On group-valued continuous functions: *k***-groups and reflexivity**

Gábor Lukács

lukacs@topgroups.ca

Halifax, Nova Scotia, Canada

Notations

For $X, Y \in$ Haus and $G, H \in$ Ab(Haus):

- $\mathscr{C}(X,Y) := \text{cts functions, with compact-open topology.}$
- $\mathscr{C}(X,G)$ is a top. group with pointwise operations.
- $\ \, {\mathscr H}(G,H)\!:=\!{\mathscr C}(G,H)\!\cap\!\hom(G,H).$

Put $\mathbb{T} := \mathbb{R}/\mathbb{Z}$.

•
$$\hat{G} := \mathscr{H}(G, \mathbb{T}).$$

• $\alpha_G : G \to \hat{G}$ is the evaluation homomorphism, $(\alpha_A(g))(\chi) = \chi(g).$

- **•** Is α_G injective?
- **Is** α_G surjective?
- Is α_G cts?
- **J** Is α_G open onto its image?

- **J** Is α_G injective?
 - There is a coarser Hausdorff group topology τ on \mathbb{R} such that $\widehat{(\mathbb{R}, \tau)} = 0$ (Nienhuys, 1971).
- Is α_G surjective?
- Is α_G cts?
- **J** Is α_G open onto its image?

J Is α_G injective?

- There is a coarser Hausdorff group topology τ on \mathbb{R} such that $\widehat{(\mathbb{R}, \tau)} = 0$ (Nienhuys, 1971).
- Is α_G surjective?
 - $\alpha_{L^p_{\mathbb{Z}}([0,1])}$ is not onto (Außenhofer, 1999), where $L^p_{\mathbb{Z}}([0,1]) :=$ a.e. integer funcs. in $L^p([0,1])$, 1 .
- Is α_G cts?
- Is α_G open onto its image?

J Is α_G injective?

- There is a coarser Hausdorff group topology τ on \mathbb{R} such that $\widehat{(\mathbb{R}, \tau)} = 0$ (Nienhuys, 1971).
- **J** Is α_G surjective?
 - $\alpha_{L^p_{\mathbb{Z}}([0,1])}$ is not onto (Außenhofer, 1999), where $L^p_{\mathbb{Z}}([0,1]) :=$ a.e. integer funcs. in $L^p([0,1])$, 1 .
- Is α_G cts?
 - $\alpha_{\mathbb{Z}^+}$ is not cts, where $\mathbb{Z}^+ := (\mathbb{Z}, \text{Bohr topology})$.
- **J** Is α_G open onto its image?

J Is α_G injective?

- There is a coarser Hausdorff group topology τ on \mathbb{R} such that $\widehat{(\mathbb{R}, \tau)} = 0$ (Nienhuys, 1971).
- **J** Is α_G surjective?
 - $\alpha_{L^p_{\mathbb{Z}}([0,1])}$ is not onto (Außenhofer, 1999), where $L^p_{\mathbb{Z}}([0,1]) :=$ a.e. integer funcs. in $L^p([0,1])$, 1 .
- Is α_G cts?
 - $\alpha_{\mathbb{Z}^+}$ is not cts, where $\mathbb{Z}^+ := (\mathbb{Z}, \text{Bohr topology})$.
- **J** Is α_G open onto its image?
 - α_V is not open onto its image for a non-locally convex topological vector space V.

- **•** Is α_G injective?
- **•** Is α_G surjective?
- Is α_G cts?
- **J** Is α_G open onto its image?

Terminology:

- G is reflexive if α_G is a topological isomorphism.
- G is almost reflexive if α_G is an open isomorphism.

For $L \in LCA$:

- *L* is reflexive.

For $L \in LCA$:

- $\, {}^{\hat{L}} \in \mathsf{LCA}.$
- *L* is reflexive.
- If $H \le L$ is a closed subgroup, then:

•
$$\widehat{L/H} \cong H^{\perp}$$
, and $\widehat{H} \cong \widehat{L}/H^{\perp}$, where $H^{\perp} := \{\chi \in \widehat{L} \mid \chi(H) = 0\}$; and

For $L \in LCA$:

- $\, {}^{\hat{L}} \in \mathsf{LCA}.$
- *L* is reflexive.
- If $H \le L$ is a closed subgroup, then:

•
$$\widehat{L/H} \cong H^{\perp}$$
, and $\widehat{H} \cong \widehat{L}/H^{\perp}$, where $H^{\perp} := \{\chi \in \widehat{L} \mid \chi(H) = 0\}$; and

• if H is compact, then H^{\perp} is open in \hat{L} .

For $L \in LCA$:

- *L* is reflexive.
- If $H \le L$ is a closed subgroup, then:
 - $\widehat{L/H} \cong H^{\perp}$, and $\widehat{H} \cong \widehat{L}/H^{\perp}$, where $H^{\perp} := \{\chi \in \widehat{L} \mid \chi(H) = 0\}$; and
 - if H is compact, then H^{\perp} is open in \hat{L} .
- $c(L)^{\perp} = B(\hat{L})$ and $B(L)^{\perp} = c(\hat{L})$, where:
 - c(L) := connected component of 0 in L.
 - $B(L) := \{x \in L \mid \overline{\langle x \rangle} \text{ is compact}\}.$

Observations and motivation

- If α_G is injective, then so is $\alpha_{\mathscr{C}(X,G)}$.
- If α_G is an embedding, then $\alpha_{\mathscr{C}(X,G)}$ is open onto its image (*G* being LQC implies that $\mathscr{C}(X,G)$ is so).

Observations and motivation

Let $X \in Haus$ and $G \in Ab(Haus)$.

- If α_G is injective, then so is $\alpha_{\mathscr{C}(X,G)}$.
- If α_G is an embedding, then $\alpha_{\mathscr{C}(X,G)}$ is open onto its image (*G* being LQC implies that $\mathscr{C}(X,G)$ is so).

Motivation

- Is $\mathscr{C}(X,G)$ (almost) reflexive?
- What does $\widehat{\mathscr{C}(X,G)}$ look like?

Let $X, Y \in$ Haus and $G \in$ Ab(Haus).

● $f: X \to Y$ is *k*-cts if $f_{|K}$ is cts for every compact $K \subseteq X$.

Let $X, Y \in$ Haus and $G \in$ Ab(Haus).

f: X→Y is k-cts if f_{|K} is cts for every compact K⊆X.
 α_G is k-continuous.

- f: X→Y is k-cts if f_{|K} is cts for every compact K⊆X.
 α_G is k-continuous.
- X is a k-space if every k-cts map on X is cts.

- $f: X \to Y$ is *k*-cts if $f_{|K}$ is cts for every compact $K \subseteq X$.
 - α_G is *k*-continuous.
- X is a k-space if every k-cts map on X is cts.
 - If X is LC or metrizable, then it is a k-space.
 - If X is a k-space and Y is locally compact, then $X \times Y$ is a k-space.
 - If X is a k-space and G is complete, then $\mathscr{C}(X,G)$ is complete.

- $f: X \to Y$ is k-cts if $f_{|K}$ is cts for every compact $K \subseteq X$.
 - α_G is *k*-continuous.
- X is a k-space if every k-cts map on X is cts.
- X is hemicompact if its family of compact subsets contains a countable cofinal family (cobase).

- $f: X \to Y$ is k-cts if $f_{|K}$ is cts for every compact $K \subseteq X$.
 - α_G is *k*-continuous.
- X is a k-space if every k-cts map on X is cts.
- X is hemicompact if its family of compact subsets contains a countable cofinal family (cobase).
 - If X is hemicompact and G is metrizable, then $\mathscr{C}(X,G)$ is metrizable.

Special cases

Let X be a Tychonoff k-space.

- $\mathscr{C}(X,\mathbb{T})$ is almost reflexive (Außenhofer, 1999).
- $\mathscr{C}(X,\mathbb{R})$ is almost reflexive (because it is a complete locally convex vector space).
- $\mathscr{C}(X,D)$ is almost reflexive for every discrete group D (because it is complete and has a linear topology).
- Thus, $\mathscr{C}(X,G)$ is almost reflexive for every abelian Lie group $(G = \mathbb{R}^n \times \mathbb{T}^k \times D)$.

Special cases

Let X be a hemicompact k-space.

- $\mathscr{C}(X,\mathbb{T})$ is reflexive (Außenhofer, 1999).
- $\mathscr{C}(X,\mathbb{R})$ is reflexive (because it is a complete metrizable locally convex vector space).
- $\mathscr{C}(X,D)$ is reflexive for every discrete group D (because it is complete, metrizable, and has a linear topology).
- Thus, $\mathscr{C}(X,G)$ is reflexive for every abelian Lie group $(G = \mathbb{R}^n \times \mathbb{T}^k \times D).$

Theorems (GL, 2015)

● If X is a Tychonoff k-space and $G \in LCA$, then:

- $\mathscr{C}(X,G)$ is almost reflexive;
- $\widehat{\mathscr{C}(X,G)} \approx \lim_{\to} \mathscr{C}(\widehat{K,G/C})$, where $K \subseteq X$ is compact and $C \leq G$ is compact such that G/C is a Lie group.

Theorems (GL, 2015)

- If X is a Tychonoff k-space and $G \in LCA$, then:
 - $\mathscr{C}(X,G)$ is almost reflexive;
 - $\widehat{\mathscr{C}(X,G)} \approx \lim_{\to} \mathscr{C}(\widehat{K,G/C})$, where $K \subseteq X$ is compact and $C \leq G$ is compact such that G/C is a Lie group.
- If X is a hemicompact k-space, $G \in LCA$, and G is metrizable, then $\mathscr{C}(X,G)$ is reflexive.

Theorems (GL, 2015)

- If X is a Tychonoff k-space and $G \in LCA$, then:
 - $\mathscr{C}(X,G)$ is almost reflexive;
 - $\widehat{\mathscr{C}(X,G)} \approx \lim_{\to} \mathscr{C}(\widehat{K,G/C})$, where $K \subseteq X$ is compact and $C \leq G$ is compact such that G/C is a Lie group.
- If X is a hemicompact k-space, $G \in LCA$, and G is metrizable, then $\mathscr{C}(X,G)$ is reflexive.
- If X is compact metrizable and zero-dimensional, and $G \in LCA$, then $\mathscr{C}(X,G)$ is reflexive.

Let $G \in Grp(Haus)$.

• G is a k-group if every k-cts homomorphism on G is cts.

Let $G \in \operatorname{Grp}(\operatorname{Haus})$.

- \blacksquare G is a k-group if every k-cts homomorphism on G is cts.
 - If G is a k-space, then it is a k-group.

Let $G \in Grp(Haus)$.

• G is a k-group if every k-cts homomorphism on G is cts.

- If G is a k-space, then it is a k-group.
- If G is a k-space that is not LC and $\mathscr{C}(G,\mathbb{R})$ is metrizable, then $G \times \mathscr{C}(G,\mathbb{R})$ is a k-group, but not a k-space. [Hint: evaluation is k-cts but not cts.]

Let $G \in Grp(Haus)$.

 \blacksquare G is a k-group if every k-cts homomorphism on G is cts.

- If G is a k-space, then it is a k-group.
- If G is a k-space that is not LC and $\mathscr{C}(G,\mathbb{R})$ is metrizable, then $G \times \mathscr{C}(G,\mathbb{R})$ is a k-group, but not a k-space. [Hint: evaluation is k-cts but not cts.]
- If $H \leq G$ is an open subgroup, then *H* is a *k*-group $\iff G$ is a *k*-group.

Let $G \in Grp(Haus)$.

 \blacksquare G is a k-group if every k-cts homomorphism on G is cts.

- If G is a k-space, then it is a k-group.
- If G is a k-space that is not LC and $\mathscr{C}(G,\mathbb{R})$ is metrizable, then $G \times \mathscr{C}(G,\mathbb{R})$ is a k-group, but not a k-space. [Hint: evaluation is k-cts but not cts.]
- If $H \leq G$ is an open subgroup, then H is a k-group $\iff G$ is a k-group.
- Product of an arbitrary family of k-groups is a k-group.

Theorem (GL, 2016)

If X is a compact Hausdorff space such that $\mathscr{C}(X,\mathbb{T})$ (or equivalently, $\pi^1(X)$) is divisible and G is LCA, then:

- $\mathscr{G}(X,G)$ is a *k*-group; and
- \checkmark $\mathscr{C}(X,G)$ is reflexive.

Theorem (GL, 2016)

If X is a compact Hausdorff space such that $\mathscr{C}(X,\mathbb{T})$ (or equivalently, $\pi^1(X)$) is divisible and G is LCA, then:

- $\mathscr{C}(X,G)$ is a *k*-group; and
- $\mathscr{C}(X,G)$ is reflexive.

If X is compact and zero-dimensional, then $\pi^1(X) = 0$, and in particular, divisible. Thus:

Theorem (GL, 2016)

If X is a compact Hausdorff space such that $\mathscr{C}(X,\mathbb{T})$ (or equivalently, $\pi^1(X)$) is divisible and G is LCA, then:

- $\mathscr{C}(X,G)$ is a *k*-group; and
- \checkmark $\mathscr{C}(X,G)$ is reflexive.

If X is compact and zero-dimensional, then $\pi^1(X) = 0$, and in particular, divisible. Thus:

If X is compact Hausdoff and zero-dimensional, and $G \in LCA$, then $\mathscr{C}(X, G)$ is reflexive.

Idea of the proof

Redaction 1

Let $G \in LCA$ and X compact Hausdorff.

- $G \cong \mathbb{R}^n \times H$, where *H* contains a compact open subgroup.
- $\mathscr{C}(X,G)$ a *k*-group $\iff \mathscr{C}(X,H)$ a *k*-group.

Thus, WLOG, G contains a compact open subgroup.

Redaction 2

Let $G \in LCA$ with a compact open subgroup O, and X compact Hausdorff.

- $\mathscr{C}(X, O)$ is an open subgroup of $\mathscr{C}(X, G)$.
- $\mathscr{C}(X,G)$ is a *k*-group $\iff \mathscr{C}(X,O)$ is a *k*-group.

Thus, WLOG, G is compact.

Redaction 3

Let *G* be a compact abelian group and *X* a compact Hausdorff space such that $\mathscr{C}(X, \mathbb{T})$ is divisible.

- D := the divisible hull of \hat{G} .
- It suffices to show that:
 - $\mathscr{C}(X, \hat{D})$ is a *k*-group; and
 - q is a quotient map.

Special case

If G is compact abelian with \hat{G} divisible and X is compact Hausdorff, then:

- $\hat{G} \cong \bigoplus D_{\alpha}$, where $D_{\alpha} \cong \mathbb{Q}$ or $\mathbb{Z}(p^{\infty})$ (countable). • $G \cong \prod \hat{D}_{\alpha}$.
- $\mathscr{C}(X,G) \cong \prod \mathscr{C}(X,\hat{D}_{\alpha})$ is a *k*-group, because:
 - each \hat{D}_{α} is metrizable.

Main Lemma

Let

- X be compact Hausdorff such that $\mathbb{C}(X,\mathbb{T})$ is divisible;
- *G* a compact group; and
- \blacksquare *H* a zero-dimensional subgroup.

Then

$$q: \mathscr{C}(X,G) \longrightarrow \mathscr{C}(X,G/H)$$

is a quotient map.

Applications: Answers to Gabriyelyan's problems

 $\mathfrak{F}_0^I(G)$ and $\mathfrak{F}_\infty^I(G)$

- $\mathfrak{F}_0^I(G) := \{(g_i)_{i \in I} | \lim g_i = 0\}$, with the uniform topology.
- $\mathfrak{F}^{I}_{\infty}(G) := \{(g_i)_{i \in I} | \{g_i\} \text{ precomp}\}, \text{ with the uniform top.}$

 $\mathfrak{F}_0^I(G)$ and $\mathfrak{F}_\infty^I(G)$

- $\mathfrak{F}_0^I(G) := \{(g_i)_{i \in I} | \lim g_i = 0\}$, with the uniform topology.
- $\mathfrak{F}^{I}_{\infty}(G) := \{(g_i)_{i \in I} | \{g_i\} \text{ precomp}\}, \text{ with the uniform top.}$
- $\mathscr{G}(I_{\infty},G) \cong \mathfrak{F}_{0}^{I}(G) \oplus G \text{ and } \mathscr{C}(\beta I,G) \cong \mathfrak{F}_{\infty}^{I}(G).$

 $\mathfrak{F}_0^I(G)$ and $\mathfrak{F}_\infty^I(G)$

- $\mathfrak{F}_0^I(G) := \{(g_i)_{i \in I} | \lim g_i = 0\}$, with the uniform topology.
- $\mathfrak{F}_{\infty}^{I}(G) := \{(g_i)_{i \in I} | \{g_i\} \text{ precomp}\}, \text{ with the uniform top.}$
- $\mathscr{O}(I_{\infty},G) \cong \mathfrak{F}_{0}^{I}(G) \oplus G \text{ and } \mathscr{C}(\beta I,G) \cong \mathfrak{F}_{\infty}^{I}(G).$

 $\mathfrak{F}_0^I(G)$ and $\mathfrak{F}_\infty^I(G)$

- $\mathfrak{F}_0^I(G) := \{(g_i)_{i \in I} | \lim g_i = 0\}$, with the uniform topology.
- $\mathfrak{F}^{I}_{\infty}(G) := \{(g_i)_{i \in I} | \{g_i\} \text{ precomp}\}, \text{ with the uniform top.}$
- $\mathscr{O}(I_{\infty},G) \cong \mathfrak{F}_{0}^{I}(G) \oplus G \text{ and } \mathscr{C}(\beta I,G) \cong \mathfrak{F}_{\infty}^{I}(G).$
- $\mathscr{C}(K,G)$ is reflexive for all compact zero-dimensional Kand $G \in LCA$, and thus so are $\mathfrak{F}_0^I(G)$ and $\mathfrak{F}_\infty^I(G)$.
- If G is metrizable, then $\mathfrak{F}_0^I(G)$ and $\mathfrak{F}_\infty^I(G)$ are reflexive.

Ideas of the proof: almost reflexivity

■ $G \in Grp(Haus)$ has No Small Subgroups (NSS) if there is $U \in \mathcal{N}(G)$ such that U contains only the trivial subgroup.

- $G \in Grp(Haus)$ has No Small Subgroups (NSS) if there is $U \in \mathcal{N}(G)$ such that U contains only the trivial subgroup.
- For $G \in LCA$, the following are equivalent:
 - G is NSS;
 - G is a Lie group;
 - $G \cong \mathbb{R}^n \times \mathbb{T}^k \times D$, where *D* is discrete; and
 - \hat{G} is compactly generated.

- $G \in Grp(Haus)$ has No Small Subgroups (NSS) if there is $U \in \mathcal{N}(G)$ such that U contains only the trivial subgroup.
- For $G \in LCA$, the following are equivalent:
 - G is NSS;
 - G is a Lie group;
 - $G \cong \mathbb{R}^n \times \mathbb{T}^k \times D$, where *D* is discrete; and
 - \hat{G} is compactly generated.

Let X be a Tychonoff k-space and $G \in LCA$.

• $G = \lim_{\leftarrow} G/C$, where C is compact and G/C is NSS.

• For $G \in LCA$, the following are equivalent:

- G is NSS;
- G is a Lie group;
- $G \cong \mathbb{R}^n \times \mathbb{T}^k \times D$, where *D* is discrete; and
- \hat{G} is compactly generated.

Let X be a Tychonoff k-space and $G \in LCA$.

- $G = \lim_{L \to \infty} G/C$, where C is compact and G/C is NSS.
- $\mathscr{C}(X,G) = \lim_{\leftarrow} \mathscr{C}(K,G/C)$, where $K \subseteq X$ is compact and $C \leq G$ is compact such that G/C is NSS.

■ For $G \in Ab(Haus)$, a subgroup H is dually embedded in G if $\widehat{inc}_H : \hat{G} \rightarrow \hat{H}$ is surjective.

- For $G \in Ab(Haus)$, a subgroup H is dually embedded in G if $\widehat{inc}_H : \hat{G} \rightarrow \hat{H}$ is surjective.
 - Every open subgroup is dually embedded.
 - Every subgroup of an LCA is dually embedded.

■ For $G \in Ab(Haus)$, a subgroup H is dually embedded in G if $\widehat{inc}_H : \widehat{G} \rightarrow \widehat{H}$ is surjective.

Let $\{G_{\alpha}\}_{\alpha \in I}$ be an inverse system of abelian groups (for every $\alpha, \beta \in I$ there is $\gamma \in I$ such that $\gamma \leq \alpha, \beta$). Put:

•
$$P = \prod G_{\alpha}$$
 and $\pi_{\alpha} \colon P \to G_{\alpha}$;

$$G = \lim_{\leftarrow} G_{\alpha}.$$

■ For $G \in Ab(Haus)$, a subgroup H is dually embedded in G if $\widehat{inc}_H : \widehat{G} \rightarrow \widehat{H}$ is surjective.

Let $\{G_{\alpha}\}_{\alpha \in I}$ be an inverse system of abelian groups (for every $\alpha, \beta \in I$ there is $\gamma \in I$ such that $\gamma \leq \alpha, \beta$). Put:

•
$$P = \prod G_{\alpha}$$
 and $\pi_{\alpha} \colon P \to G_{\alpha}$;

 $G = \lim_{\leftarrow} G_{\alpha}.$

If $\pi_{\alpha}(G)$ is dually embedded in G_{α} for every $\alpha \in I$, then:

- G is dually embedded in P and $\lim_{\alpha} \hat{G}_{\alpha} \rightarrow \hat{G}$ is onto;
- If each G_{α} is almost reflexive, then so is G.

Let $\{G_{\alpha}\}_{\alpha \in I}$ be an inverse system of abelian groups (for every $\alpha, \beta \in I$ there is $\gamma \in I$ such that $\gamma \leq \alpha, \beta$). Put:

• $P = \prod G_{\alpha} \text{ and } \pi_{\alpha} \colon P \to G_{\alpha};$

 $G = \lim_{\leftarrow} G_{\alpha}.$

If $\pi_{\alpha}(G)$ is dually embedded in G_{α} for every $\alpha \in I$, then:

- G is dually embedded in P and $\lim_{\alpha} \hat{G}_{\alpha} \rightarrow \hat{G}$ is onto;
- if each G_{α} is almost reflexive, then so is G.

Hence, it suffices to show that the image of $\mathscr{C}(X,G)$ is open in $\mathscr{C}(K,G/C)$ for $K \subseteq X$ and $C \leq G$ compact, and G/C NSS.

The Lie algebra and the exponential map

For $G \in Grp(Haus)$:

- $\exp_G := \operatorname{ev}_1 : \mathscr{L}(G) \to G$ is a cts homomorphism.

The Lie algebra and the exponential map

For $G \in Grp(Haus)$:

- $\exp_G := ev_1 : \mathscr{L}(G) \to G$ is a cts homomorphism.

If X is a k-space, then:

- $\begin{aligned} & \quad \mathrel{\rlap{le}{\scales}} \mathscr{L}(\mathscr{C}(X,G)) = \mathscr{H}(\mathbb{R},\mathscr{C}(X,G)) \cong \mathscr{C}(X,\mathscr{H}(\mathbb{R},G)) \\ & = \mathscr{C}(X,\mathscr{L}(G)) \text{ [because } X \times \mathbb{R} \text{ is a } k\text{-space].} \end{aligned}$
- $\ \, \bullet \ \, (\exp_G)_* \! = \! \exp_{\mathscr{C}(X,G)} \colon \mathscr{C}(X,\mathscr{L}(G)) \! \to \! \mathscr{C}(X,G).$

The Lie algebra and the exponential map

For $G \in Grp(Haus)$:

- $\exp_G := \operatorname{ev}_1 : \mathscr{L}(G) \to G$ is a cts homomorphism.

If X is a k-space, then:

- $\mathscr{L}(\mathscr{C}(X,G)) = \mathscr{H}(\mathbb{R},\mathscr{C}(X,G)) \cong \mathscr{C}(X,\mathscr{H}(\mathbb{R},G))$ = $\mathscr{C}(X,\mathscr{L}(G))$ [because $X \times \mathbb{R}$ is a *k*-space].
- $\ \, \bullet \ \, (\exp_G)_* \! = \! \exp_{\mathscr{C}(X,G)} \colon \mathscr{C}(X,\mathscr{L}(G)) \! \to \! \mathscr{C}(X,G).$

If K is compact and H is LCA and NSS, then:

- \exp_H is a local homeomorphism; and thus
- $(\exp_H)_* = \exp_{\mathscr{C}(K,H)}$ has an open image.

A commutative diagram

For $X \in k$ Tych, $K \subseteq X$ compact, $G \in LCA$, and $C \leq G$ compact such that G/C is NSS:

• $(\exp_{G/C})_*$ has an open image;

• R_K^* is onto by Tietze's Theorem, because $\mathscr{L}(G/C) \cong \mathbb{R}^l$;

• $\mathscr{L}(\pi_C)_*$ is onto, because $\mathscr{C}(X, \mathscr{L}(G)) \cong \mathscr{H}(\hat{G}, \mathscr{C}(X, \mathbb{R}))$, $\mathscr{C}(X, \mathbb{R})$ is divisible, and $\widehat{G/C} \cong C^{\perp}$ is open in \hat{G} .

Bibliography

- [1] L. Aussenhofer. Contributions to the duality theory of abelian topological groups and to the theory of nuclear groups. *Dissertationes Math. (Rozprawy Mat.)*, 384:113, 1999.
- [2] S.S. Gabriyelyan On topological properties of the group of the null sequences valued in an Abelian topological group. *Preprint*, 2013. ArXiv: 1306.5117v2.
- [3] J. Galindo and S. Hernández. Pontryagin-van Kampen reflexivity for free abelian topological groups. *Forum Math.*, 11:399-415, 1999.
- [4] V. G. Pestov. Free abelian topological groups and the Pontryagin van Kampen duality. *Bull. Austral. Math. Soc.*, 52:297-311, 1995.