Combinatorics of spoke systems for Fréchet-Urysohn points

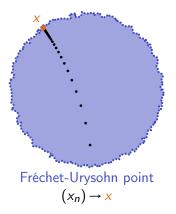
> Robert Leek Cardiff University, UK LeekR@cardiff.ac.uk

> > Toposym 25th July 2016

What are Fréchet-Urysohn points?

Definition

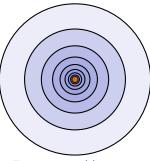
X is *Fréchet-Urysohn* at x if whenever $A \subseteq X$ and $x \in \overline{A}$, there exists a sequence (x_n) in A that converges to x.



Some examples

Definition

X is *first-countable* at x if there exists a countable neighbourhood base for x. Equivalently, there exists a descending neighbourhood base (B_n) for x.

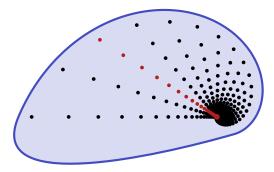


First countable point

More examples

Definition

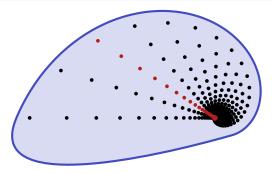
The *sequential hedgehog* is the space obtained by quotienting the limit points of a countable sum of convergent sequences.



More examples

Definition

The *sequential hedgehog* is the space obtained by quotienting the limit points of a countable sum of convergent sequences.



Proposition

The sequential hedgehog is Fréchet-Urysohn but not firstcountable.

Definition

A *spoke* of a point x in a space X is a subspace $S \subseteq X$ where $N_x := \bigcap \mathcal{N}_x \subseteq S$ and x is first-countable with respect to S.

Definition

A *spoke* of a point x in a space X is a subspace $S \subseteq X$ where $N_x := \bigcap N_x \subseteq S$ and x is first-countable with respect to S.

Lemma

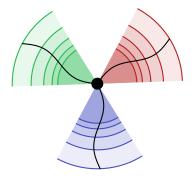
Let (x_n) be a sequence in $X \setminus N_x$ that converges to x. Then $\mathbb{S}_{(x_n)} := N_x \cup \{x_n : n \in \mathbb{N}\}$ is a spoke for x.

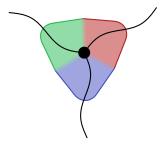
Definition

A spoke system of x is a collection \mathfrak{S} of spokes of x such that

$$\left\{\bigcup_{S\in\mathfrak{S}}U_S:\forall S\in\mathfrak{S},U_S\in\mathcal{N}_x^S\right\}$$

is a neighbourhood base of x with respect to X.





Basic neighbourhood

Definition

A spoke system of x is a collection \mathfrak{S} of spokes of x such that

$$\left\{\bigcup_{S\in\mathfrak{S}}U_S:\forall S\in\mathfrak{S}, U_S\in\mathcal{N}_x^S\right\}$$

is a neighbourhood base of x with respect to X.

Proposition

A collection \mathfrak{S} of spokes of x is a spoke system if and only if for every $A \subseteq X$ with $x \in \overline{A}$, there exists an $S \in \mathfrak{S}$ such that $x \in \overline{A \cap S}$.

Definition

A spoke system of x is a collection \mathfrak{S} of spokes of x such that

$$\left\{\bigcup_{S\in\mathfrak{S}}U_S:\forall S\in\mathfrak{S}, U_S\in\mathcal{N}_x^S\right\}$$

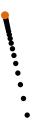
is a neighbourhood base of x with respect to X.

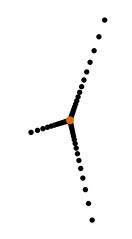
Proposition

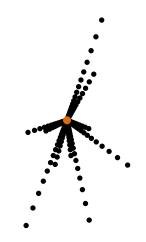
A collection \mathfrak{S} of spokes of x is a spoke system if and only if for every $A \subseteq X$ with $x \in \overline{A}$, there exists an $S \in \mathfrak{S}$ such that $x \in \overline{A \cap S}$.

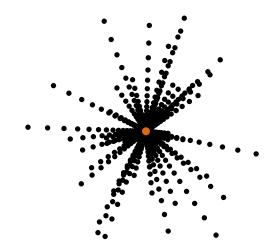
Corollary

Every point with a spoke system is Fréchet-Urysohn.

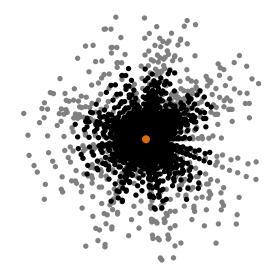












Constructing spokes

Theorem

x is Fréchet-Urysohn if and only if x has a spoke system \mathfrak{S} such that $x \notin \overline{(S \cap T) \setminus N_x}$ for all distinct $S, T \in \mathfrak{S}$.

Constructing spokes

Theorem

x is Fréchet-Urysohn if and only if x has a spoke system \mathfrak{S} such that $x \notin (S \cap T) \setminus N_x$ for all distinct $S, T \in \mathfrak{S}$.

Proof.

If X is Fréchet-Urysohn at x and not quasi-isolated (i.e. N_x is open), define

 $\mathcal{T} := \{f : \mathbb{N} \to X \setminus N_x \mid f \text{ is injective}\}$ $\mathcal{A} := \{\mathcal{F} \subseteq \mathcal{T} : \forall f, g \in \mathcal{F} \text{ distinct, } ran(f) \cap ran(g) \text{ is finite}\}$

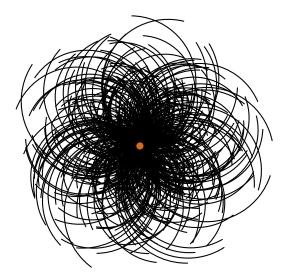
By Zorn's lemma, pick a maximal $\mathcal{F} \in \mathcal{A}$ and define for all $f \in \mathcal{F}, \mathbb{S}_f := N_x \cup \operatorname{ran}(f)$. Then by maximality, $\mathfrak{S} := \{\mathbb{S}_f : f \in \mathcal{F}\}$ is a spoke system for x. Moreover, for all $f, g \in \mathcal{F}$ distinct, $x \notin (\mathbb{S}_f \cap \mathbb{S}_g) \setminus N_x$ since $\mathcal{F} \in \mathcal{A}$.

(Almost-)independence

The condition $x \notin \overline{(S \cap T) \setminus N_x}$ cannot be replaced with $S \cap T = N_x$:

(Almost-)independence

The condition $x \notin \overline{(S \cap T) \setminus N_x}$ cannot be replaced with $S \cap T = N_x$:



Summary of spoke systems

A spoke system \mathfrak{S} of $x \in X$:

- consists of first-countable (i.e. *nice*) approximations;
- generates a neighbourhood base in the original space, via:

$$\left\{\bigcup_{S\in\mathfrak{S}}U_S:\forall S\in\mathfrak{S},U_S\in\mathcal{N}_x^S\right\}$$

• gives witnesses for sequences: if $x \in \overline{A}$ then $x \in \overline{A \cap S}$ for some $S \in \mathfrak{S}$, and we can now easily find a convergent sequence in $A \cap S$.

Summary of spoke systems

The language of this framework consists of our spokes in \mathfrak{S} , arbitrary subsets $A \subseteq X$ and how they intersect. We introduce some notation.

Definition

Given subsets $A, B \subseteq X$ and a point $x \in X$, we write:

- $A \perp_{x} B$ if $A \cap B = N_{x}$.
- $A \#_{x} B$ if $x \in \overline{(A \cap B) \setminus N_{x}}$.

We omit the x when there is no ambiguity.

Summary of spoke systems

The language of this framework consists of our spokes in \mathfrak{S} , arbitrary subsets $A \subseteq X$ and how they intersect. We introduce some notation.

Definition

Given subsets $A, B \subseteq X$ and a point $x \in X$, we write:

- $A \perp_{x} B$ if $A \cap B = N_{x}$.
- $A \#_{x} B$ if $x \in \overline{(A \cap B) \setminus N_{x}}$.

We omit the x when there is no ambiguity.

From now on, we will assume that our spoke systems are:

- Almost-independent: S # T for all distinct $S, T \in \mathfrak{S}$.
- Non-trivial: X # S for all $S \in \mathfrak{S}$.

Definition (α_4 / strongly Fréchet)

A point x is α_4 if whenever (σ_n) is a sequence of (disjoint) sequences in $X \setminus N_x$ that converges to x, then there exists another sequence $\sigma \to x$ such that $\operatorname{ran}(\sigma_n) \cap \operatorname{ran}(\sigma) \neq \emptyset$ for infinitely-many n.

If x is α_4 and Fréchet-Urysohn, we say it is strongly Fréchet.

Definition (α_2)

A point x is α_2 if whenever (σ_N) is a sequence of (disjoint) sequences in $X \setminus N_x$ that converges to x, then there exists another sequence $\sigma \to x$ such that $\operatorname{ran}(\sigma_n) \cap \operatorname{ran}(\sigma)$ is infinite, for all $n \in \omega$.

Spoke system characterisations

Theorem

If x is Fréchet-Urysohn, the following are equivalent:

- x is α₄.
- For any spoke system 𝔅 and any countably-infinite S ⊆ 𝔅, there exists a T ∈ 𝔅 such that T ⊥ S for infinitely-many S ∈ 𝔅.

Spoke system characterisations

Theorem

If x is Fréchet-Urysohn, the following are equivalent:

- x is α₄.
- For any spoke system S and any countably-infinite S ⊆ S, there exists a T ∈ S such that T ⊥ S for infinitely-many S ∈ S.

Theorem

If x is Fréchet-Urysohn, the following are equivalent:

- x is α₂.
- For any spoke system \mathfrak{S} and countably-infinite $S \subseteq \mathfrak{S}$, there exists an $A \subseteq X$ such that:
 - 1. A # S for all $S \in S$, and
 - 2. for all $B \subseteq A$, if $B \not\perp S$ for infinitely-many $S \in S$, then B # T for some $T \in \mathfrak{S}$.

Unbounded families from strongly-Fréchet points

Recall that an unbounded family is a family $\mathcal{B} \subseteq {}^{\omega}\omega$ that is unbounded with respect to the quasi-order \leq^* .

Theorem

Let x be a strongly-Fréchet, non-first-countable point in a space X and let \mathfrak{S} be a spoke system of x and let (S_n) be an injective sequence in \mathfrak{S} . For each $n \in \omega$, pick a descending neighbourhood base $(U_{n,k})_{k \in \omega}$ of x with respect to S_n . Define for each $T \in \mathfrak{S} \setminus \{S_n : n \in \omega\}$:

$$f_T: \omega \to \omega, n \mapsto \sup(k \in \omega: U_{n,k} \cap T \neq N_x)$$

Then $\{f_T : T \in \mathfrak{S} \setminus \{S_n : n \in \omega\}\}$ is unbounded.

Unbounded families from strongly-Fréchet points

Recall that an unbounded family is a family $\mathcal{B} \subseteq {}^{\omega}\omega$ that is unbounded with respect to the quasi-order \leq^* .

Theorem

Let x be a strongly-Fréchet, non-first-countable point in a space X and let \mathfrak{S} be a spoke system of x and let (S_n) be an injective sequence in \mathfrak{S} . For each $n \in \omega$, pick a descending neighbourhood base $(U_{n,k})_{k \in \omega}$ of x with respect to S_n . Define for each $T \in \mathfrak{S} \setminus \{S_n : n \in \omega\}$:

$$f_T: \omega \to \omega, n \mapsto \sup(k \in \omega: U_{n,k} \cap T \neq N_x)$$

Then $\{f_T : T \in \mathfrak{S} \setminus \{S_n : n \in \omega\}\}$ is unbounded.

Corollary

If x is a strongly-Fréchet, non-first-countable point, then every spoke system of x has cardinality at least \mathfrak{b} .

Theorem

If x is a Fréchet-Urysohn, α_2 -point, then the unbounded family \mathcal{B} obtained from the previous theorem is hereditarily-unbounded: for every infinite $A \subseteq \omega$, the family $\{f|_A : f \in \mathcal{B}\}$ is unbounded in $({}^A\omega, \leq^*)$.