Laminations of the Unit Disk and Cubic Julia Sets

John C. Mayer

Department of Mathematics
University of Alabama at Birmingham

TOPOSYM 2016, Prague, CZ July 25-29, 2016

The Douady Rabbit

$$
z \mapsto z^{2}-0.12+0.78 i
$$

Julia sets by FractalStream

The Rabbit Lamination

Hyperbolic lamination pictures courtesy of Clinton Curry and Logan Hoehn

Rabbit Juilia Set and Rabbit Lamination

Family resemblance?

Outline

(1) From Julia Set to Lamination

(2) Pullback Laminations

- Quadratic
- Cubic
- Identity Return Triangle
(3) From Lamination to Julia Set

Outline

(9) From Julia Set to Lamination
(2) Pullback Laminations

- Quadratic
- Cubic
- Identity Return Triangle
(3) From Lamination to Julia Set

Outline

(9) From Julia Set to Lamination
(2) Pullback Laminations

- Quadratic
- Cubic
- Identity Return Triangle
(3) From Lamination to Julia Set

Julia and Fatou Sets of Polynomials

Definitions:

- Basin of attraction of infinity: $B_{\infty}:=\left\{z \in \mathbb{C} \mid P^{n}(z) \rightarrow \infty\right\}$.
- Filled Julia set: $K(P):=\mathbb{C} \backslash B_{\infty}$.
- Julia set: $J(P):=$ boundary of $B_{\infty}=$ boundary of $K(P)$.
- Fatou set: $F(P):=\mathbb{C}_{\infty} \backslash J(P)$.

Theorems (Facts)

- $J(P)$ is nonempty, compact, and perfect.
- $K(P)$ is full (does not separate \mathbb{C})
- Attracting orbits are in Fatou set.
- Repelling orbits are in Julia set.

Examples: $P(z)=z^{2} ; P(z)=z^{d}, d>2 ; P(z)=z^{2}-1$, etc.
Assume: $J(P)$ is connected.

Julia and Fatou Sets of Polynomials

Definitions:

- Basin of attraction of infinity: $B_{\infty}:=\left\{z \in \mathbb{C} \mid P^{n}(z) \rightarrow \infty\right\}$.
- Filled Julia set: $K(P):=\mathbb{C} \backslash B_{\infty}$.
- Julia set: $J(P):=$ boundary of $B_{\infty}=$ boundary of $K(P)$.
- Fatou set: $F(P):=\mathbb{C}_{\infty} \backslash J(P)$.

Theorems (Facts):

- $J(P)$ is nonempty, compact, and perfect.
- $K(P)$ is full (does not separate \mathbb{C}).
- Attracting orbits are in Fatou set.
- Repelling orbits are in Julia set.

Examples: $P(z)=z^{2} ; P(z)=z^{d}, d>2 ; P(z)=z^{2}-1$, etc.
Assume: $J(P)$ is connected.

Julia and Fatou Sets of Polynomials

Definitions:

- Basin of attraction of infinity: $B_{\infty}:=\left\{z \in \mathbb{C} \mid P^{n}(z) \rightarrow \infty\right\}$.
- Filled Julia set: $K(P):=\mathbb{C} \backslash B_{\infty}$.
- Julia set: $J(P):=$ boundary of $B_{\infty}=$ boundary of $K(P)$.
- Fatou set: $F(P):=\mathbb{C}_{\infty} \backslash J(P)$.

Theorems (Facts):

- $J(P)$ is nonempty, compact, and perfect.
- $K(P)$ is full (does not separate \mathbb{C}).
- Attracting orbits are in Fatou set.
- Repelling orbits are in Julia set.

Examples: $P(z)=z^{2} ; P(z)=z^{d}, d>2 ; P(z)=z^{2}-1$, etc.
Assume: $J(P)$ is connected.

The Rabbit Juilia Set and Rabbit Triangle

External Rays

Landing Angles

The Rabbit Juilia Set and Rabbit Lamination

Down the rabbit hole!

Böttkher's Theorem

By \mathbb{D}_{∞}, "the disk at infinity," we mean $\mathbb{C}_{\infty} \backslash \overline{\mathbb{D}}$, the complement of the closed unit disk.

Theorem (Böttcher)

Let P be a polynomial of degree d. If the filled Julia set K is connected, then there is a conformal isomorphism

$$
\phi: \mathbb{D}_{\infty} \rightarrow B_{\infty},
$$

tangent to the identity at ∞, that conjugates P to $z \rightarrow z^{d}$.

From Julia Set to Lamination
Pullback Laminations
From Lamination to Julia Set

$$
\begin{aligned}
& \mathbb{D}_{\infty} \xrightarrow{z \mapsto z^{d}} \mathbb{D}_{\infty} \\
& \left.\phi\right|_{\infty} \xrightarrow[P]{B_{\infty}} B_{\infty}
\end{aligned}
$$

From Julia Set to Lamination
Pullback Laminations
From Lamination to Julia Set

Basillica

$z \mapsto z^{2}$

- 1

From Julia Set to Lamination
Pullback Laminations
From Lamination to Julia Set
Dragon

$z \mapsto z^{2}-0.28136+0.5326 i$

From Julia Set to Lamination

Pullback Laminations
From Lamination to Julia Set

Airplane

$$
z \mapsto z^{2}-1.75
$$

From Julia Set to Lamination
Pullback Laminations
From Lamination to Julia Set

Airplane and B-17 Yankee Lady 1

From Julia Set to Lamination

Pullback Laminations
From Lamination to Julia Set

Cubic Rabbit

$$
z \mapsto z^{3}+0.545+0.539 i
$$

From Julia Set to Lamination

Pullback Laminations
From Lamination to Julia Set

Helicopter

$$
z \mapsto z^{3}-0.2634-1.2594 i
$$

From Julia Set to Lamination

Pullback Lamination
From Lamination to Julia Set

Cubic Bug

$$
z \mapsto z^{3}+\frac{\sqrt{2}}{2} i z^{2}
$$

Cubic Simple Type 1 IRT

$$
\begin{aligned}
& z \mapsto z^{3}+3 f z^{2}+g \\
& f=-0.167026+0.0384441 i \text { and } g=-0.0916222-1.2734 i
\end{aligned}
$$

Comparison

$$
z \mapsto z^{3}+c \quad z \mapsto z^{3}+3 f z^{2}+g
$$

$$
\begin{gathered}
f=-0.167026+0.0384441 i \text { and } g=-0.0916222-1.2734 i \\
c=-0.2634-1.2594 i
\end{gathered}
$$

Laminations of the Disk

- Laminations were introduced by William Thurston as a way of encoding connected polynomial Julia sets.

Definition

- A lamination \mathcal{L} is a collections of chords of $\overline{\mathbb{D}}$, which we call leaves, with the property that any two leaves meet, if at all, in a point of $\partial \mathbb{D}$, and
- such that \mathcal{L} has the property that

$$
\mathcal{L}^{*}:=\partial \mathbb{D} \cup\{\cup \mathcal{L}\}
$$

is a closed subset of $\overline{\mathbb{D}}$.

- We allow degenerate leaves - points of $\partial \mathbb{D}$.

?Lamination to Julia Set?

The Beginning: Dynamics on the Circle

- Consider special case $P(z)=z^{d}$ on the unit circle $\partial \mathbb{D}$.
- $z=r e^{2 \pi t} \mapsto r^{d} e^{2 \pi(d t)}$.
- Angle $2 \pi t \mapsto 2 \pi(d t)$.
- Measure angles in revolutions: then $t \mapsto d t(\bmod 1)$ on $\partial \mathbb{D}$.
- Points on 2 D are coordinatized by $[0,1$).

?Lamination to Julia Set?

The Beginning: Dynamics on the Circle

- Consider special case $P(z)=z^{d}$ on the unit circle $\partial \mathbb{D}$.
- $z=r e^{2 \pi t} \mapsto r^{d} e^{2 \pi(d t)}$.
- Angle $2 \pi t \mapsto 2 \pi(d t)$.
- Measure angles in revolutions: then $t \mapsto d t(\bmod 1)$ on
- Points on $\partial \mathbb{D}$ are coordinatized by $[0,1)$.

?Lamination to Julia Set?

The Beginning: Dynamics on the Circle

- Consider special case $P(z)=z^{d}$ on the unit circle $\partial \mathbb{D}$.
- $z=r e^{2 \pi t} \mapsto r^{d} e^{2 \pi(d t)}$.
- Angle $2 \pi t \mapsto 2 \pi(d t)$.
- Measure angles in revolutions: then $t \mapsto d t(\bmod 1)$ on
- Points on $\partial \mathbb{D}$ are coordinatized by $[0,1)$.

?Lamination to Julia Set?

The Beginning: Dynamics on the Circle

- Consider special case $P(z)=z^{d}$ on the unit circle $\partial \mathbb{D}$.
- $z=r e^{2 \pi t} \mapsto r^{d} e^{2 \pi(d t)}$.
- Angle $2 \pi t \mapsto 2 \pi(d t)$.
- Measure angles in revolutions: then $t \mapsto d t(\bmod 1)$ on $\partial \mathbb{D}$.
- Points on $\partial \mathbb{D}$ are coordinatized by $[0,1)$.

σ_{d} Dynamics on the Circle

- $\sigma_{2}: t \mapsto 2 t(\bmod 1)$, angle-doubling.

Induced map σ_{d} on Laminations

- If $\ell \in \mathcal{L}$ is a leaf, we write $\ell=\overline{a b}$, where a and b are the endpoints of ℓ in $\partial \mathbb{D}$.
- We let $\sigma_{d}(\ell)$ be the chord $\overline{\sigma_{d}(a) \sigma_{d}(b)}$.
- If it happens that $\sigma_{d}(a)=\sigma_{d}(b)$, then $\sigma_{d}(\ell)$ is a point, called a critical value of \mathcal{L}, and we say ℓ is a critical leaf.

Sibling Invariant Laminations

Definition (Sibling Invariant Lamination)

A lamination \mathcal{L} is said to be sibling d-invariant (or simply invariant if no confusion will result) provided that
(1) (Forward Invariant) For every $\ell \in \mathcal{L}, \sigma_{d}(\ell) \in \mathcal{L}$.
(2) (Backward Invariant) For every non-degenerate $\ell^{\prime} \in \mathcal{L}$, there is a leaf $\ell \in \mathcal{L}$ such that $\sigma_{d}(\ell)=\ell^{\prime}$.
(3) (Sibling Invariant) For every $\ell_{1} \in \mathcal{L}$ with $\sigma_{d}\left(\ell_{1}\right)=\ell^{\prime}$, a non-degenerate leaf, there is a full sibling collection $\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{d}\right\} \subset \mathcal{L}$ such that $\sigma_{d}\left(\ell_{i}\right)=\ell^{\prime}$.

Conditions (1), (2) and (3) allow generating a sibling invariant lamination from a finite amount of initial data.

Full Sibling Collection ($d=6$)

(Not to scale)
One of many possible sibling collections mapping to $\overline{x y}$.

Definition

An orbit of polygons $P_{0}, P_{1}=\sigma_{d}\left(P_{0}\right), P_{2}=\sigma\left(P_{1}\right), \ldots$ is said to be forward invariant iff $\sigma_{d}: P_{i} \mapsto P_{i+1}$ preserves the circular order of the vertices of P_{i}.

Facts:

- If a finite orbit of polygons $P_{0}, P_{1}, P_{2}, \ldots, P_{n-1}=P_{0}$ is forward invariant under σ_{2}, then there always is a compatible critical chord touching the orbit at a vertex.
- If a finite orbit of polygons $P_{0}, P_{1}, P_{2}, \ldots, P_{n-1}=P_{0}$ is forward invariant under σ_{3}, then there are always two compatible critical chords touching the orbit at vertices.
(The facts can be generalized to a finite collection of finite orbits of polygons.)

σ_{2} Binary Coordinates

Forward Invariant Triangle

$$
\sigma_{2}: \quad \overline{001} \mapsto \overline{010} \mapsto \overline{100}
$$

Pullback Scheme

Definition (Pullback Scheme)

A pullback scheme for σ_{d} is a collection of d branches $\tau_{1}, \tau_{2}, \ldots, \tau_{d}$ of the inverse of σ_{d} whose ranges partition $\partial \mathbb{D}$.

Data: Forward invariant lamination.

Pullback Scheme

Definition (Guiding Critical Chords)

The generating data of a pullback scheme are a forward invariant periodic collection of leaves and a collection of d interior disjoint guiding critical chords.

Data: Forward invariant lamination.

Guiding critical chord(s).

Branches τ_{1}, τ_{2} of Inverse of σ_{2}

Pullback Scheme

Pullback Scheme

$$
\sigma_{2}: \quad \overline{1010}, 0 \overline{010} \mapsto \overline{010}
$$

Pullback Scheme

Pullback Scheme

Pullback Scheme

Pullback Scheme

From Julia Set to Lamination
Pullback Laminations
From Lamination to Julia Set

Quadratic
Cubic
Identity Return Triangle

Pullback Scheme

From Julia Set to Lamination
Pullback Laminations
From Lamination to Julia Set

Quadratic
Cubic
Identity Return Triangle

Ambiguity

Quadratic Lamination and Julia Set

Rabbit Lamination

Rabbit Julia Set

Quotient space in plane \Longrightarrow homeomorphic to rabbit Julia set.

Quadratic Lamination and Julia Set

Basillica Lamination

Basillica Julia Set

Identity Return Leaf Orbit for σ_{2}

$$
\sigma_{2}:[\overline{011}, \overline{100}] \mapsto[\overline{110}, \overline{001}] \mapsto[\overline{101}, \overline{010}]
$$

Airplane Quadratic Julia Set

The corresponding point in the Julia set has two ray orbits landing on it.

σ_{3} ternary coordinates

Cubic Lamination and Julia Set

Cubic Rabbit Triangle

. .
.
-
"
$:$

Cubic Lamination and Julia Set

Cubic Rabbit Triangle

Guiding all-critical triangle

Cubic Lamination and Julia Set

Symmetric Siblings

Cubic Lamination and Julia Set

Cubic Rabbit Lamination
Cubic Rabbit Julia Set

Cubic Pullback: Identity Return Leaf for σ_{3}

An Identity Return Leaffor σ_{3}.

Identity Return Leaf for σ_{3}

Orbit admits an all-critical triangle.

From Julia Set to Lamination
From Lamination to Julia Set

Identity Return Leaf for σ_{3}

From Julia Set to Lamination

From Lamination to Julia Set

Identity Return Leaf for σ_{3}

From Julia Set to Lamination
Pullback Laminations
From Lamination to Julia Set

Quadratic
Cubic
Identity Return Triangle

Identity Return Leaf for σ_{3}

From Julia Set to Lamination
Pullback Laminations
From Lamination to Julia Set

Identity Return Leaf for σ_{3}

Cubic Lamination and Julia Set

Identity Return Leaf Lamination
Helicopter Julia Set

$$
z \mapsto z^{3}-0.2634-1.2594 i
$$

Identity Return Polygons

Definition

A polygon $P=P_{0}$ is said to be identity return iff its orbit

$$
\left\{P_{0}, P_{1}=\sigma_{d}\left(P_{0}\right), P_{2}=\sigma_{d}\left(P_{1}\right), P_{3}, \ldots, P_{n}=P_{0}\right\}
$$

is periodic (of least period n) and has the properties
(1) the polygons in the orbit are disjoint,
(2) $\sigma_{d}^{n} \mid P_{0}$ is the identity, and
(3) P_{i} maps to $P_{i+1}(\bmod n)$ preserving circular order.

- Each vertex is in a different orbit of period n.

Identity Return Polygons

Definition

A polygon $P=P_{0}$ is said to be identity return iff its orbit

$$
\left\{P_{0}, P_{1}=\sigma_{d}\left(P_{0}\right), P_{2}=\sigma_{d}\left(P_{1}\right), P_{3}, \ldots, P_{n}=P_{0}\right\}
$$

is periodic (of least period n) and has the properties
(1) the polygons in the orbit are disjoint,
(2) $\sigma_{d}^{n} \mid P_{0}$ is the identity, and
(3) P_{i} maps to $P_{i+1}(\bmod n)$ preserving circular order.

- Each vertex is in a different orbit of period n.

Cubic Pulback: Identity Return Triangle

Where can one place two critical chords to start the pullback process?

Forward invariant lamination given

Quadratic

Cubic
Identity Return Triangle

Identity Return Triangle

Guiding critical chords

Identity Return Triangle

Non-symmetric siblings

Identity Return Triangle

From Julia Set to Lamination

Identity Return Triangle

From Julia Set to Lamination
Pullback Laminations From Lamination to Julia Set

Quadratic
Cubic
Identity Return Triangle

Identity Return Triangle

From Julia Set to Lamination
Pullback Laminations
From Lamination to Julia Set

Identity Return Triangle

Identity Return Triangle and Corresponding Julia Set

$$
z \mapsto z^{3}+3 f z^{2}+g
$$

$f=-0.167026+0.0384441 i$ and $g=-0.0916222-1.2734 i$

Identity Return Leaf versus Identity Return Triangle

Identity Return Leaf [$\overline{120}, \overline{212}$]

Identity Return Triangle with One Side [$\overline{120}, \overline{212}$]

Comparison

Sampling of Questions

(1) Under what circumstances can multiple Identity Return Polygon (IRP) orbits co-exist in an invariant lamination?
(2) Given 3 points of a given period $p \geq 3$, what are the criteria for forming an Identity Return Triangle (IRT) for σ_{3} ?
[Brandon Barry - Dissertation]
(3) In particular, can three given period p orbits form more than one IRT? [No - CHMMO]
(4) Given $d \geq 2$ and a period $p>1$ orbit under σ_{d}, how many distinct identity return d-gon orbits can be formed?
(5) What is the "simplest" 3-invariant lamination that contains a given IRT? [Brandon Barry - Dissertation]
(6) Given a "simplest" IRT lamination, is there a cubic Julia set for which it is the lamination?

References

圊 Cosper，D．J．，Houghton，J．K．，Mayer，J．C．，Mernik，L．，and Olson，J．W．
Central Strips of Sibling Leaves in Laminations of the Unit Disk
Topology Proceedings 48 （2016），pp．69－100．E－published on April 17， 2015.

击 Mayer，J．C．and Mernik，L．
Periodic Polygons in d－Invariant Laminations of the Unit Disk
Submitted June 2016.
圊 Barry，Brandon L．
On the Simplest Lamination of a Given Identity Return
Triangle
Dissertation，UAB，July 2015.

