Laminations of the Unit Disk and Cubic Julia Sets

John C. Mayer

Department of Mathematics University of Alabama at Birmingham

TOPOSYM 2016, Prague, CZ July 25-29, 2016

1/76

The Douady Rabbit

$z \mapsto z^2 - 0.12 + 0.78i$

(日) (四) (E) (E) (E)

Julia sets by FractalStream

The Rabbit Lamination

Hyperbolic lamination pictures courtesy of Clinton Curry and Logan Hoehn

Rabbit Juilia Set and Rabbit Lamination

Family resemblance?

Outline

2 Pullback Laminations

- Quadratic
- Oubic
- Identity Return Triangle

From Lamination to Julia Set

- **Pullback Laminations**
 - Quadratic
 - Cubic
 - Identity Return Triangle

- **Pullback Laminations**
 - Quadratic
 - Oubic
 - Identity Return Triangle

Julia and Fatou Sets of Polynomials

Definitions:

- Basin of attraction of infinity: $B_{\infty} := \{z \in \mathbb{C} \mid P^n(z) \to \infty\}.$
- Filled Julia set: $K(P) := \mathbb{C} \setminus B_{\infty}$.
- Julia set: J(P) := boundary of B_{∞} = boundary of K(P).
- Fatou set: $F(P) := \mathbb{C}_{\infty} \setminus J(P)$.

Theorems (Facts):

- J(P) is nonempty, compact, and perfect.
- K(P) is full (does not separate \mathbb{C}).
- Attracting orbits are in Fatou set.
- Repelling orbits are in Julia set.

Examples: $P(z) = z^2$; $P(z) = z^d$, d > 2; $P(z) = z^2 - 1$, etc. **Assume**: J(P) is connected.

Julia and Fatou Sets of Polynomials

Definitions:

- Basin of attraction of infinity: $B_{\infty} := \{z \in \mathbb{C} \mid P^n(z) \to \infty\}.$
- Filled Julia set: $K(P) := \mathbb{C} \setminus B_{\infty}$.
- Julia set: J(P) := boundary of B_{∞} = boundary of K(P).
- Fatou set: $F(P) := \mathbb{C}_{\infty} \setminus J(P)$.

Theorems (Facts):

- J(P) is nonempty, compact, and perfect.
- K(P) is full (does not separate \mathbb{C}).
- Attracting orbits are in Fatou set.
- Repelling orbits are in Julia set.

Examples: $P(z) = z^2$; $P(z) = z^d$, d > 2; $P(z) = z^2 - 1$, etc. **Assume**: J(P) is connected.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ ・ つ へ つ

Julia and Fatou Sets of Polynomials

Definitions:

- Basin of attraction of infinity: $B_{\infty} := \{z \in \mathbb{C} \mid P^n(z) \to \infty\}.$
- Filled Julia set: $K(P) := \mathbb{C} \setminus B_{\infty}$.
- Julia set: J(P) := boundary of B_{∞} = boundary of K(P).
- Fatou set: $F(P) := \mathbb{C}_{\infty} \setminus J(P)$.

Theorems (Facts):

- J(P) is nonempty, compact, and perfect.
- K(P) is full (does not separate \mathbb{C}).
- Attracting orbits are in Fatou set.
- Repelling orbits are in Julia set.

Examples: $P(z) = z^2$; $P(z) = z^d$, d > 2; $P(z) = z^2 - 1$, etc. **Assume**: J(P) is connected.

The Rabbit Juilia Set and Rabbit Triangle

The Rabbit Juilia Set and Rabbit Lamination

Down the rabbit hole!

Böttkher's Theorem

By \mathbb{D}_{∞} , "the disk at infinity," we mean $\mathbb{C}_{\infty} \setminus \overline{\mathbb{D}}$, the complement of the closed unit disk.

Theorem (Böttcher)

Let P be a polynomial of degree d. If the filled Julia set K is connected, then there is a conformal isomorphism

$$\phi:\mathbb{D}_{\infty}\to B_{\infty},$$

tangent to the identity at ∞ , that conjugates P to $z \to z^d$.

From Julia Set to Lamination

From Lamination to Julia Se

Basillica

$z \mapsto z^2 - 1$

Dragon

$z \mapsto z^2 - 0.28136 + 0.5326i$

Airplane

$z \mapsto z^2 - 1.75$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Airplane and B-17 Yankee Lady 1

Cubic Rabbit

$z \mapsto z^3 + 0.545 + 0.539i$

Helicopter

$z \mapsto z^3 - 0.2634 - 1.2594i$

<ロト</th>
・< 目 > く目 > く目 > 目 の Q ()

20/76

Cubic Bug

 $z\mapsto z^3+rac{\sqrt{2}}{2}i\,z^2$

Cubic Simple Type 1 IRT

$z \mapsto z^3 + 3fz^2 + g$ f = -0.167026 + 0.0384441i and g = -0.0916222 - 1.2734i

22/76

Comparison

$$z\mapsto z^3+c$$

$$z \mapsto z^3 + 3fz^2 + g$$

f = -0.167026 + 0.0384441i and g = -0.0916222 - 1.2734ic = -0.2634 - 1.2594i

Laminations of the Disk

• Laminations were introduced by William Thurston as a way of encoding connected polynomial Julia sets.

Definition

- A *lamination* L is a collections of chords of D, which we call *leaves*, with the property that any two leaves meet, if at all, in a point of ∂D, and
- such that L has the property that

 $\mathcal{L}^*:=\partial\mathbb{D}\cup\{\cup\mathcal{L}\}$

is a closed subset of $\overline{\mathbb{D}}$.

We allow degenerate leaves – points of ∂D.

?Lamination to Julia Set?

- Consider special case $P(z) = z^d$ on the unit circle $\partial \mathbb{D}$.
- $z = re^{2\pi t} \mapsto r^d e^{2\pi (dt)}$
- Angle $2\pi t \mapsto 2\pi (dt)$.
- Measure angles in revolutions: then $t \mapsto dt \pmod{1}$ on $\partial \mathbb{D}$.
- Points on $\partial \mathbb{D}$ are coordinatized by [0, 1).

?Lamination to Julia Set?

- Consider special case $P(z) = z^d$ on the unit circle $\partial \mathbb{D}$.
- $z = re^{2\pi t} \mapsto r^d e^{2\pi (dt)}$.
- Angle $2\pi t \mapsto 2\pi (dt)$.
- Measure angles in revolutions: then $t \mapsto dt \pmod{1}$ on $\partial \mathbb{D}$.
- Points on $\partial \mathbb{D}$ are coordinatized by [0, 1).

?Lamination to Julia Set?

- Consider special case $P(z) = z^d$ on the unit circle $\partial \mathbb{D}$.
- $z = re^{2\pi t} \mapsto r^d e^{2\pi (dt)}$.
- Angle $2\pi t \mapsto 2\pi (dt)$.
- Measure angles in revolutions: then $t \mapsto dt \pmod{1}$ on $\partial \mathbb{D}$.
- Points on $\partial \mathbb{D}$ are coordinatized by [0, 1).

?Lamination to Julia Set?

- Consider special case $P(z) = z^d$ on the unit circle $\partial \mathbb{D}$.
- $z = re^{2\pi t} \mapsto r^d e^{2\pi (dt)}$.
- Angle $2\pi t \mapsto 2\pi (dt)$.
- Measure angles in revolutions: then $t \mapsto dt \pmod{1}$ on $\partial \mathbb{D}$.
- Points on $\partial \mathbb{D}$ are coordinatized by [0, 1).

 σ_d Dynamics on the Circle

• $\sigma_2 : t \mapsto 2t \pmod{1}$, angle-doubling.

Induced map σ_d on Laminations

- If *ℓ* ∈ *L* is a leaf, we write *ℓ* = *ab*, where *a* and *b* are the endpoints of *ℓ* in ∂D.
- We let $\sigma_d(\ell)$ be the chord $\overline{\sigma_d(a)\sigma_d(b)}$.
- If it happens that σ_d(a) = σ_d(b), then σ_d(ℓ) is a point, called a *critical value* of *L*, and we say ℓ is a *critical* leaf.

Quadratic Cubic Identity Return Triangle

Sibling Invariant Laminations

Definition (Sibling Invariant Lamination)

A lamination \mathcal{L} is said to be *sibling d-invariant* (or simply *invariant* if no confusion will result) provided that

- (Forward Invariant) For every $\ell \in \mathcal{L}$, $\sigma_d(\ell) \in \mathcal{L}$.
- ② (Backward Invariant) For every non-degenerate ℓ' ∈ L, there is a leaf ℓ ∈ L such that σ_d(ℓ) = ℓ'.

(Sibling Invariant) For every ℓ₁ ∈ L with σ_d(ℓ₁) = ℓ', a non-degenerate leaf, there is a full sibling collection {ℓ₁, ℓ₂,..., ℓ_d} ⊂ L such that σ_d(ℓ_i) = ℓ'.

Conditions (1), (2) and (3) allow generating a sibling invariant lamination from a finite amount of initial data.

Quadratic Cubic Identity Return Triangle

Full Sibling Collection (d = 6)

(Not to scale) One of many possible sibling collections mapping to \overline{xy} .

Quadratic Cubic Identity Return Triangle

Definition

An orbit of polygons P_0 , $P_1 = \sigma_d(P_0)$, $P_2 = \sigma(P_1)$,... is said to be *forward invariant* iff $\sigma_d : P_i \mapsto P_{i+1}$ preserves the circular order of the vertices of P_i .

Facts:

- If a finite orbit of polygons P₀, P₁, P₂,..., P_{n-1} = P₀ is forward invariant under σ₂, then there always is a compatible critical chord touching the orbit at a vertex.
- If a finite orbit of polygons P₀, P₁, P₂,..., P_{n-1} = P₀ is forward invariant under σ₃, then there are always two compatible critical chords touching the orbit at vertices.

(The facts can be generalized to a finite collection of finite orbits of polygons.)

Quadratic Cubic Identity Return Triangle

σ_2 Binary Coordinates

Quadratic Cubic Identity Return Triangle

Forward Invariant Triangle

35/76

Quadratic Cubic Identity Return Triangle

Pullback Scheme

Definition (Pullback Scheme)

A *pullback scheme* for σ_d is a collection of *d* branches $\tau_1, \tau_2, \ldots, \tau_d$ of the inverse of σ_d whose ranges partition $\partial \mathbb{D}$.

Data: Forward invariant lamination.

Quadratic Cubic Identity Return Triangle

Pullback Scheme

Definition (Guiding Critical Chords)

The generating data of a pullback scheme are a *forward invariant periodic collection of leaves* and a collection of *d* interior disjoint *guiding critical chords*.

Data: Forward invariant lamination.

Guiding critical chord(s).

37/76

Quadratic Cubic Identity Return Triangle

Branches τ_1, τ_2 of Inverse of σ_2

Quadratic Cubic Identity Return Triangle

-
- · ·
- · ·
- . .
- •
- · · ·
- •
- . .
- · ·
- •
- .
 -

Quadratic Cubic Identity Return Triangle

Pullback Scheme

 σ_2 : 1010, 0010 \mapsto 010

Quadratic Cubic Identity Return Triangle

-
- · ·
- · ·
- · ·
- · ·
- · ·
- . .
- . .
- . .
- •
- - • • • • • •

Quadratic Cubic Identity Return Triangle

Quadratic Cubic Identity Return Triangle

Quadratic Cubic Identity Return Triangle

Quadratic Cubic Identity Return Triangle

-
- . .
- . .
- . .
- . .
- · ·
- · ·
- · ·
- •
- - • • • • • •

Quadratic Cubic Identity Return Triangle

Ambiguity

Quadratic Cubic Identity Return Triangle

Quadratic Lamination and Julia Set

Rabbit Lamination

Rabbit Julia Set

Quotient space in plane \implies homeomorphic to rabbit Julia set.

Quadratic Cubic Identity Return Triangle

Quadratic Lamination and Julia Set

Basillica Lamination

Basillica Julia Set

Quadratic Cubic Identity Return Triangle

Identity Return Leaf Orbit for σ_2

 $\sigma_{\mathbf{2}}: [\overline{\mathbf{011}}, \overline{\mathbf{100}}] \mapsto [\overline{\mathbf{110}}, \overline{\mathbf{001}}] \mapsto [\overline{\mathbf{101}}, \overline{\mathbf{010}}]$

Quadratic Cubic Identity Return Triangle

Airplane Quadratic Julia Set

The corresponding point in the Julia set has two ray orbits landing on it.

Quadratic Cubic Identity Return Triangle

σ_3 ternary coordinates

Cubic Lamination and Julia Set

Cubic Rabbit Triangle

Quadratic Cubic Identity Return Triangle

Cubic Lamination and Julia Set

Cubic Rabbit Triangle

Guiding all-critical triangle

Quadratic Cubic Identity Return Triangle

Cubic Lamination and Julia Set

Symmetric Siblings

æ

・ロン ・雪 と ・ ヨ と ・ ヨ と

Quadratic Cubic Identity Return Triangle

Cubic Lamination and Julia Set

Cubic Rabbit Lamination

Cubic Rabbit Julia Set

Quadratic Cubic Identity Return Triangle

Cubic Pullback: Identity Return Leaf for σ_3

Quadratic Cubic Identity Return Triangle

Quadratic Cubic Identity Return Triangle

Quadratic Cubic Identity Return Triangle

Quadratic Cubic Identity Return Triangle

Quadratic Cubic Identity Return Triangle

Quadratic Cubic Identity Return Triangle

Cubic Lamination and Julia Set

Identity Return Leaf Lamination

Helicopter Julia Set

 $z \mapsto z^3 - 0.2634 - 1.2594i$

Quadratic Cubic Identity Return Triangle

Identity Return Polygons

Definition

A polygon $P = P_0$ is said to be *identity return* iff its *orbit*

$$\{P_0, P_1 = \sigma_d(P_0), P_2 = \sigma_d(P_1), P_3, \dots, P_n = P_0\}$$

is periodic (of least period n) and has the properties

- the polygons in the orbit are disjoint,
- 2 $\sigma_d^n|_{P_0}$ is the identity, and
- P_i maps to $P_{i+1 \pmod{n}}$ preserving circular order.

• Each vertex is in a different orbit of period *n*.

Quadratic Cubic Identity Return Triangle

Identity Return Polygons

Definition

A polygon $P = P_0$ is said to be *identity return* iff its *orbit*

$$\{P_0, P_1 = \sigma_d(P_0), P_2 = \sigma_d(P_1), P_3, \dots, P_n = P_0\}$$

is periodic (of least period n) and has the properties

- the polygons in the orbit are disjoint,
- 2 $\sigma_d^n|_{P_0}$ is the identity, and
- **(3)** P_i maps to $P_{i+1 \pmod{n}}$ preserving circular order.
 - Each vertex is in a different orbit of period *n*.

 From Julia Set to Lamination
 Quadratic

 Pullback Laminations
 Cubic

 From Lamination to Julia Set
 Identity Return Triangle

Cubic Pulback: Identity Return Triangle

Where can one place two critical chords to start the pullback process?

Forward invariant lamination given

Quadratic Cubic Identity Return Triangle

Quadratic Cubic Identity Return Triangle

Identity Return Triangle

Non-symmetric siblings

Quadratic Cubic Identity Return Triangle

Identity Return Triangle and Corresponding Julia Set

 $z \mapsto z^3 + 3fz^2 + g$ f = -0.167026 + 0.0384441i and g = -0.0916222 - 1.2734i
From Julia Set to Lamination Pullback Laminations From Lamination to Julia Set

Identity Return Leaf versus Identity Return Triangle

Identity Return Leaf [120, 212]

Identity Return Triangle with One Side $[\overline{120}, \overline{212}]$

From Julia Set to Lamination Pullback Laminations From Lamination to Julia Set

Comparison

・<一
・<目
・<目
・<目
・<
・<目
・<
・<
・<
・<
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Sampling of Questions

- Under what circumstances can multiple Identity Return Polygon (IRP) orbits co-exist in an invariant lamination?
- ② Given 3 points of a given period p ≥ 3, what are the criteria for forming an Identity Return Triangle (IRT) for σ₃? [Brandon Barry Dissertation]
- In particular, can three given period p orbits form more than one IRT? [No – CHMMO]
- Given $d \ge 2$ and a period p > 1 orbit under σ_d , how many distinct identity return *d*-gon orbits can be formed?
- What is the "simplest" 3-invariant lamination that contains a given IRT? [Brandon Barry – Dissertation]
- Given a "simplest" IRT lamination, is there a cubic Julia set for which it is the lamination?

From Julia Set to Lamination Pullback Laminations From Lamination to Julia Set

References

Cosper, D.J., Houghton, J.K., Mayer, J.C., Mernik, L., and Olson, J.W.

Central Strips of Sibling Leaves in Laminations of the Unit Disk

Topology Proceedings 48 (2016), pp. 69–100. E-published on April 17, 2015.

Mayer, J.C. and Mernik, L.

Periodic Polygons in *d*-Invariant Laminations of the Unit Disk

Submitted June 2016.

Barry, Brandon L.

On the Simplest Lamination of a Given Identity Return Triangle Dissertation, UAB, July 2015.