ (目) ・ (目)

Now suppose a coloring $f_{\alpha} : L_{\alpha} \to 2$ is given for each such α . Then π defines colorings on each excess set.

Since each excess set is countable and lies above its α , we can thin out the α s to make the excess sets disjoint.

Then we can just put their colorings together. The image of this coloring under π^{-1} uniformizes the f_{α} 's.

An automorphism π of $\mathscr{P}(\lambda)/\text{ fin is cardinality-preserving if and only if <math>\pi$ induces an automorphism of $\mathscr{P}(\lambda)/\text{ ctble.}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

An automorphism π of $\mathscr{P}(\lambda)/\text{ fin is cardinality-preserving if and only if <math>\pi$ induces an automorphism of $\mathscr{P}(\lambda)/\text{ ctble.}$

Question

Is there consistently a nontrivial automorphism of $\mathscr{P}(\lambda)/$ ctble for some uncountable λ ?

(ロ) (同) (三) (三) (三) (○) (○)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Definition

We say that a set of reals $X \subseteq \mathbb{R}$ is a Q_B -set if for every $Y \subseteq X$, there is a Borel $B \subset \mathbb{R}$ such that $B \cap X = Y$.

 $\mathscr{P}(2^{\kappa})/\mathscr{I}_{\kappa^+}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Definition

We say that a set of reals $X \subseteq \mathbb{R}$ is a Q_B -set if for every $Y \subseteq X$, there is a Borel $B \subseteq \mathbb{R}$ such that $B \cap X = Y$.

Assuming MA_{κ} , every set of reals of size κ is a Q_B set, and moreover the Borel sets used are Π_2^0 . (This essentially follows from almost-disjoint coding.) Such a set is called a *Q*-set.

Definition

We say that a set of reals $X \subseteq \mathbb{R}$ is a Q_B -set if for every $Y \subseteq X$, there is a Borel $B \subseteq \mathbb{R}$ such that $B \cap X = Y$.

Assuming MA_{κ} , every set of reals of size κ is a Q_B set, and moreover the Borel sets used are Π_2^0 . (This essentially follows from almost-disjoint coding.) Such a set is called a *Q*-set.

Remark

If there is a Q_B -set X of size λ , then there is a countable family of subsets of λ which generates $\mathscr{P}(\lambda)$ as a σ -algebra. Note also that $\mathscr{P}(\lambda)/$ ctble is countably complete (assuming cf $\lambda > \omega$).

 $\mathscr{P}(2^{\kappa})/\mathscr{I}_{\kappa^+}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem (Larson-M.)

Suppose there exists a Q_B -set X of size λ , where cf $\lambda > \omega$. Then the following are equivalent.

1. There exists a Q_B set Y of size λ such that $X \cap Y = \emptyset$ and for every Borel B, $|B \cap X| + \aleph_0 = |B \cap Y| + \aleph_0$.

 $\mathscr{P}(2^{\kappa})/\mathscr{I}_{\kappa^+}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem (Larson-M.)

Suppose there exists a Q_B -set X of size λ , where cf $\lambda > \omega$. Then the following are equivalent.

- 1. There exists a Q_B set Y of size λ such that $X \cap Y = \emptyset$ and for every Borel B, $|B \cap X| + \aleph_0 = |B \cap Y| + \aleph_0$.
- 2. There exists a nontrivial, cardinality-preserving automorphism of $\mathscr{P}(\lambda)/$ ctble.

 $\mathcal{P}(2^{\kappa})/\mathcal{I}_{\kappa^+}$

Theorem (Larson-M.)

Suppose there exists a Q_B -set X of size λ , where cf $\lambda > \omega$. Then the following are equivalent.

- 1. There exists a Q_B set Y of size λ such that $X \cap Y = \emptyset$ and for every Borel B, $|B \cap X| + \aleph_0 = |B \cap Y| + \aleph_0$.
- 2. There exists a nontrivial, cardinality-preserving automorphism of $\mathscr{P}(\lambda)/$ ctble.

Corollary

Suppose that there exists a Q_B -set of size λ , and for every pair of Q_B -sets X and Y of size λ , $X \cup Y$ is also a Q_B -set. Then there is no nontrivial, cardinality-preserving automorphism of $\mathscr{P}(\lambda)/$ ctble.

 $\mathscr{P}(2^{\kappa})/\mathscr{I}_{\kappa^+}$ One last question

・ロト・四ト・モート ヨー うへの

Proof of (1 \implies 2):

Proof of (1 \implies 2): Suppose *X*, *Y* \subseteq \mathbb{R} are *Q*_{*B*}-sets of size λ , with $X \cap Y = \emptyset$, and for all Borel B, $|B \cap X| + \aleph_0 = |B \cap Y| + \aleph_0$. Proof of $(1 \implies 2)$: Suppose $X, Y \subseteq \mathbb{R}$ are Q_B -sets of size λ , with $X \cap Y = \emptyset$, and for all Borel $B, |B \cap X| + \aleph_0 = |B \cap Y| + \aleph_0$. We'll define an isomorphism

$$\pi: \mathscr{P}(X)/\operatorname{ctble} o \mathscr{P}(Y)/\operatorname{ctble}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

such that there is no bijection $f : X \to Y$ such that $\pi([A]) = [f''(A)]$ for all $A \subseteq X$.

Proof of $(1 \implies 2)$: Suppose $X, Y \subseteq \mathbb{R}$ are Q_B -sets of size λ , with $X \cap Y = \emptyset$, and for all Borel $B, |B \cap X| + \aleph_0 = |B \cap Y| + \aleph_0$. We'll define an isomorphism

$$\pi: \mathscr{P}(X)/\operatorname{ctble} o \mathscr{P}(Y)/\operatorname{ctble}$$

such that there is no bijection $f : X \to Y$ such that $\pi([A]) = [f''(A)]$ for all $A \subseteq X$.

Here it is: for all Borel $B \subseteq \mathbb{R}$,

 $\pi([B\cap X]) = [B\cap Y]$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 $\mathscr{P}(2^{\kappa})/\mathscr{I}_{\kappa^+}$

One last question

・ロト・四ト・モート ヨー うへの

$\pi([B\cap X])=[B\cap Y]$

 Q_B -sets and $\mathscr{P}(\lambda)/$ ctble $\mathscr{P}(2^{\kappa})/\mathscr{I}_{\kappa^+}$ One last question

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 $\pi([B \cap X]) = [B \cap Y]$

• π is well-defined: if $(B \cap X) \bigtriangleup (C \cap X)$ is countable for some Borel B, C, then $(B \triangle C) \cap X$ is countable, hence $(B \triangle C) \cap Y$ is too.

 Q_{B} -sets and $\mathscr{P}(\lambda)/$ ctble $\mathscr{P}(2^{\kappa})/\mathscr{I}_{\kappa+}$ One last question

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 $\pi([B \cap X]) = [B \cap Y]$

- π is well-defined: if $(B \cap X) \bigtriangleup (C \cap X)$ is countable for some Borel B, C, then $(B \triangle C) \cap X$ is countable, hence $(B \triangle C) \cap Y$ is too.
- π is an isomorphism: because X and Y are Q_B sets.

Motivation

 Q_B -sets and $\mathscr{P}(\lambda)/$ ctble

 $\mathscr{P}(2^{\kappa})/\mathscr{I}_{\nu^+}$

 $\pi([B \cap X]) = [B \cap Y]$

- *π* is well-defined: if (B ∩ X) △ (C ∩ X) is countable for some Borel B, C, then (B △ C) ∩ X is countable, hence (B △ C) ∩ Y is too.
- π is an isomorphism: because X and Y are Q_B sets.
- *π* is nontrivial: suppose *f* : *X* → *Y* is such that
 f''(*B* ∩ *X*) △ (*B* ∩ *Y*) is countable for every Borel *B*. Then there is a countable set *S* such that

$$f''(N \cap X) riangleq (N \cap Y) \subseteq S$$

for every *N* in a fixed countable basis for \mathbb{R} . It follows that f = id off of S, hence $X \cap Y \neq \emptyset$, a contradiction.

Remark

Suppose $\mathscr{P}(\omega)/\text{ fin and } \mathscr{P}(\omega_1)/\text{ fin are isomorphic. Then there}$ is a Q_B -set of size ω_1 .

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Remark

Suppose $\mathscr{P}(\omega)/\text{ fin and } \mathscr{P}(\omega_1)/\text{ fin are isomorphic. Then there}$ is a Q_B -set of size ω_1 .

Question

Let X and Y be Q_B -sets of size ω_1 . Is $X \cup Y$ necessarily a Q_B -set?

Remark

Suppose $\mathscr{P}(\omega)/\text{ fin and } \mathscr{P}(\omega_1)/\text{ fin are isomorphic. Then there}$ is a Q_B -set of size ω_1 .

Question

Let X and Y be Q_B -sets of size ω_1 . Is $X \cup Y$ necessarily a Q_{B} -set?

If no, then we've found a nontrivial automorphism of $\mathscr{P}(\omega_1)/$ ctble. If yes, then $\mathscr{P}(\omega)/$ fin $\simeq \mathscr{P}(\omega_1)/$ fin implies that every automorphism of $\mathcal{P}(\omega_1)$ / ctble is trivial.

Remark

Suppose $\mathscr{P}(\omega)$ /fin and $\mathscr{P}(\omega_1)$ /fin are isomorphic. Then there is a Q_B -set of size ω_1 .

Question

Let X and Y be Q_B -sets of size ω_1 . Is $X \cup Y$ necessarily a Q_B-set?

If no, then we've found a nontrivial automorphism of $\mathscr{P}(\omega_1)/$ ctble. If yes, then $\mathscr{P}(\omega)/$ fin $\simeq \mathscr{P}(\omega_1)/$ fin implies that every automorphism of $\mathcal{P}(\omega_1)$ / ctble is trivial.

Theorem (Fleissner-Miller, 1980)

It is consistent with ZFC that there exists a Q-set X of size ω_1 such that $X \cup \mathbb{Q}$ is not a Q-set.

(It's easy to see that $X \cup \mathbb{Q}$ is a Q_B set, though.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

What can we say about an automorphism of $\mathscr{P}(\lambda)/\mathscr{I}_{\kappa}$ which is trivial on some family of subsets of λ ?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

What can we say about an automorphism of $\mathscr{P}(\lambda)/\mathscr{I}_{\kappa}$ which is trivial on some family of subsets of λ ?

Theorem (Larson-M.)

Suppose π is an automorphism of $\mathscr{P}(2^{\kappa})/\mathscr{I}_{\kappa^+}$ which is trivial on every set of size κ^+ . Then π is trivial.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

What can we say about an automorphism of $\mathscr{P}(\lambda)/\mathscr{I}_{\kappa}$ which is trivial on some family of subsets of λ ?

Theorem (Larson-M.)

Suppose π is an automorphism of $\mathscr{P}(2^{\kappa})/\mathscr{I}_{\kappa^+}$ which is trivial on every set of size κ^+ . Then π is trivial.

Remark

While this is a theorem true in ZFC, it is only interesting when $2^{\kappa} > \kappa^+$.

What can we say about an automorphism of $\mathscr{P}(\lambda)/\mathscr{I}_{\kappa}$ which is trivial on some family of subsets of λ ?

Theorem (Larson-M.)

Suppose π is an automorphism of $\mathscr{P}(2^{\kappa})/\mathscr{I}_{\kappa^+}$ which is trivial on every set of size κ^+ . Then π is trivial.

Remark

While this is a theorem true in ZFC, it is only interesting when $2^{\kappa} > \kappa^+$.

Remark

The function $f: 2^{\kappa} \to 2^{\kappa}$ defined in the proof is definable for any automorphism π of $\mathscr{P}(2^{\kappa})/\mathscr{I}_{\kappa^+}$, and witnesses the triviality of π on a certain κ -complete ideal. The hypothesis on π is used to show that this ideal is everything.

Question

Is there, consistently, an isomorphism $\mathscr{P}(\omega_1)/\operatorname{fin} \to \mathscr{P}(\omega)/\operatorname{fin}$ which is trivial on every countable subset of ω_1 ?

Motivation Fixed points and ladder systems Q_B -sets and $\mathscr{P}(\lambda)/$ ctble $\mathscr{P}(2^{\kappa})/\mathscr{I}_{\kappa^+}$ One last question

Thank you!

