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Introduction

This talk is about a relatively new subject, developed in the last two
decades or so, which is at the interface of descriptive set theory and
graph theory but also has interesting connections with other areas such
as ergodic theory and probability theory.

The object of study is the theory of definable graphs, usually Borel or
analytic, on standard Borel spaces (Polish spaces with their Borel
structure) and one investigates how combinatorial concepts, such as
colorings and matchings, behave under definability constraints, i.e., when
they are required to be definable or perhaps well-behaved in the
topological or measure theoretic sense.
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Introduction

Although there were a few isolated results that can now be viewed as
belonging to this theory, the first systematic study of definable
combinatorics appears in the paper:

A.S. Kechris, S. Solecki and S. Todorcevic, Borel chromatic numbers,
Advances in Math., 141 (1999), 1-44

A comprehensive survey of the state of the art in this area can be found
in the preprint (posted in my web page):

A.S. Kechris and A. S. Marks, Descriptive Graph Combinatorics, preprint,
2016

Instead of a systematic exposition, which would take too long, I will
discuss today a few representative results in this theory that give the
flavor of the subject.
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Chromatic numbers

A coloring of a graph G = (V,E) is a map from the set of vertices V of G
to a set C (the set of colors) such that adjacent vertices are assigned
different colors. The chromatic number of the graph G, χ(G), is the
smallest cardinality of such a C.

A graph G is bipartite if the vertices can be split into two disjoint sets
V = A tB such that that edges only connect vertices between A and B.
This is equivalent to χ(G) ≤ 2. It is also equivalent to the non-existence
of odd cycles. In particular, every acyclic graph is bipartite.
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Borel chromatic numbers

Suppose now G = (V,E) is a Borel graph (i.e., V is a standard Borel
space and E is a Borel set in V 2). A Borel coloring of the graph
G = (V,E) is a Borel map from the set of vertices V of G to a standard
Borel space C (the set of colors) such that adjacent vertices are assigned
different colors. The Borel chromatic number of the graph G, χB(G), is
the smallest cardinality of such a C. It is thus equal to one of

1, 2, 3, . . . ,ℵ0, 2
ℵ0 .

Given a probability Borel measure µ on V , we similarly define the
measurable chromatic number of G, χµ(G), and if V is a Polish space we
define the Baire measurable chromatic number of G, χBM (G).
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Borel chromatic numbers

Theorem

i) (K-Solecki-Todorcevic) There are locally countable, acyclic Borel
graphs, which therefore have chromatic number 2, with Borel chromatic
number ℵ0, 2

ℵ0 .
ii) (KST) Every locally finite Borel graph has Borel chromatic number
≤ ℵ0. There are l.f., acyclic Borel graphs with Borel chromatic number
ℵ0.
iii) (KST) Every Borel graph with bounded degree ≤ d has Borel
chromatic number ≤ d+ 1.(Conley-K, 2009) There are bounded degree,
acyclic Borel graphs whose Borel chromatic number takes any finite
value. (Marks, 2015) There are d-regular, acyclic Borel graphs whose
Borel chromatic number takes any value in {1, 2, . . . , d+ 1}.
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Borel chromatic numbers of shift graphs

Of special interest are graphs generated by group actions. Let (Γ, S) be a
marked group, i.e, a group with a finite, symmetric set of generators S. If
a is a free Borel action of Γ on a standard Borel space V this gives rise
to a Borel graph on V , the “Cayley graph” of the action, where two
vertices x, y ∈ V are connected iff a generator s ∈ S sends x to y.

Every connected component of this graph is a copy of the Cayley graph
of (Γ, S), so this graph has the same chromatic number as the Cayley
graph of the group. However the Borel chromatic number behaves very
differently and reflects the complexity of the group and the action.
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Borel chromatic numbers of shift graphs

Consider the shift action of the group Γ on [0, 1]Γ, restricted to its free
part. Denote its “Cayley graph” by G∞(Γ, S). On general grounds this
has the highest Borel chromatic number among all free actions of Γ and
it is bounded by d+ 1, where d = |S|.

Take now the groups Zn and Fn, with their usual set of generators S,
which we will not explicitly indicate below. The graphs G∞(Zn), G∞(Fn)
are both bipartite, so they have chromatic number 2. But we have two
contrasting pictures when we look at the Borel chromatic numbers:

Theorem (Conley-K, Lyons-Nazarov, 2009)

χB(G∞(Fn))→∞, as n→∞

Theorem (Gao-Jackson-Krohne-Seward, 2015)

χB(G∞(Zn)) = 3
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Borel chromatic numbers of shift graphs

More recently Marks computed exactly χB(G∞(Fn)).

Theorem (Marks, 2015)

χB(G∞(Fn)) = 2n+ 1

What about the measurable chromatic number χµ(G∞(Fn)) of the shift
graph, where µ is the usual product measure?

Theorem (K-Marks, 2015)

χµ(G∞(Fn)) ≥ max(3, n
log 2n )

Very recently the following upper bound was proved

Theorem (Bernshteyn, 2016)

χµ(G∞(Fn)) ≤ (1 + o(1)) 2n
log 2n
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Borel chromatic numbers of shift graphs

Thus
n

log 2n
≤ χµ(G∞(Fn)) ≤ (1 + o(1))

2n

log 2n

and
χB(G∞(Fn))

χµ(G∞(Fn))
� log n

Problem

Calculate χµ(G∞(Fn))

By contrast, Conley and B. Miller (2014) have shown that the Baire
measurable chromatic number χBM (G∞(Fn)) is also equal to 3.
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1, 2, . . . , 2n+ 1,ℵ0

Let f1, f2, . . . , fn be Borel functions on a standard Borel space V .
Consider the Borel graph Gf1,f2,...,fn with vertex set V , where x, y ∈ V
are connected by an edge iff there is i ≤ n such that fi(x) = y or
fi(y) = x. (Equivalently this is the undirected version of a directed Borel
graph of out-degree ≤ n.) What is the Borel chromatic number of this
graph?

Problem (K-Solecki-Todorcevic)

χB(Gf1,f2,...,fn) is one of 1, 2, . . . , 2n+ 1,ℵ0.

We have χB(Gf1,f2,...,fn) ≤ ℵ0 (KST). For finite V the possible values
(of the chromatic number) are exactly 1, 2, . . . , 2n+ 1 but for Borel
graphs we have one more possibility:

Example (KST)

Consider the space V of all increasing sequences of natural numbers and
let s be the shift map. Then χB(Gs) = ℵ0.
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1, 2, . . . , 2n+ 1,ℵ0

Here is what is known about this problem:

Theorem

The answer is positive for n = 1 (K-Solecki-Todorcevic); also for
n = 2 and almost for n = 3 (with 8 instead of the optimal 7)
(Palamourdas, 2012).

The answer is positive for every n if the functions are commuting
and fixed-point free (Palamourdas, 2012).

For each n ≥ 3, the Borel chromatic number is in the set:
{1, 2, . . . , 1

2 (n+ 1)(n+ 2)− 2,ℵ0} (Palamourdas, 2012; Meehan,
2015).

Finally, B. Miller and Palamourdas showed that if one is willing to throw
away a meager set or a null set (for any Borel measure), then the Borel
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Vizing’s Theorem

Given a graph G, its edge chromatic number, in symbols, χ′(G), is the
smallest number of colors that we can use to color the edges of the graph
so that adjacent edges have different colors. For a Borel graph, we define
similarly its Borel edge chromatic number, χ′B(G) (and χ′µ(G)).
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Vizing’s Theorem

The following is a classical theorem of Vizing, which gives the optimal
edge chromatic number:

Theorem (Vizing)

For any graph of degree ≤ d, we have χ′(G) ≤ d+ 1.

What is the optimal Borel edge chromatic number? Is it again d+ 1?

Theorem

Let G be a Borel graph of degree ≤ d. Then:

(K-Solecki-Todorcevic) χ′B(G) ≤ 2d− 1.

(Marks, 2015) This is optimal: There are d-regular acyclic Borel
graphs where χ′B(G) can take any value between d and 2d− 1.

Thus, surprisingly, the optimal value in the Borel problem is 2d− 1
instead of d+ 1 colors.
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Vizing’s Theorem

On the other hand for measurable edge chromatic numbers we have

Theorem (Csóka-Lippner-Pikhurko, 2014)

Let G be a Borel graph of degree ≤ d and let µ be such that G is
measure-preserving. Then

χ′µ(G) ≤ d+O(
√
d)

If G is bipartite, then χ′µ(G) ≤ d+ 1
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König’s Theorem

A matching in a graph G = (V,E) is a set M of edges that have no
common vertex. For a matching M denote by VM the set of matched
vertices and call M a perfect matching if VM = V . If a measure µ on V
is present and VM has full measure, we say that M is a perfect matching
µ-a.e.

Theorem (König)

Every d-regular bipartite graph has a perfect matching, for any d ≥ 2.
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A. Miller’s Problem

In the 1980’s Arnie Miller asked whether König’s Theorem holds in the
Borel category:

Problem (A. Miller)

Let G = (V,E) be a Borel d-regular, Borel bipartite graph. Is it true that
G has a Borel perfect matching?
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The case d = 2

Laczkovich (1988) obtained a negative answer for d = 2.

Here is his example:

Fix an irrational 0 < α < 1 and consider the set consisting of the
following rectangle inscribed in the unit square, together with the
indicated two corner points.

d(x) = k < ℵ0 for every x ∈ X, then by a theorem of König (a special case
of Hall’s Theorem), G admits a matching, i.e., a bijection ϕ : X1 → X2 such
that (x, ϕ(x)) ∈ E, ∀x ∈ X. The question was raised (see, e.g., Miller [38])
whether there is a Borel version of that theorem, more precisely, whether
there is a Borel matching.

Laczkovich [30] provided the following counterexample for k = 2. Fix
an irrational 0 < α < 1 and consider the set R consisting of the following
rectangle inscribed in the unit square, together with the indicated two corner
points.

α

α

1 − α

1 − α

x

y2

y1

b

b

We take X1, X2 to be two disjoint copies of [0, 1] and for x ∈ X1 its two
neighbors y1, y2 ∈ X2 are such that (x, yi) ∈ R. The two neighbors of any
y ∈ X2 are defined analogously. Clearly this is a Borel graph in which every
vertex has degree 2, but Laczkovich showed that it does not have a Borel
matching. In the paper K lopotowski-Nadkarni-Sarbadhikari-Srivastava [29],
the authors argue that the following graph

56
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The even d case

In a paper in the early 2000s it was “shown” that putting together 4
copies of the preceding graph would produce examples for d = 4 (and
similarly for any even d).

b

b

b

b

b

b

b

b

which consists of 4 “copies” of the preceding graph (actually, the authors
discard finitely many connected components rather than adding dots at the
corners, but it is clear that one graph has admits Borel matching if and
only if the other does), and in which every vertex has degree 4 provides a
counterexample for k = 4 (and similarly for all even k). They also raised the
question of whether there is a counterexample for k = 3.

Lyons (private communication) showed that the above example actually
does not work, as it has a Borel matching. A simpler argument is as follows:

57

But around 2009 Lyons showed that this did not work as this graph had a
Borel matching.
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The even d case

Here is a simple perfect matching found later by Conley-K:

b

b

b
b

b

b

The boldface segments and dots provide the matching, where as usual an
endpoint of a segment is colored black if it is included, and is colored white
if it is not included.

However, it turns out that there is a way to modify this construction to
find counterexamples for every even k. For example, for k = 4, the idea is to
construct a “Sudoku” version which is illustrated in the following picture:
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The even d case

Luckily Conley-K found a way to salvage this approach by using a
“Sudoku” version:

b

b

b

b

b

b

b

b

b

b

b

b

Let us give a detailed argument. Fix a Borel bipartite graph (X1⊔X2, E)
with degree k = 2 possessing no Borel matching. Define from this a new
graph (X1⊔X2, E) as follows: X1 = X1×{1, 2, 3}, X2 = X2×{1, 2, 3}, and
(x, i)E(y, j) ⇔ (i 6= j and xEy). This has degree k = 4 and it is enough to
show that if there is a Borel injection f : X1 → X2 such that (x, i)E f(x, i),
then there is a Borel injection f : X1 → X2 with xEf(x) (and similarly if we
switch the roles of X1, X2). Granting this, if there is a Borel matching for
(X1 ⊔X2, E), there are two Borel injections, from X1 to X2 and vice versa,
whose graphs are contained in E, so, by a Schröder-Bernstein argument,
there is a Borel matching for (X1 ⊔X2, E), a contradiction.

So fix f as above, which we will use to define f . Given x ∈ X, consider
f(x, 1) = (u, a), f(x, 2) = (v, b), and f(x, 3) = (w, c). Then xEu, xEv, and
xEw. Since (X1 ⊔X2, E) has degree 2, at least two of u, v, w are equal. So
there is a unique y ∈ X2 such that for at least two distinct i, j ≤ 3, we
have f(x, i) = (y, k), f(x, j) = (y, l) (for some necessarily distinct k,l). Put
f(x) = y; we claim that this works. To see this, take x 6= x′. If f(x) =
f(x′) = y, then let i 6= j be such that f(x, i) = (y, k), f(x, j) = (y, l) and let
i′ 6= j′ be such that f(x′, i′) = (y, k′), f(x′, j′) = (y, l′). As before, k 6= l and
k′ 6= l′. It follows that one of k, l is equal to one of k′, l′, contradicting the
injectivity of f .

The same proof works for degree k = 6 by dropping from the definition of
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The general d case

These ideas do not work for odd d, so Conley-K (2009) suggested a
different approach based also on ergodic theory. Let Zd be the cyclic
group of order d, let A = B = Zd and consider the free part of the shift
action of A ∗B on [0, 1]A∗B . This gives a d-regular, Borel acyclic, Borel
bipartite graph Gd with the one side of the graph consisting of the
A-orbits and the other side consisting of the B-orbits. Two such orbits
are connected by an edge iff they intersect.

For d = 2 this has no Borel matching even a.e., using the fact that the
shift is weakly mixing.

It was hoped that these ergodic theory arguments would carry over to
every d but this hope was dashed by a later result of Lyons-Nazarov that
showed that for d = 3 there is indeed a Borel perfect matching a.e.
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The general d case

This was a consequence of the following result of Lyons-Nazarov.

Theorem (Lyons-Nazarov, 2009)

Let (Γ, S) be a non-amenable marked group with bipartite Cayley graph.
Then G∞(Γ, S) admits a Borel perfect matching a.e. (with respect to
the usual product measure).

We mention also here the following important improvement by
Csóka-Lippner.

Theorem (Csóka-Lippner, 2012)

Let (Γ, S) be a non-amenable marked group. Then G∞(Γ, S) admits a
Borel perfect matching a.e.
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Theorem (Csóka-Lippner, 2012)

Let (Γ, S) be a non-amenable marked group. Then G∞(Γ, S) admits a
Borel perfect matching a.e.

Alexander S. Kechris Descriptive graph combinatorics



The general d case

So ergodic theory cannot work to show that the graphs Gd admit no
perfect matching for all d. However Marks recently used completely
different methods, employing infinite games and Martin’s Borel
Determinacy Theorem, to finally show the following:

Theorem (Marks, 2015)

The graph Gd has no Borel perfect matching, for any d ≥ 2.

Remark

Borel determinacy needs quite a bit of set theoretic power as it uses
(necessarily) the existence of sets of size at least the ℵ1 iteration of the
power set operation. Therefore, strangely, the only known proof of the
preceding theorem needs to make use of these very large sets. The same
comment applies to Marks’ calculation of the Borel chromatic number of
G∞(Fn).
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Theorem (Marks, 2015)

The graph Gd has no Borel perfect matching, for any d ≥ 2.

Remark

Borel determinacy needs quite a bit of set theoretic power as it uses
(necessarily) the existence of sets of size at least the ℵ1 iteration of the
power set operation. Therefore, strangely, the only known proof of the
preceding theorem needs to make use of these very large sets. The same
comment applies to Marks’ calculation of the Borel chromatic number of
G∞(Fn).
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Applications to paradoxical decompositions

There is a close connection between matchings and paradoxical
decompositions. Thus some of the results on matchings in descriptive
graph combinatorics have applications in the theory of paradoxical
decompositions. I will discuss below some very recent work in this area.

Alexander S. Kechris Descriptive graph combinatorics



Applications to paradoxical decompositions

First some basic definitions.

Definition

Suppose a group G acts on a space X. If A,B ⊆ X, then A,B are
G-equidecomposable if there are partitions A =

⊔n
i=1Ai, B =

⊔n
i=1Bi

into finitely many pieces and group elements g1, . . . , gn such that
g1 ·A1 = B1, . . . , gn ·An = Bn.

Definition

A subset X is G-paradoxical if there is a partition X = A tB into two
pieces A,B which are equidecomposable with X. Such a partition is
called a paradoxical decomposition of X
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Applications to paradoxical decompositions

We now have the following famous Banach-Tarski Paradox.

Theorem (Banach-Tarski)

For any n ≥ 3 (and with respect to the group of rigid motions
(isometries) of Rn), any closed ball in Rn is paradoxical and any two
bounded subsets of Rn with nonempty interior are equidecomposable.
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Applications to paradoxical decompositions

In the early 1990’s Dougherty and Foreman solved Marczewski’s Problem
(from the 1930’s) by showing that the Banach-Tarski Paradox can be
performed using pieces with the Property of Baire. Their proof was based
on the following result:

Theorem (Dougherty-Foreman, 1994)

Let the free group Fn, n ≥ 2, act freely by homeomorphisms on a Polish
space X. Then X is paradoxical with pieces having the property of Baire.

Another proof of this result has been recently found by K-Marks using
ideas concerning matchings in descriptive graph combinatorics. Further
work of Marks-Unger led to an ultimate form of the Dougherty-Foreman
result.
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Applications to paradoxical decompositions

The classical Hall Theorem about matchings states the following:

Theorem (Hall)

Let G be a locally finite bipartite graph such that for any finite set of
vertices F (contained in one piece of the bipartition), we have
|NG(F )| ≥ |F |. Then G admits a perfect matching.

However, the Hall condition is not enough to guarantee matchings in a
measurable or generic context:

Proposition

(K-Marks, 2015) For each n ≥ 1, there is a bounded degree Borel
bipartite graph G on a standard probability space (X,µ) that
satisfies |NG(F )| ≥ n|F |, for any finite set of vertices F , but G has
no Borel perfect matching µ-a.e.

There is a bounded degree Borel bipartite graph G on a Polish space
X that satisfies |NG(F )| ≥ |F |, for any finite set of vertices F , but
G has no Borel perfect matching on a comeager set.
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Applications to paradoxical decompositions

However very recently Marks and Unger showed that an ε strengthening
suffices.

Theorem (Marks-Unger, 2016)

Let G be a locally finite bipartite Borel graph such that for some ε > 0
and any finite set of vertices F (contained in one piece of the
bipartition), we have |NG(F )| ≥ (1 + ε)|F |. Then G admits a perfect
matching on a comeager set.
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Applications to paradoxical decompositions

Mark and Unger then used this result to prove an ultimate form of the
Dougherty-Foreman Theorem (by very different methods) and the
solution of the Marczewski Problem:

Theorem (Marks-Unger, 2016)

Suppose a group Γ acts by Borel automorphisms on a Polish space. If the
action has a paradoxical decomposition, then it has one using sets with
the property of Baire.
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Applications to paradoxical decompositions

I will finish with some recent results on measurable versions of the
Banach-Tarski Paradox.

Using a version of the Lyons-Nazarov Theorem mentioned earlier,
Grabowski-Máthé-Pikhurko have shown the following:

Theorem (Grabowski-Máthé-Pikhurko, 2016)

Let A,B be Lebesgue measurable subsets of Rn with n ≥ 3. Suppose
they are bounded and have nonempty interior. They are
equidecomposable by rigid motions using Lebesgue measurable pieces iff
they have the same measure.

Moreover, using also ideas related to Laczkovich’s solution of the Tarski
Circle Squaring Problem, they showed the following:

Theorem (Grabowski-Máthé-Pikhurko, 2015)

Let A,B be Lebesgue measurable subsets of Rn with n ≥ 1. Suppose
they are bounded with nonempty interior and have the same Lebesgue
measure and their boundaries have box dimension less than n. Then they
are equidecomposable by translations using Lebesgue measurable pieces.
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