Generic objects in topology

Wiesław Kubiś

Institute of Mathematics, Czech Academy of Sciences

College of Science, Cardinal Stefan Wyszyński University in Warsaw

http://www.math.cas.cz/kubis/

12th TOPOSYM Prague, 25-29.07.2016

W.Kubiś (http://www.math.cas.cz/kubis/)

▲□▶ ▲圖▶ ▲国▶ ▲国≯

Denote by \mathfrak{CM}^+ the category of all nonempty compact metrizable spaces with continuous mappings.

 $BM(\mathfrak{K})$

Fix a subcategory \mathfrak{K} of \mathfrak{CM}^+ , whose arrows are surjections.

 $\mathsf{BM}(\mathfrak{K})$

Fix a subcategory \mathfrak{K} of \mathfrak{CM}^+ , whose arrows are surjections. Two players Eve and Odd alternately build an inverse sequence in \mathfrak{K} .

 $\mathsf{BM}(\mathfrak{K})$

Fix a subcategory \mathfrak{K} of \mathfrak{CM}^+ , whose arrows are surjections. Two players Eve and Odd alternately build an inverse sequence in \mathfrak{K} .

• Eve starts by choosing a \Re -object K_0 .

$\mathsf{BM}(\mathfrak{K})$

Fix a subcategory \mathfrak{K} of \mathfrak{CM}^+ , whose arrows are surjections. Two players Eve and Odd alternately build an inverse sequence in \mathfrak{K} .

- Eve starts by choosing a \Re -object K_0 .
- Odd responds by choosing a \mathfrak{K} -arrow $k_0^1 \colon K_1 \to K_0$.

$\mathsf{BM}(\mathfrak{K})$

Fix a subcategory \mathfrak{K} of \mathfrak{CM}^+ , whose arrows are surjections. Two players Eve and Odd alternately build an inverse sequence in \mathfrak{K} .

- Eve starts by choosing a \Re -object K_0 .
- Odd responds by choosing a \mathfrak{K} -arrow $k_0^1 \colon K_1 \to K_0$.
- Eve responds by choosing a \mathfrak{K} -arrow $k_1^2 \colon K_2 \to K_1$.

$\mathsf{BM}(\mathfrak{K})$

Fix a subcategory \mathfrak{K} of \mathfrak{CM}^+ , whose arrows are surjections. Two players Eve and Odd alternately build an inverse sequence in \mathfrak{K} .

- Eve starts by choosing a \Re -object K_0 .
- Odd responds by choosing a \mathfrak{K} -arrow $k_0^1 \colon K_1 \to K_0$.
- Eve responds by choosing a \mathfrak{K} -arrow $k_1^2 \colon K_2 \to K_1$.
- And so on...

イロト イ団ト イヨト イヨト

$\mathsf{BM}(\mathfrak{K})$

Fix a subcategory \mathfrak{K} of \mathfrak{CM}^+ , whose arrows are surjections. Two players Eve and Odd alternately build an inverse sequence in \mathfrak{K} .

- Eve starts by choosing a \Re -object K_0 .
- Odd responds by choosing a \mathfrak{K} -arrow $k_0^1 \colon K_1 \to K_0$.
- Eve responds by choosing a \mathfrak{K} -arrow $k_1^2 \colon K_2 \to K_1$.
- And so on...

The result is an inverse sequence

$$\vec{k} = \langle K_i, K_i^j, \omega \rangle.$$

W.Kubiś (http://www.math.cas.cz/kubis/)

イロト イヨト イヨト イヨト

$BM(\mathfrak{K}, U)$

Fix a compact space U.

イロト イヨト イヨト イヨト

$BM(\mathfrak{K}, U)$

Fix a compact space U. We say that Odd wins if the limit of the inverse sequence

$$K_0 \xleftarrow{k_0^1} K_1 \xleftarrow{k_1^2} K_2 \xleftarrow{k_2^3} \cdots$$

is homeomorphic to U.

$BM(\mathfrak{K}, U)$

Fix a compact space U. We say that Odd wins if the limit of the inverse sequence

$$K_0 \xleftarrow{k_0^1} K_1 \xleftarrow{k_1^2} K_2 \xleftarrow{k_2^3} \cdots$$

is homeomorphic to U.

Definition

We say that U is \Re -generic if Odd has a winning strategy in BM (\Re , U).

$BM(\mathfrak{K}, U)$

Fix a compact space U. We say that Odd wins if the limit of the inverse sequence

$$K_0 \xleftarrow{k_0^1} K_1 \xleftarrow{k_1^2} K_2 \xleftarrow{k_2^3} \cdots$$

is homeomorphic to U.

Definition

We say that U is \Re -generic if Odd has a winning strategy in BM (\Re , U).

The game above will be called the Banach-Mazur game with parameters \Re and U.

Proposition

A f.-generic compact space (if exists) is unique, up to homeomorphisms.

Proposition

A \Re -generic compact space (if exists) is unique, up to homeomorphisms.

Proof.

Suppose U_0 , U_1 are \mathfrak{K} -generic, witnessed by strategies Σ_0 , Σ_1 , respectively.

Proposition

A \Re -generic compact space (if exists) is unique, up to homeomorphisms.

Proof.

- Suppose U_0 , U_1 are \mathfrak{K} -generic, witnessed by strategies Σ_0 , Σ_1 , respectively.
- 2 Assume Odd uses Σ_0 .

< ロ > < 同 > < 回 > < 回 >

Proposition

A \Re -generic compact space (if exists) is unique, up to homeomorphisms.

Proof.

- Suppose U_0 , U_1 are \mathfrak{K} -generic, witnessed by strategies Σ_0 , Σ_1 , respectively.
- 2 Assume Odd uses Σ_0 .
- 3 Assume Eve uses Σ_1 .

< 回 > < 三 > < 三 >

Proposition

A \Re -generic compact space (if exists) is unique, up to homeomorphisms.

Proof.

- Suppose U_0 , U_1 are \mathfrak{K} -generic, witnessed by strategies Σ_0 , Σ_1 , respectively.
- 2 Assume Odd uses Σ_0 .
- 3 Assume Eve uses Σ_1 .
- They both win!

< 回 > < 三 > < 三 >

Proposition

A \Re -generic compact space (if exists) is unique, up to homeomorphisms.

Proof.

- Suppose U_0 , U_1 are \mathfrak{K} -generic, witnessed by strategies Σ_0 , Σ_1 , respectively.
- 2 Assume Odd uses Σ_0 .
- 3 Assume Eve uses Σ_1 .
- They both win!
- Thus $U_0 \approx U_1$.

A (10) A (10) A (10)

Universality

Proposition

Let U be a \mathfrak{K} -generic space. Then for every $K \in \mathfrak{K}$ there exists a continuous surjection $q: U \to K$.

A (1) > A (2) > A

Universality

Proposition

Let U be a \Re -generic space. Then for every $K \in \Re$ there exists a continuous surjection $q: U \to K$. If all \Re -arrows are retractions, then q is a retraction.

A .

Basic examples

Example

The Cantor set 2^{ω} is \mathfrak{CM}^+ -generic.

Basic examples

Example

The Cantor set 2^{ω} is \mathfrak{CM}^+ -generic.

Proof.

Odd has a simple winning tactic: At each step he chooses an arbitrary continuous surjection from 2^{ω} .

A (10) A (10) A (10)

Basic examples

Example

The Cantor set 2^{ω} is \mathfrak{CM}^+ -generic.

Proof.

Odd has a simple winning tactic: At each step he chooses an arbitrary continuous surjection from 2^{ω} .

Example

Let Fin⁺ be the category of nonempty finite sets with surjections. Then 2^{ω} is Fin⁺-generic.

< ロ > < 同 > < 回 > < 回 >

Continua

Proposition

There is no generic continuum.

More precisely, there is no \mathfrak{C} -generic space, where \mathfrak{C} is the category of continua with continuous surjections.

a continuum = a nonempty compact connected metrizable space

★ ∃ ► ★

Continua

Proposition

There is no generic continuum.

More precisely, there is no \mathfrak{C} -generic space, where \mathfrak{C} is the category of continua with continuous surjections.

a continuum = a nonempty compact connected metrizable space

Proof.

Use Waraszkiewicz spirals.

The pseudo-arc

Notation:

Denote by \Im the category whose unique object is the unit interval $\mathbb{I}=[0,1]$ and arrows are continuous surjections.

A (10) A (10)

The pseudo-arc

Notation:

Denote by \Im the category whose unique object is the unit interval $\mathbb{I} = [0, 1]$ and arrows are continuous surjections.

Theorem

There exists an \Im -generic continuum, namely, the pseudo-arc \mathbb{P} .

< 回 > < 三 > < 三 >

Definition

Let \mathfrak{K}_0 be a subcategory of a category $\mathfrak{K} \subseteq \mathfrak{CM}^+$. We say that \mathfrak{K}_0 dominates \mathfrak{K} if

э

Definition

Let \mathfrak{K}_0 be a subcategory of a category $\mathfrak{K} \subseteq \mathfrak{CM}^+$. We say that \mathfrak{K}_0 dominates \mathfrak{K} if

• For every $X \in \text{Obj}(\mathfrak{K})$ there are $X_0 \in \text{Obj}(\mathfrak{K}_0)$ and a \mathfrak{K} -arrow $f \colon X_0 \to X$.

Definition

Let \mathfrak{K}_0 be a subcategory of a category $\mathfrak{K} \subseteq \mathfrak{CM}^+$. We say that \mathfrak{K}_0 dominates \mathfrak{K} if

- For every $X \in Obj(\mathfrak{K})$ there are $X_0 \in Obj(\mathfrak{K}_0)$ and a \mathfrak{K} -arrow $f: X_0 \to X$.
- So revery ε > 0, for every ℜ-arrow p: X → X₀ with X₀ ∈ Obj(ℜ₀) there exists a ℜ-arrow q: Y₀ → X with Y₀ ∈ Obj(ℜ₀) such that p ∘ q is ε-close to some ℜ₀-arrow g: Y₀ → X₀.

Definition

Let \mathfrak{K}_0 be a subcategory of a category $\mathfrak{K} \subseteq \mathfrak{CM}^+$. We say that \mathfrak{K}_0 dominates \mathfrak{K} if

- For every $X \in Obj(\mathfrak{K})$ there are $X_0 \in Obj(\mathfrak{K}_0)$ and a \mathfrak{K} -arrow $f: X_0 \to X$.
- Por every ε > 0, for every ℜ-arrow p: X → X₀ with X₀ ∈ Obj(ℜ₀) there exists a ℜ-arrow q: Y₀ → X with Y₀ ∈ Obj(ℜ₀) such that p ∘ q is ε-close to some ℜ₀-arrow g: Y₀ → X₀. That is:

$$(\forall y \in Y_0) \quad \varrho(p(q(y)), g(y)) \leqslant \varepsilon,$$

where ρ is a fixed metric on X_0 .

Theorem

Assume \mathfrak{K}_0 is dominating in \mathfrak{K} . Then \mathfrak{K}_0 -generic $\implies \mathfrak{K}$ -generic.
Theorem

Assume \mathfrak{K}_0 is dominating in \mathfrak{K} . Then \mathfrak{K}_0 -generic $\implies \mathfrak{K}$ -generic.

Theorem

Assume \Re_0 is dominating in \Re . Then \Re_0 -generic $\implies \Re$ -generic.

Corollary

The pseudo-arc $\mathbb P$ is generic in the class of all Peano continua.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Fix a category $\mathfrak{C} \subseteq \mathfrak{CM}^+$ whose arrows are surjections.

Definition

We say that \mathfrak{C} is directed if for every $X, Y \in \text{Obj}(\mathfrak{C})$ there exist $W \in \text{Obj}(\mathfrak{C})$ and \mathfrak{C} -arrows $f \colon W \to X, g \colon W \to Y$.

Fix a category $\mathfrak{C} \subseteq \mathfrak{CM}^+$ whose arrows are surjections.

Definition

We say that \mathfrak{C} is directed if for every $X, Y \in \text{Obj}(\mathfrak{C})$ there exist $W \in \text{Obj}(\mathfrak{C})$ and \mathfrak{C} -arrows $f \colon W \to X, g \colon W \to Y$.

Definition

We say that \mathfrak{C} has the almost amalgamation property if for every $\varepsilon > 0$, for every \mathfrak{C} -arrows $f: X \to Z, g: Y \to Z$, there exist \mathfrak{C} -arrows $f': W \to X$ and $g': W \to Y$ such that the diagram

is ε -commutative.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Existence

Theorem

Assume $\mathfrak{K} \subseteq \mathfrak{CM}^+$ and \mathfrak{K} -arrows are surjections.

・ロト ・ 四ト ・ ヨト ・ ヨト

Existence

Theorem

Assume $\Re \subseteq \mathfrak{CM}^+$ and \Re -arrows are surjections. Suppose \Re contains a dominating directed subcategory with the almost amalgamation property and with countably many objects.

Existence

Theorem

Assume $\Re \subseteq \mathfrak{CM}^+$ and \Re -arrows are surjections. Suppose \Re contains a dominating directed subcategory with the almost amalgamation property and with countably many objects. Then there exists a \Re -generic object.

A > + = + + =

Definition

Let \Re be as above. We say that \Re is a compact Fraïssé category if

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition

Let \mathfrak{K} be as above. We say that \mathfrak{K} is a compact Fraïssé category if

• R is directed,

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition

Let \Re be as above. We say that \Re is a compact Fraïssé category if

- R is directed,
- R has the almost amalgamation property,

< 🗇 🕨 < 🖻 🕨

Definition

Let \Re be as above. We say that \Re is a compact Fraïssé category if

- R is directed,
- A has the almost amalgamation property,
- R has countably many objects, up to homeomorphisms.

→ ∃ →

Definition

Let R be as above. We say that R is a compact Fraïssé category if

- R is directed,
- R has the almost amalgamation property,
- R has countably many objects, up to homeomorphisms.

Definition

Let
$$\vec{u} = \langle U_i, u_i^j, \omega \rangle$$
 in \Re is called Fraïssé if

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition

Let R be as above. We say that R is a compact Fraïssé category if

- R is directed,
- R has the almost amalgamation property,
- £ has countably many objects, up to homeomorphisms.

Definition

Let $\vec{u} = \langle U_i, u_i^j, \omega \rangle$ in \Re is called Fraïssé if

• For every $X \in \text{Obj}(\mathfrak{K})$ there are $n \in \omega$ and a \mathfrak{K} -arrow $f \colon U_n \to X$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition

Let R be as above. We say that R is a compact Fraïssé category if

- R is directed,
- R has the almost amalgamation property,
- £ has countably many objects, up to homeomorphisms.

Definition

Let $\vec{u} = \langle U_i, u_i^j, \omega \rangle$ in \Re is called Fraïssé if

• For every $X \in \text{Obj}(\mathfrak{K})$ there are $n \in \omega$ and a \mathfrak{K} -arrow $f \colon U_n \to X$.

② For every ε > 0, for every n ∈ ω, for every ℜ-arrow $f : Y → U_n$, there exist m > n and a ℜ-arrow $g : U_m → Y$ that is ε-close to the bonding arrow $u_n^m : U_m → U_n$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main results

Theorem

Let \Re be a compact Fraïssé category. Then there exists a Fraïssé sequence in \Re .

Main results

Theorem

Let \Re be a compact Fraïssé category. Then there exists a Fraïssé sequence in \Re .

Theorem

Let \vec{u} be a Fraïssé sequence in \Re , $U = \lim \vec{u}$. Then U is \Re -generic.

・ 回 ト ・ ヨ ト ・ ヨ ト

Lemma

I, the category of all continuous surjections of the unit interval, is a compact Fraïssé category.

• • • • • • • • • • • • •

Lemma

I, the category of all continuous surjections of the unit interval, is a compact Fraïssé category.

Proof.

Use the Mountain Climbing Theorem.

A (10) > A (10) > A (10)

Lemma

I, the category of all continuous surjections of the unit interval, is a compact Fraïssé category.

Proof.

Use the Mountain Climbing Theorem.

Theorem

Let \vec{u} be a Fraïssé sequence in \Im . Then $\lim_{n \to \infty} \vec{u}$ is the pseudo-arc.

A (10) A (10) A (10)

Lemma

I, the category of all continuous surjections of the unit interval, is a compact Fraïssé category.

Proof.

Use the Mountain Climbing Theorem.

Theorem

Let \vec{u} be a Fraïssé sequence in \Im . Then $\lim_{n \to \infty} \vec{u}$ is the pseudo-arc.

Corollary (Irwin & Solecki 2006)

Let P be a chainable continuum. Then P is homeomorphic to the pseudo-arc if and only if for every $\varepsilon > 0$ for every continuous surjections $f: P \to \mathbb{I}, g: \mathbb{I} \to \mathbb{I}$ there exists a continuous surjection $h: P \to \mathbb{I}$ such that $g \circ h$ is ε -close to f.

Categories of retractions

W.Kubiś (http://www.math.cas.cz/kubis/)

Categories of retractions

Proposition

Let \Re be the category whose objects are all nonempty compact metric spaces and arrows are all right-invertible continuous mappings. Then there is no \Re -generic space.

Categories of retractions

Proposition

Let \Re be the category whose objects are all nonempty compact metric spaces and arrows are all right-invertible continuous mappings. Then there is no \Re -generic space.

Proof.

Use Cook's continuum. For details, see

A. Całka, *Skracanie produktów topologicznych*, MSc, Uniwersytet Warszawski, 2008.

< 回 > < 三 > < 三 >

Fix $n \in \omega \cup \{\infty\}$. Let \mathfrak{D}_n (\mathfrak{D}_n^c) be the category whose objects are nonempty (connected) polyhedra of dimension $\leq n$, and arrows are continuous retractions.

Fix $n \in \omega \cup \{\infty\}$. Let \mathfrak{D}_n (\mathfrak{D}_n^c) be the category whose objects are nonempty (connected) polyhedra of dimension $\leq n$, and arrows are continuous retractions.

Lemma

 $\mathfrak{D}_n / \mathfrak{D}_n^c$ are compact Fraïssé categories.

A B F A B F

Fix $n \in \omega \cup \{\infty\}$. Let \mathfrak{D}_n (\mathfrak{D}_n^c) be the category whose objects are nonempty (connected) polyhedra of dimension $\leq n$, and arrows are continuous retractions.

Lemma

 $\mathfrak{D}_n / \mathfrak{D}_n^c$ are compact Fraïssé categories.

Corollary

There exist a \mathfrak{D}_n -generic and a \mathfrak{D}_n^c -generic space.

A (10) A (10)

W.Kubiś (http://www.math.cas.cz/kubis/)

Generic objects in topology

26 July 2016 20 / 24

æ

Let \mathfrak{S} be the category whose objects are finite-dimensional simplices and arrows are affine surjections.

Let \mathfrak{S} be the category whose objects are finite-dimensional simplices and arrows are affine surjections.

Theorem (A. Kwiatkowska & W.K.)

 \mathfrak{S} is a compact Fraïssé category and its Fraïssé limit is the Poulsen simplex, the unique metrizable simplex whose set of extreme points is everywhere dense.

(4) (5) (4) (5)

Let \mathfrak{S} be the category whose objects are finite-dimensional simplices and arrows are affine surjections.

Theorem (A. Kwiatkowska & W.K.)

 \mathfrak{S} is a compact Fraïssé category and its Fraïssé limit is the Poulsen simplex, the unique metrizable simplex whose set of extreme points is everywhere dense.

Corollary

The Poulsen simplex is \mathfrak{S} -generic.

< 回 > < 三 > < 三 >

Let \mathfrak{S} be the category whose objects are finite-dimensional simplices and arrows are affine surjections.

Theorem (A. Kwiatkowska & W.K.)

 \mathfrak{S} is a compact Fraïssé category and its Fraïssé limit is the Poulsen simplex, the unique metrizable simplex whose set of extreme points is everywhere dense.

Corollary

The Poulsen simplex is \mathfrak{S} -generic.

Parallel results concerning the Lelek fan:

• A. Kwiatkowska, W. Kubiś, *The Lelek fan and the Poulsen simplex as Fraïssé limits*, preprint, 2015.

Embeddings as Fraïssé limits

Example (W. Bielas, M. Walczyńska, W.K.)

Fix a compact 0-dimensional metric space $A \neq \emptyset$. Consider the following category \mathfrak{F}_A .

< ロ > < 同 > < 回 > < 回 >

Embeddings as Fraïssé limits

Example (W. Bielas, M. Walczyńska, W.K.)

Fix a compact 0-dimensional metric space $A \neq \emptyset$. Consider the following category \mathfrak{F}_A .

The objects are continuous mappings $f: A \rightarrow s$, where *s* is finite. An arrow from $f: A \rightarrow s$ to $g: A \rightarrow t$ is a continuous surjection $p: t \rightarrow s$ such that $p \circ g = f$.

< ロ > < 同 > < 回 > < 回 >

Embeddings as Fraïssé limits

Example (W. Bielas, M. Walczyńska, W.K.)

Fix a compact 0-dimensional metric space $A \neq \emptyset$. Consider the following category \mathfrak{F}_A .

The objects are continuous mappings $f: A \rightarrow s$, where *s* is finite. An arrow from $f: A \rightarrow s$ to $g: A \rightarrow t$ is a continuous surjection $p: t \rightarrow s$ such that $p \circ g = f$.

Lemma

 \mathfrak{F}_A is a Fraïssé category.

Theorem (W. Bielas, M. Walczyńska, W.K.)

Let $e: A \to 2^{\omega}$ be a topological embedding such that e[A] is nowhere dense in 2^{ω} . Then e is the Fraïssé limit of \mathfrak{F}_A .

イロト イポト イヨト イヨ
Theorem (W. Bielas, M. Walczyńska, W.K.)

Let $e: A \to 2^{\omega}$ be a topological embedding such that e[A] is nowhere dense in 2^{ω} . Then e is the Fraïssé limit of \mathfrak{F}_A .

Corollary (Knaster & Reichbach)

Every homeomorphism between two closed nowhere dense subsets of 2^{ω} extends to an auto-homeomorphism of 2^{ω} .

A B b 4 B b

References

W. Kubiś, *Metric-enriched categories and approximate Fraïssé limits*, preprint, http://arxiv.org/abs/1210.6506