Homogeneous spaces as coset spaces of groups from special classes

K. Kozlov Lomonosov Moscow State University

PRAGUE TOPOLOGICAL SYMPOSIUM July 2016

Contents

2 Partial answer on Questions 1, 2

K. Kozlov Homogeneous spaces as coset spaces of groups from special classes

-

Example I

2 Partial answer on Questions 1, 2

K. Kozlov Homogeneous spaces as coset spaces of groups from special classes

ъ

In the study of topological homogeneity it is natural to ask from what class of groups we can choose a group that realizes one or the other kind of space's homogeneity.

Example I. How the knowledge about a group which realizes homogeneity allows to deduce stronger homogeneity properties of a space from weaker one

By Hom(X) we denote the homeomorphisms of a compact space X in compact-open topology.

Example I. How the knowledge about a group which realizes homogeneity allows to deduce stronger homogeneity properties of a space from weaker one

By Hom(X) we denote the homeomorphisms of a compact space X in compact-open topology.

G. Birkhoff [1934] proved that ${\rm Hom}({\rm X})$ is a Polish group for a metrizable compactum X.

Example I. How the knowledge about a group which realizes homogeneity allows to deduce stronger homogeneity properties of a space from weaker one

By Hom(X) we denote the homeomorphisms of a compact space X in compact-open topology.

G. Birkhoff [1934] proved that ${\rm Hom}({\rm X})$ is a Polish group for a metrizable compactum X.

R. Arens [1946] showed that ${\rm Hom}({\rm X})$ is a topological group which action on X is continuous.

Example I. How the knowledge about a group which realizes homogeneity allows to deduce stronger homogeneity properties of a space from weaker one

By Hom(X) we denote the homeomorphisms of a compact space X in compact-open topology.

G. Birkhoff [1934] proved that ${\rm Hom}({\rm X})$ is a Polish group for a metrizable compactum X.

R. Arens [1946] showed that $\mathrm{Hom}(\mathrm{X})$ is a topological group which action on X is continuous.

E. Effros [1965] proved that if a continuous action of a Polish group G on a second category metrizable X is transitive then X is a coset space of G.

Example I. How the knowledge about a group which realizes homogeneity allows to deduce stronger homogeneity properties of a space from weaker one

By Hom(X) we denote the homeomorphisms of a compact space X in compact-open topology.

G. Birkhoff [1934] proved that ${\rm Hom}({\rm X})$ is a Polish group for a metrizable compactum X.

R. Arens [1946] showed that $\mathrm{Hom}(\mathrm{X})$ is a topological group which action on X is continuous.

E. Effros [1965] proved that if a continuous action of a Polish group G on a second category metrizable X is transitive then X is a coset space of G.

From these results G. Ungar [1975] deduced that a metrizable homogeneous compactum (even a homogeneous separable metrizable locally compact space) is a coset space of a Polish group.

Example I. How the knowledge about a group which realizes homogeneity allows to deduce stronger homogeneity properties of a space from weaker one

Theorem (G. Ungar, 1975)

A metrizable homogeneous compactum (even a homogeneous separable metrizable locally compact space) is a coset space of a Polish group.

Example I. How the knowledge about a group which realizes homogeneity allows to deduce stronger homogeneity properties of a space from weaker one

Theorem (G. Ungar, 1975)

A metrizable homogeneous compactum (even a homogeneous separable metrizable locally compact space) is a coset space of a Polish group.

A topological space X is *homogeneous* if for any points $x, y \in X$ there is a homeomorphism $h: X \to X$ such that h(x) = y.

Example I. How the knowledge about a group which realizes homogeneity allows to deduce stronger homogeneity properties of a space from weaker one

Theorem (G. Ungar, 1975)

A metrizable homogeneous compactum (even a homogeneous separable metrizable locally compact space) is a coset space of a Polish group.

A topological space X is homogeneous if for any points $x, y \in X$ there is a homeomorphism $h: X \to X$ such that h(x) = y.

For a topological group G and its closed subgroup H the left coset space G/H is a G-space $(G/H, G, \alpha)$ with the action of G by left translations $\alpha : G \times G/H \rightarrow G/H$, $\alpha(g, hH) = ghH$.

Example I. How the knowledge about a group which realizes homogeneity allows to deduce stronger homogeneity properties of a space from weaker one

Theorem (G. Ungar, 1975)

A metrizable homogeneous compactum (even a homogeneous separable metrizable locally compact space) is a coset space of a Polish group.

A topological space X is *homogeneous* if for any points $x, y \in X$ there is a homeomorphism $h: X \to X$ such that h(x) = y.

For a topological group G and its closed subgroup H the left coset space G/H is a G-space $(G/H, G, \alpha)$ with the action of G by left translations $\alpha : G \times G/H \rightarrow G/H$, $\alpha(g, hH) = ghH$.

$\mathsf{COSET}\ \mathsf{SPACES} \subset \mathsf{HOMOGENEOUS}\ \mathsf{SPACES}$

Example I. How the knowledge about a group which realizes homogeneity allows to deduce stronger homogeneity properties of a space from weaker one

Theorem (G. Ungar, 1975)

A metrizable homogeneous compactum (even a homogeneous separable metrizable locally compact space) is a coset space of a Polish group.

F. Ancel [1987] asked whether every homogeneous Polish space is a coset space (preferably of some Polish group)?

Example I. How the knowledge about a group which realizes homogeneity allows to deduce stronger homogeneity properties of a space from weaker one

Theorem (G. Ungar, 1975)

A metrizable homogeneous compactum (even a homogeneous separable metrizable locally compact space) is a coset space of a Polish group.

F. Ancel [1987] asked whether every homogeneous Polish space is a coset space (preferably of some Polish group)?

J. van Mill $\left[2008\right]$ gave an example of a homogeneous Polish space which need not be a coset space.

Example I. How the knowledge about a group which realizes homogeneity allows to deduce stronger homogeneity properties of a space from weaker one

Theorem (G. Ungar, 1975)

A metrizable homogeneous compactum (even a homogeneous separable metrizable locally compact space) is a coset space of a Polish group.

F. Ancel [1987] asked whether every homogeneous Polish space is a coset space (preferably of some Polish group)?

J. van Mill [2008] gave an example of a homogeneous Polish space which need not be a coset space.

Question 1. Is a separable metrizable (respectively Polish) coset space X a coset space of some separable metrizable (respectively Polish) group?

Example I. How the knowledge about a group which realizes homogeneity allows to deduce stronger homogeneity properties of a space from weaker one

Theorem (G. Ungar, 1975)

A metrizable homogeneous compactum (even a homogeneous separable metrizable locally compact space) is a coset space of a Polish group.

F. Ancel [1987] asked whether every homogeneous Polish space is a coset space (preferably of some Polish group)?

J. van Mill [2008] gave an example of a homogeneous Polish space which need not be a coset space.

Question 1. Is a separable metrizable (respectively Polish) coset space X a coset space of some separable metrizable (respectively Polish) group?

This question has a positive answer in the case of strongly locally homogeneous spaces.

SLH spaces

Definition (L. Ford 1954)

A space X is strongly locally homogeneous (abbreviated, SLH) if it has an open base \mathbb{B} such that for every $B \in \mathbb{B}$ and any $x, y \in B$ there is a homeomorphism $f : X \to X$ which is supported on B (that is, f is identity outside B) and moves x to y.

SLH spaces

Definition (L. Ford 1954)

A space X is strongly locally homogeneous (abbreviated, SLH) if it has an open base \mathbb{B} such that for every $B \in \mathbb{B}$ and any $x, y \in B$ there is a homeomorphism $f : X \to X$ which is supported on B (that is, f is identity outside B) and moves x to y.

L. Ford [1954]: HOMOGENEOUS SLH SPACES \subset COSET SPACES \subset homogeneous spaces

SLH spaces

Definition (L. Ford 1954)

A space X is strongly locally homogeneous (abbreviated, SLH) if it has an open base \mathbb{B} such that for every $B \in \mathbb{B}$ and any $x, y \in B$ there is a homeomorphism $f : X \to X$ which is supported on B (that is, f is identity outside B) and moves x to y.

L. Ford [1954]: HOMOGENEOUS SLH SPACES \subset COSET SPACES \subset homogeneous spaces

J. van Mill [2005, 2008] made this result more precise by showing that a separable metrizable (respectively Polish) SLH space is a coset space of a separable metrizable (respectively Polish) group.

SLH spaces

Definition (L. Ford 1954)

A space X is strongly locally homogeneous (abbreviated, SLH) if it has an open base \mathbb{B} such that for every $B \in \mathbb{B}$ and any $x, y \in B$ there is a homeomorphism $f : X \to X$ which is supported on B (that is, f is identity outside B) and moves x to y.

L. Ford [1954]: HOMOGENEOUS SLH SPACES \subset COSET SPACES \subset homogeneous spaces

J. van Mill [2005, 2008] made this result more precise by showing that a separable metrizable (respectively Polish) SLH space is a coset space of a separable metrizable (respectively Polish) group.

K. Kozlov [2013] showed that any separable metrizable SLH space has an extension that is a Polish SLH space.

R. Arens [1946]: Hom(X) is a topological group which action on X is continuous. If X is a compactum (even a locally compact space) then we have

 $w(Hom(X)) \le w(X).$

R. Arens [1946]: Hom(X) is a topological group which action on X is continuous. If X is a compactum (even a locally compact space) then we have

 $w(Hom(X)) \le w(X).$

Question 2. Is a coset space X a coset space of some group G with $w(G) \le w(X)$?

Partial answer on Questions 1, 2

2 Partial answer on Questions 1, 2

K. Kozlov Homogeneous spaces as coset spaces of groups from special classes

Partial answer on Questions 1, 2

Theorem

For a G-space (X, G, α) with a d-open action there exist

a subgroup H of G with $|H| \le w(X)$ and $w(H) \le w(X)$ the restriction of the restriction of which action is d-open and

a G-compactification $(bX, H, \tilde{\alpha})$ of $(X, H, \alpha|_{H \times X})$ with w(bX) = w(X).

Partial answer on Questions 1, 2

Theorem

For a G-space (X, G, α) with a d-open action there exist

a subgroup H of G with $|H| \le w(X)$ and $w(H) \le w(X)$ the restriction of the restriction of which action is d-open and

a G-compactification $(bX, H, \tilde{\alpha})$ of $(X, H, \alpha|_{H \times X})$ with w(bX) = w(X).

Definition (F. Ancel 1986, K. Kozlov, V. Chatyrko 2010)

The action $\alpha : G \times X \to X$ is called

open (or micro-transitive) if $x \in Int(Ox)$ for any point $x \in X$ and any nbd $O \in N_G(e)$;

d-open (or weakly micro-transitive) if $x \in Int(Cl(Ox))$ for any point $x \in X$ and any nbd $O \in N_G(e)$.

Partial answer on Questions 1, 2

Theorem

For a G-space (X, G, α) with a d-open action there exist

a subgroup H of G with $|H| \le w(X)$ and $w(H) \le w(X)$ the restriction of the restriction of which action is d-open and

a G-compactification $(bX, H, \tilde{\alpha})$ of $(X, H, \alpha|_{H \times X})$ with w(bX) = w(X).

Definition (F. Ancel 1986, K. Kozlov, V. Chatyrko 2010)

The action $\alpha : G \times X \to X$ is called

open (or micro-transitive) if $x \in Int(Ox)$ for any point $x \in X$ and any nbd $O \in N_G(e)$;

d-open (or weakly micro-transitive) if $x \in Int(Cl(Ox))$ for any point $x \in X$ and any nbd $O \in N_G(e)$.

The sets Int *A*, Cl *A* are the interior and closure of a subset *A*, respectively, $N_G(e)$ denotes the family of open neighborhoods of the unit *e* of a group *G*, $Ox = \bigcup \{gx : g \in O\}$ for $O \in N_G(e), x \in X$.

d-open actions

Definition (F. Ancel 1986, K. Kozlov, V. Chatyrko 2010)

The action $\alpha : G \times X \to X$ is called

open (or micro-transitive) if $x \in Int(Ox)$ for any point $x \in X$ and any nbd $O \in N_G(e)$);

d-open (or weakly micro-transitive) if $x \in Int(Cl(Ox))$ for any point $x \in X$ and any nbd $O \in N_G(e)$.

A map $f : X \to Y$ is *d-open* if for any open $O \subset X$ we have $f(O) \subset Int(Cl(f(O)))$.

d-open actions

Definition (F. Ancel 1986, K. Kozlov, V. Chatyrko 2010)

The action $\alpha : G \times X \to X$ is called

open (or micro-transitive) if $x \in Int(Ox)$ for any point $x \in X$ and any nbd $O \in N_G(e)$;

d-open (or weakly micro-transitive) if $x \in Int(Cl(Ox))$ for any point $x \in X$ and any nbd $O \in N_G(e)$.

A map $f : X \to Y$ is *d-open* if for any open $O \subset X$ we have $f(O) \subset Int(Cl(f(O)))$.

The terminology is motivated by the fact that an action is "open" ("*d*-open") iff maps $\alpha_x : G \to X$, $\alpha_x(g) = \alpha(g, x)$, $x \in X$, are open (*d*-open).

d-open actions

Definition (F. Ancel 1986, K. Kozlov, V. Chatyrko 2010)

The action $\alpha : G \times X \to X$ is called

open (or micro-transitive) if $x \in Int(Ox)$ for any point $x \in X$ and any nbd $O \in N_G(e)$);

d-open (or weakly micro-transitive) if $x \in Int(Cl(Ox))$ for any point $x \in X$ and any nbd $O \in N_G(e)$.

A map $f: X \to Y$ is *d*-open if for any open $O \subset X$ we have $f(O) \subset Int(Cl(f(O)))$.

The terminology is motivated by the fact that an action is "open" ("*d*-open") iff maps $\alpha_x : G \to X, \ \alpha_x(g) = \alpha(g, x), \ x \in X$, are open (*d*-open). OPEN ACTION \subset *d*-OPEN ACTION

d-open actions

Definition (F. Ancel 1986, K. Kozlov, V. Chatyrko 2010)

The action $\alpha : G \times X \to X$ is called

open (or micro-transitive) if $x \in Int(Ox)$ for any point $x \in X$ and any nbd $O \in N_G(e)$);

d-open (or weakly micro-transitive) if $x \in Int(Cl(Ox))$ for any point $x \in X$ and any nbd $O \in N_G(e)$.

A map $f: X \to Y$ is *d*-open if for any open $O \subset X$ we have $f(O) \subset Int(Cl(f(O)))$.

The terminology is motivated by the fact that an action is "open" ("*d*-open") iff maps $\alpha_x : G \to X, \ \alpha_x(g) = \alpha(g, x), \ x \in X$, are open (*d*-open). OPEN ACTION \subset *d*-OPEN ACTION

If (X, G, α) is a *G*-space with a *d*-open action, then *X* is a direct sum of clopen subsets (*components of the action*). Each component of the action is the closure of the orbit of an arbitrary point of this component.

d-open actions

Definition (F. Ancel 1986, K. Kozlov, V. Chatyrko 2010)

The action $\alpha : G \times X \to X$ is called

open (or micro-transitive) if $x \in Int(Ox)$ for any point $x \in X$ and any nbd $O \in N_G(e)$);

d-open (or weakly micro-transitive) if $x \in Int(Cl(Ox))$ for any point $x \in X$ and any nbd $O \in N_G(e)$.

A map $f: X \to Y$ is *d*-open if for any open $O \subset X$ we have $f(O) \subset Int(Cl(f(O)))$.

The terminology is motivated by the fact that an action is "open" ("*d*-open") iff maps $\alpha_x : G \to X, \ \alpha_x(g) = \alpha(g, x), \ x \in X$, are open (*d*-open). OPEN ACTION \subset *d*-OPEN ACTION

If (X, G, α) is a *G*-space with a *d*-open action, then *X* is a direct sum of clopen subsets (*components of the action*). Each component of the action is the closure of the orbit of an arbitrary point of this component. If the action is open, then *X* is a direct sum of clopen subsets which are the orbits of the action.

d-open actions

Definition (F. Ancel 1986, K. Kozlov, V. Chatyrko 2010)

The action $\alpha : G \times X \to X$ is called

open (or micro-transitive) if $x \in Int(Ox)$ for any point $x \in X$ and any nbd $O \in N_G(e)$);

d-open (or weakly micro-transitive) if $x \in Int(Cl(Ox))$ for any point $x \in X$ and any nbd $O \in N_G(e)$.

A map $f : X \to Y$ is *d*-open if for any open $O \subset X$ we have $f(O) \subset Int(Cl(f(O)))$.

The terminology is motivated by the fact that an action is "open" ("*d*-open") iff maps $\alpha_x : G \to X, \ \alpha_x(g) = \alpha(g, x), \ x \in X$, are open (*d*-open). OPEN ACTION \subset *d*-OPEN ACTION

If (X, G, α) is a *G*-space with a *d*-open action, then *X* is a direct sum of clopen subsets (*components of the action*). Each component of the action is the closure of the orbit of an arbitrary point of this component. If the action is open, then *X* is a direct sum of clopen subsets which are the orbits of the action.

A G-space (X, G, α) with an open action and one component of action X is the coset space of G.

・ロト ・ 同ト ・ ヨト ・ ヨト

d-open actions

Definition (F. Ancel 1986, K. Kozlov, V. Chatyrko 2010)

The action $\alpha : G \times X \to X$ is called

open (or micro-transitive) if $x \in Int(Ox)$ for any point $x \in X$ and any nbd $O \in N_G(e)$);

d-open (or weakly micro-transitive) if $x \in Int(Cl(Ox))$ for any point $x \in X$ and any nbd $O \in N_G(e)$.

A map $f : X \to Y$ is *d*-open if for any open $O \subset X$ we have $f(O) \subset Int(Cl(f(O)))$.

The terminology is motivated by the fact that an action is "open" ("*d*-open") iff maps $\alpha_x : G \to X, \ \alpha_x(g) = \alpha(g, x), \ x \in X$, are open (*d*-open). OPEN ACTION \subset *d*-OPEN ACTION

If (X, G, α) is a *G*-space with a *d*-open action, then *X* is a direct sum of clopen subsets (*components of the action*). Each component of the action is the closure of the orbit of an arbitrary point of this component. If the action is open, then *X* is a direct sum of clopen subsets which are the orbits of the action.

A *G*-space (X, G, α) with an open action and one component of action *X* is the coset space of *G*. Everywhere below we assume that a (*d*-)open action has one component of action.

Partial answer on Questions 1, 2

Theorem

For a G-space (X, G, α) with a d-open action there exist

a subgroup H of G with $|H| \leq w(X)$ and $w(H) \leq w(X)$ the restriction of which action is d-open and

a G-compactification $(bX, H, \tilde{\alpha})$ of $(X, H, \alpha|_{H \times X})$ with w(bX) = w(X).

Partial answer on Questions 1, 2

Theorem

For a G-space (X, G, α) with a d-open action there exist

a subgroup H of G with $|H| \leq \mathrm{w}(X)$ and $\mathrm{w}(H) \leq \mathrm{w}(X)$ the restriction of which action is d-open and

a G-compactification $(bX, H, \tilde{\alpha})$ of $(X, H, \alpha|_{H \times X})$ with w(bX) = w(X).

Sketch of the proof.
Partial answer on Questions 1, 2

Theorem

For a G-space (X, G, α) with a d-open action there exist

a subgroup H of G with $|H| \leq \mathrm{w}(X)$ and $\mathrm{w}(H) \leq \mathrm{w}(X)$ the restriction of which action is d-open and

a G-compactification $(bX, H, \tilde{\alpha})$ of $(X, H, \alpha|_{H \times X})$ with w(bX) = w(X).

Sketch of the proof.

I. Construction of a subgroup H' of G with $|H'| \le w(X)$ the restriction of which action on X is d-open.

Partial answer on Questions 1, 2

Theorem

For a G-space (X, G, α) with a d-open action there exist

a subgroup H of G with $|H| \leq w(X)$ and $w(H) \leq w(X)$ the restriction of which action is d-open and

a G-compactification $(bX, H, \tilde{\alpha})$ of $(X, H, \alpha|_{H \times X})$ with w(bX) = w(X).

Sketch of the proof.

I. Construction of a subgroup H' of G with $|H'| \le w(X)$ the restriction of which action on X is d-open.

II. Construction of a *G*-compactification $(bX, H', \tilde{\alpha})$ of $(X, H', \alpha|_{H' \times X})$ with w(bX) = w(X).

Partial answer on Questions 1, 2

Theorem

For a G-space (X, G, α) with a d-open action there exist

a subgroup H of G with $|H| \leq \mathrm{w}(X)$ and $\mathrm{w}(H) \leq \mathrm{w}(X)$ the restriction of which action is d-open and

a G-compactification $(bX, H, \tilde{\alpha})$ of $(X, H, \alpha|_{H \times X})$ with w(bX) = w(X).

Sketch of the proof.

I. Construction of a subgroup H' of G with $|H'| \le w(X)$ the restriction of which action on X is d-open.

II. Construction of a *G*-compactification $(bX, H', \tilde{\alpha})$ of $(X, H', \alpha|_{H' \times X})$ with w(bX) = w(X).

III. H is H' in compact-open topology.

Partial answer on Questions 1, 2

Corollary

If (X, G, α) is a G-space with a d-open action and X is a separable metrizable space then there exist

a countable metrizable subgroup H of G the restriction of which action is d-open and

a metrizable G-compactification $(bX, H, \tilde{\alpha})$ of $(X, H, \alpha|_{H \times X})$.

Partial answer on Questions 1, 2

Corollary

If (X, G, α) is a G-space with a d-open action and X is a separable metrizable space then there exist

a countable metrizable subgroup H of G the restriction of which action is d-open and

a metrizable G-compactification (bX, H, $\tilde{\alpha}$) of (X, H, $\alpha|_{H \times X}$).

Corollary

Every separable metrizable space which is a coset space has a Polish extension which is a coset space of a Polish group.

Partial answer on Questions 1, 2

Corollary

If (X, G, α) is a G-space with a d-open action and X is a separable metrizable space then there exist

a countable metrizable subgroup H of G the restriction of which action is d-open and

a metrizable G-compactification (bX, H, $\tilde{\alpha}$) of (X, H, $\alpha|_{H \times X}$).

Corollary

Every separable metrizable space which is a coset space has a Polish extension which is a coset space of a Polish group.

Questions. When a separable metrizable coset space is a coset space of a separable metrizable group?

Partial answer on Questions 1, 2

Corollary

If (X, G, α) is a G-space with a d-open action and X is a separable metrizable space then there exist

a countable metrizable subgroup H of G the restriction of which action is d-open and

a metrizable G-compactification (bX, H, $\tilde{\alpha}$) of (X, H, $\alpha|_{H \times X}$).

Corollary

Every separable metrizable space which is a coset space has a Polish extension which is a coset space of a Polish group.

Questions. When a separable metrizable coset space is a coset space of a separable metrizable group?

When a Polish coset space is a coset space of a Polish group?

Partial answer on Questions 1, 2

Corollary

If (X, G, α) is a G-space with a d-open action and X is a separable metrizable space then there exist

a countable metrizable subgroup H of G the restriction of which action is d-open and

a metrizable G-compactification (bX, H, $\tilde{\alpha}$) of (X, H, $\alpha|_{H \times X}$).

Corollary

Every separable metrizable space which is a coset space has a Polish extension which is a coset space of a Polish group.

Questions. When a separable metrizable coset space is a coset space of a separable metrizable group?

When a Polish coset space is a coset space of a Polish group?

When a (separable metrizable) coset space has a (metrizable) compactification which is a coset space?

(d-)open or (weakly) micro-transitive actions

S. Banach, H. Toruńczyk

used *d*-openness in the proof of the Open Mapping Principal for Banach and Fréchet spaces.

(d-)open or (weakly) micro-transitive actions

S. Banach, H. Toruńczyk

used d-openness in the proof of the Open Mapping Principal for Banach and Fréchet spaces.

T. Byczkowski, R. Pol [1976]

A *d*-open bijection of a Čech complete space onto a T_2 space is a homeomorphism.

(d-)open or (weakly) micro-transitive actions

S. Banach, H. Toruńczyk

used d-openness in the proof of the Open Mapping Principal for Banach and Fréchet spaces.

T. Byczkowski, R. Pol [1976]

A *d*-open bijection of a Čech complete space onto a T_2 space is a homeomorphism.

L. Brown [1972]

A *d*-open homomorphism of a Čech complete group is open.

(d-)open or (weakly) micro-transitive actions

S. Banach, H. Toruńczyk

used *d*-openness in the proof of the Open Mapping Principal for Banach and Fréchet spaces.

T. Byczkowski, R. Pol [1976]

A *d*-open bijection of a Čech complete space onto a T_2 space is a homeomorphism.

L. Brown [1972]

A *d*-open homomorphism of a Čech complete group is open.

K. Kozlov [2013]

A *d*-open action of a Čech complete group is open.

Example II. How the knowledge about a group which realizes space's homogeneity allows to speak about properties of a space.

Example I

2 Partial answer on Questions 1, 2

Decompositions of actions

Example II. How the knowledge about a group which realizes space's homogeneity allows to speak about properties of a space

V. Uspenskii [1987] extended Effros theorem to a transitive action of an ω -narrow group on a Baire space X by donating action's openness in favor of d-openness.

Example II. How the knowledge about a group which realizes space's homogeneity allows to speak about properties of a space

V. Uspenskii [1987] extended Effros theorem to a transitive action of an ω -narrow group on a Baire space X by donating action's openness in favor of d-openness.

Theorem (V. Uspenskii 1987)

A transitive action of an ω -narrow group on a Baire space X is d-open.

Example II. How the knowledge about a group which realizes space's homogeneity allows to speak about properties of a space

V. Uspenskii [1987] extended Effros theorem to a transitive action of an ω -narrow group on a Baire space X by donating action's openness in favor of d-openness.

Theorem (V. Uspenskii 1987)

A transitive action of an ω -narrow group on a Baire space X is d-open.

Theorem (V. Uspenskii 1987)

A compactum with a transitive action of an ω -narrow group is a Dugundji compactum.

Example II. How the knowledge about a group which realizes space's homogeneity allows to speak about properties of a space

V. Uspenskii [1987] extended Effros theorem to a transitive action of an ω -narrow group on a Baire space X by donating action's openness in favor of d-openness.

Theorem (V. Uspenskii 1987)

A transitive action of an ω -narrow group on a Baire space X is d-open.

Theorem (V. Uspenskii 1987)

A compactum with a transitive action of an ω -narrow group is a Dugundji compactum.

An ω -narrow group is a subgroup of the product of separable metrizable groups;

Example II. How the knowledge about a group which realizes space's homogeneity allows to speak about properties of a space

V. Uspenskii [1987] extended Effros theorem to a transitive action of an ω -narrow group on a Baire space X by donating action's openness in favor of d-openness.

Theorem (V. Uspenskii 1987)

A transitive action of an ω -narrow group on a Baire space X is d-open.

Theorem (V. Uspenskii 1987)

A compactum with a transitive action of an ω -narrow group is a Dugundji compactum.

An ω -narrow group is a subgroup of the product of separable metrizable groups; an ω -balanced group is a subgroup of the product of metrizable groups.

Example II. How the knowledge about a group which realizes space's homogeneity allows to speak about properties of a space

V. Uspenskii [1987] extended Effros theorem to a transitive action of an ω -narrow group on a Baire space X by donating action's openness in favor of d-openness.

Theorem (V. Uspenskii 1987)

A transitive action of an ω -narrow group on a Baire space X is d-open.

Theorem (V. Uspenskii 1987)

A compactum with a transitive action of an ω -narrow group is a Dugundji compactum.

An ω -narrow group is a subgroup of the product of separable metrizable groups; an ω -balanced group is a subgroup of the product of metrizable groups.

ω-NARROW GROUPS ⊂ ω-BALANCED GROUPS ⊂ ⊂ SUBGROUPS of the PRODUCTS of ČECH COMPLETE GROUS

Example II. How the knowledge about a group which realizes space's homogeneity allows to speak about properties of a space

M. M. Choban [1977]. If a compactum X is a coset space of a Čech complete group then it is a coset space of an ω -narrow group.

Example II. How the knowledge about a group which realizes space's homogeneity allows to speak about properties of a space

M. M. Choban [1977]. If a compactum X is a coset space of a Čech complete group then it is a coset space of an ω -narrow group.

K. Kozlov [2013]. A compactum X with a *d*-open action of an ω -balanced group is a compactum with a *d*-open action of an ω -narrow group.

Example II. How the knowledge about a group which realizes space's homogeneity allows to speak about properties of a space

M. M. Choban [1977]. If a compactum X is a coset space of a Čech complete group then it is a coset space of an ω -narrow group.

K. Kozlov [2013]. A compactum X with a *d*-open action of an ω -balanced group is a compactum with a *d*-open action of an ω -narrow group.

Corollary

If a compactum X is a space with a d-open action of an ω -balanced or a Čech complete group then X is a Dugundji compactum.

Decompositions of actions

2 Partial answer on Questions 1, 2

Coset spaces of compact metrizable groups

Definition

A space X is *metrically homogeneous* if there is a compatible metric on X such that its group of isometries acts transitively on X.

Coset spaces of compact metrizable groups

Definition

A space X is *metrically homogeneous* if there is a compatible metric on X such that its group of isometries acts transitively on X.

Theorem (N. Okromeshko, 1984)

A metrizable compactum is a coset space of a metrizable compact group iff it is metrically homogeneous.

Coset spaces of compact metrizable groups

Definition

A space X is *metrically homogeneous* if there is a compatible metric on X such that its group of isometries acts transitively on X.

Theorem (N. Okromeshko, 1984)

A metrizable compactum is a coset space of a metrizable compact group iff it is metrically homogeneous.

Necessity follows from the result of L. Kristensen [1958] and sufficiency from the result of R. Arens [1946].

Coset spaces of compact groups

Let \sum be the family of continuous pseudometrics on *X*.

Coset spaces of compact groups

Let \sum be the family of continuous pseudometrics on X.

A bijection $f : X \to X$ is called a \sum -isometry if for any $x, y \in X$ and any $\rho \in \sum$ we have $\rho(f(x), f(y)) = \rho(x, y)$.

Coset spaces of compact groups

Let \sum be the family of continuous pseudometrics on X.

A bijection $f : X \to X$ is called a \sum -isometry if for any $x, y \in X$ and any $\rho \in \sum$ we have $\rho(f(x), f(y)) = \rho(x, y)$.

Definition (N. Okromeshko, 1984)

A space X is *isometrically homogeneous* if there is a family of pseudometrics on X generating its topology such that its group of \sum -isometries acts transitively on X.

Coset spaces of compact groups

Let \sum be the family of continuous pseudometrics on *X*.

A bijection $f : X \to X$ is called a \sum -isometry if for any $x, y \in X$ and any $\rho \in \sum$ we have $\rho(f(x), f(y)) = \rho(x, y)$.

Definition (N. Okromeshko, 1984)

A space X is *isometrically homogeneous* if there is a family of pseudometrics on X generating its topology such that its group of \sum -isometries acts transitively on X.

Theorem (N. Okromeshko, 1984)

A compactum X is a coset space of a compact group iff it is isometrically homogeneous.

Coset spaces of compact groups

Let \sum be the family of continuous pseudometrics on X.

A bijection $f : X \to X$ is called a \sum -isometry if for any $x, y \in X$ and any $\rho \in \sum$ we have $\rho(f(x), f(y)) = \rho(x, y)$.

Definition (N. Okromeshko, 1984)

A space X is *isometrically homogeneous* if there is a family of pseudometrics on X generating its topology such that its group of \sum -isometries acts transitively on X.

Theorem (N. Okromeshko, 1984)

A compactum X is a coset space of a compact group iff it is isometrically homogeneous.

S. Antonyan, T. Dobrowolski [2015], K. H. Hofmann, L. Kramer, [2015]. Hilbert cube is an example of a coset space which is not a coset space of a compact group.

(日) (周) (王) (王)

Decomposition of actions

A G-space (X, G, α) will be called a *d*-coset space if the action is *d*-open and has one component.

Decomposition of actions

A G-space (X, G, α) will be called a *d*-coset space if the action is *d*-open and has one component.

For a *d*-coset (coset) space X let \mathcal{D} ($\mathcal{O}D$) be the family of groups which acts *d*-openly (openly) on X and actions have one component.

Decomposition of actions

A G-space (X, G, α) will be called a *d*-coset space if the action is *d*-open and has one component.

For a *d*-coset (coset) space X let \mathcal{D} ($\mathcal{O}D$) be the family of groups which acts *d*-openly (openly) on X and actions have one component.

Definition

A pair of maps $(f : X \to Y, \varphi : G \to H)$ of (X, G, α_G) to (Y, H, α_H) such that $\varphi : G \to H$ is a homomorphism and the diagram

$$\begin{array}{cccc} G \times X & \stackrel{\varphi \times f}{\longrightarrow} & H \times Y \\ \downarrow \alpha_G & & \downarrow \alpha_H \\ X & \stackrel{f}{\longrightarrow} & Y \end{array}$$

is commutative is called *equivariant*.

Decomposition of actions

A G-space (X, G, α) will be called a *d-coset space* if the action is *d*-open and has one component.

For a *d*-coset (coset) space X let $\mathcal{D}(\mathcal{O}D)$ be the family of groups which acts *d*-openly (openly) on X and actions have one component.

Definition

A pair of maps $(f : X \to Y, \varphi : G \to H)$ of (X, G, α_G) to (Y, H, α_H) such that $\varphi : G \to H$ is a homomorphism and the diagram

G imes X	$\xrightarrow{\varphi \times f}$	$H \times Y$
$\downarrow \alpha_{G}$		$\downarrow \alpha_H$
Х	\xrightarrow{f}	Y

is commutative is called *equivariant*.

By a separable metrizable G-space (respectively compact metrizable G-space) we understand a G-space (X, G, α) where X and G are separable metrizable (respectively compact metrizable) spaces.

Decomposition of actions

Theorem

A compactum X is a coset space of a compact group iff there is $G \in D$ and a family of equivariant maps $(f_{\gamma}, \varphi_{\gamma})$ of (X, G, α) to compact metrizable G-spaces $(X_{\gamma}, G_{\gamma}, \alpha_{\gamma}), \gamma \in A$, such that the family of maps $f_{\gamma}, \gamma \in A$, on X is separating.
Decomposition of actions

Theorem

A compactum X is a coset space of a compact group iff there is $G \in D$ and a family of equivariant maps $(f_{\gamma}, \varphi_{\gamma})$ of (X, G, α) to compact metrizable G-spaces $(X_{\gamma}, G_{\gamma}, \alpha_{\gamma}), \gamma \in A$, such that the family of maps $f_{\gamma}, \gamma \in A$, on X is separating.

In fact this theorem is a reformulation of Okromeshko's theorem.

Decomposition of actions

Theorem

X is a (d-)coset space of an ω -narrow group iff there is $G \in OD(D)$ and a family of equivariant maps $(f_{\gamma}, \varphi_{\gamma})$ of (X, G, α) to separable metrizable G-spaces $(X_{\gamma}, G_{\gamma}, \alpha_{\gamma})$ with (d-) open actions $\alpha_{\gamma}, \gamma \in A$, such that the family of maps $f_{\gamma}, \gamma \in A$, on X is separating.

Decomposition of actions

Theorem

X is a (d-)coset space of an ω -narrow group iff there is $G \in OD(D)$ and a family of equivariant maps $(f_{\gamma}, \varphi_{\gamma})$ of (X, G, α) to separable metrizable G-spaces $(X_{\gamma}, G_{\gamma}, \alpha_{\gamma})$ with (d-) open actions $\alpha_{\gamma}, \gamma \in A$, such that the family of maps $f_{\gamma}, \gamma \in A$, on X is separating.

V. V. Pashenkov [1974] gave an example of a homogeneous zero-dimensional compactum (and hence it is a coset space) which is not a coset space of an ω -narrow group.

Decomposition of actions

Theorem

X is a (d-)coset space of an ω -narrow group iff there is $G \in OD(D)$ and a family of equivariant maps $(f_{\gamma}, \varphi_{\gamma})$ of (X, G, α) to separable metrizable G-spaces $(X_{\gamma}, G_{\gamma}, \alpha_{\gamma})$ with (d-) open actions $\alpha_{\gamma}, \gamma \in A$, such that the family of maps $f_{\gamma}, \gamma \in A$, on X is separating.

V. V. Pashenkov [1974] gave an example of a homogeneous zero-dimensional compactum (and hence it is a coset space) which is not a coset space of an ω -narrow group.

Theorem

Let $(id, \varphi) : (X, G, \alpha_G) \to (X, H, \alpha_H)$ be an equvariant pair of maps, where $H = \varphi(G)$. Then if the action α_G is (d-)open then the action α_H is (d-)open respectively.

Decomposition of actions

Theorem

Let (X, G, α) be a G-space with an (d-) open action and let H be the kernel of an epimorphism $\varphi : G \to G'$. Then for the pseudouniformity $\mathcal{U}_{G'}$ on X which base consists of covers

$$\gamma_O = \{\operatorname{Int}((\varphi^{-1}O)x) : x \in X\}, \ O \in N_{G'}(e),$$

we have:

- (a) (π, φ) is an equivariant pair of maps, where $\pi : X \to X/\mathcal{U}_{G'}$ is a uniform quotient map of X on a uniform quotient space $X/\mathcal{U}_{G'}$;
- (b) $(X/\mathcal{U}_{G'}, G', \alpha')$ is a G-space with a (d-) open action.

Decomposition of actions

Theorem

Let (X, G, α) be a G-space with an (d-) open action and let H be the kernel of an epimorphism $\varphi : G \to G'$. Then for the pseudouniformity $\mathcal{U}_{G'}$ on X which base consists of covers

$$\gamma_{\mathcal{O}} = \{\mathsf{Int}((\varphi^{-1}\mathcal{O})x) : x \in X\}, \ \mathcal{O} \in N_{G'}(e),$$

we have:

- (a) (π, φ) is an equivariant pair of maps, where $\pi : X \to X/\mathcal{U}_{G'}$ is a uniform quotient map of X on a uniform quotient space $X/\mathcal{U}_{G'}$;
- (b) $(X/\mathcal{U}_{G'}, G', \alpha')$ is a G-space with a (d-) open action.

If \mathcal{U} is a pseudouniformity on X then the subsets $[x]_{\mathcal{U}} = \bigcap \{ St(x, v) : v \in \mathcal{U} \}$ form a partition $E(\mathcal{U})$ of X. On the quotient set $X/E(\mathcal{U})$ with respect to this partition the *quotient uniformity* $\overline{\mathcal{U}}$ is defined. It is the greatest uniformity on $X/E(\mathcal{U})$ such that the quotient map $p : X \to X/E(\mathcal{U})$ is uniformly continuous.

→

Decomposition of actions

Theorem

Let (X, G, α) be a G-space with an (d-) open action and let H be the kernel of an epimorphism $\varphi : G \to G'$. Then for the pseudouniformity $\mathcal{U}_{G'}$ on X which base consists of covers

$$\gamma_{\mathcal{O}} = \{\mathsf{Int}((\varphi^{-1}\mathcal{O})x) : x \in X\}, \ \mathcal{O} \in N_{G'}(e),$$

we have:

- (a) (π, φ) is an equivariant pair of maps, where $\pi : X \to X/\mathcal{U}_{G'}$ is a uniform quotient map of X on a uniform quotient space $X/\mathcal{U}_{G'}$;
- (b) $(X/\mathcal{U}_{G'}, G', \alpha')$ is a G-space with a (d-) open action.

If \mathcal{U} is a pseudouniformity on X then the subsets $[x]_{\mathcal{U}} = \bigcap \{ St(x, v) : v \in \mathcal{U} \}$ form a partition $E(\mathcal{U})$ of X. On the quotient set $X/E(\mathcal{U})$ with respect to this partition the quotient uniformity $\overline{\mathcal{U}}$ is defined. It is the greatest uniformity on $X/E(\mathcal{U})$ such that the quotient map $p : X \to X/E(\mathcal{U})$ is uniformly continuous. In this case the map p is called a *uniform quotient map*.

→

Decomposition of actions

Theorem

Let (X, G, α) be a G-space with an (d-) open action and let H be the kernel of an epimorphism $\varphi : G \to G'$. Then for the pseudouniformity $\mathcal{U}_{G'}$ on X which base consists of covers

$$\gamma_{\mathcal{O}} = \{\mathsf{Int}((\varphi^{-1}\mathcal{O})x) : x \in X\}, \ \mathcal{O} \in N_{G'}(e),$$

we have:

- (a) (π, φ) is an equivariant pair of maps, where $\pi : X \to X/\mathcal{U}_{G'}$ is a uniform quotient map of X on a uniform quotient space $X/\mathcal{U}_{G'}$;
- (b) $(X/\mathcal{U}_{G'}, G', \alpha')$ is a G-space with a (d-) open action.

If \mathcal{U} is a pseudouniformity on X then the subsets $[x]_{\mathcal{U}} = \bigcap \{ St(x, v) : v \in \mathcal{U} \}$ form a partition $E(\mathcal{U})$ of X. On the quotient set $X/E(\mathcal{U})$ with respect to this partition the quotient uniformity $\overline{\mathcal{U}}$ is defined. It is the greatest uniformity on $X/E(\mathcal{U})$ such that the quotient map $p : X \to X/E(\mathcal{U})$ is uniformly continuous. In this case the map p is called a *uniform quotient map*. Uniform quotient space X/\mathcal{U} is the quotient set $X/E(\mathcal{U})$ with topology induced by the quotient uniformity $\overline{\mathcal{U}}$.

Decomposition of actions

Corollary

For a pseudocompact space X the following conditions are equivalent:

- (a) X is a (d-)coset space of an ω -narrow group;
- (b) X is a (d-)coset space of an ω -balanced group;
- (c) X is an \mathbb{R} -factorizable G-space for some $G \in \mathcal{D}$ ($\mathcal{O}D$);

Decomposition of actions

Corollary

For a pseudocompact space X the following conditions are equivalent:

- (a) X is a (d-)coset space of an ω -narrow group;
- (b) X is a (d-)coset space of an ω -balanced group;
- (c) X is an \mathbb{R} -factorizable G-space for some $G \in \mathcal{D}$ ($\mathcal{O}D$);

Definition

A *G*-space (X, G, α) is said to be \mathbb{R} -factorizable, if for every continuous real-valued function *f* on *X* there exist a separable metrizable *G*-space (Y, H, α_H) , an equivariant pair of maps $(g : X \to Y, \varphi : G \to H)$ and a map $h : Y \to \mathbb{R}$ such that $f = h \circ g$.

Decomposition of actions

Corollary

For a pseudocompact space X the following conditions are equivalent:

- (a) X is a (d-)coset space of an ω -narrow group;
- (b) X is a (d-)coset space of an ω -balanced group;
- (c) X is an \mathbb{R} -factorizable G-space for some $G \in \mathcal{D}$ ($\mathcal{O}D$);

Definition

A *G*-space (X, G, α) is said to be \mathbb{R} -factorizable, if for every continuous real-valued function *f* on *X* there exist a separable metrizable *G*-space (Y, H, α_H) , an equivariant pair of maps $(g : X \to Y, \varphi : G \to H)$ and a map $h : Y \to \mathbb{R}$ such that $f = h \circ g$.

Theorem (E. Martyanov 2016)

A compact coset space X is a coset space of an ω -narrow group iff (X, G, α) is \mathbb{R} -factorizable for some $G \in \mathcal{OD}$.