Dimension of inverse limits with set-valued functions

Hisao Kato

University of Tsukuba, Tsukuba-Shi, Japan
The 12th Prague Topological Symposium, Prague, Czech, July 25-29, 2016
(1) Abstract
(2) Dimension of inverse limits with set-valued functions
(3) Examples

Abstract

Abstract: In this talk, we investigate dimension of inverse limits with set-valued functions.

Dimension of inverse limits with set-valued functions

Let $X_{i}(i \in \mathbb{N})$ be a sequence of compacta and let $f_{i, i+1}: X_{i+1} \rightarrow 2^{X_{i}}$ be an upper semi-continuous function for each $i \in \mathbb{N}$. The inverse limit of the inverse sequence $\left\{X_{i}, f_{i, i+1}\right\}_{i=1}^{\infty}$ is the space

$$
\lim _{\leftrightarrows}\left\{X_{i}, f_{i, i+1}\right\}=\left\{\left(x_{i}\right)_{i=1}^{\infty} \mid x_{i} \in f_{i, i+1}\left(x_{i+1}\right) \text { for each } i \in \mathbb{N}\right\} \subset \prod_{i=1}^{\infty} x_{i}
$$

which has the topology inherited as a subspace of the product space $\prod_{i=1}^{\infty} X_{i}$.

In particular, if $f: X \rightarrow 2^{X}$ is an upper semi-continuous function, we consider the inverse sequence $\{X, f\}=\left\{X_{i}, f_{i, i+1}\right\}$, where $X_{i}=X, f_{i, i+1}=f(i \in \mathbb{N})$. We put

$$
\lim _{\leftrightarrows}\{X, f\}=\left\{\left(x_{i}\right)_{i=1}^{\infty} \mid x_{i} \in f\left(x_{i+1}\right) \text { for each } i \in \mathbb{N}\right\} .
$$

Theorem 2.1

Let $X_{i}(i \in \mathbb{N})$ be a sequence of compacta and let $f_{i, i+1}: X_{i+1} \rightarrow X_{i}$ be a map (single valued upper semi-continuous function) for each $i \in \mathbb{N}$. Then $\operatorname{dim} \lim _{\leftarrow}\left\{X_{i}, f_{i, i+1}\right\} \leq \sup \left\{\operatorname{dim} X_{i} \mid i \in \mathbb{N}\right\}$.

Concerning dimension of inverse limits with set-valued functions, the following theorems have been obtained.

Theorem 2.2 (Banič)

Suppose that X is a continuum and A a closed subset of X. Let $g: X \rightarrow X$ be a (continuous) map. If $f: X \rightarrow 2^{X}$ is the upper semi-continuous function such that $G(f)=G(g) \cup(A \times X)$, then $\operatorname{dim} \underset{\swarrow}{\lim }\{X, f\} \in\{\operatorname{dim} X, \infty\}$.

Theorem 2.3 (Nall)

Let $X_{i}(i \in \mathbb{N})$ be a sequence of compacta and let $f_{i, i+1}: X_{i+1} \rightarrow 2^{X_{i}}$ be an upper semi-continuous function for each $i \in \mathbb{N}$ such that one of the following conditions (1) and (2) is satisfied;
(1) $\operatorname{dim} f_{i, i+1}(x)=0$ for each $i \in \mathbb{N}$ and $x \in X_{i+1}$, i.e., $D_{1}\left(f_{i, i+1}\right)=\emptyset$. (2) $\operatorname{dim} f_{i, i+1}^{-1}(x)=0$ for each $i \in \mathbb{N}$ and $x \in X_{i}$, i.e., $D_{1}\left(f_{i, i+1}^{-1}\right)=\emptyset$. Then $\operatorname{dim} \lim _{幺}\left\{X_{i}, f_{i, i+1}\right\} \leq \sup \left\{\operatorname{dim} X_{i} \mid i \in \mathbb{N}\right\}$.

Theorem 2.4 (Ingram)

Let $X_{i}(i \in \mathbb{N})$ be a sequence of compacta and let $f_{i, i+1}: X_{i+1} \rightarrow 2^{X_{i}}$ be an upper semi-continuous function for each $i \in \mathbb{N}$. If for each $i>0, Z_{i}$ is a closed 0 -dimensional subset of X_{i} such that $g_{i, i+1}=f_{i, i+1} \mid\left(X_{i+1}-Z_{i+1}\right)$ is a mapping and $f_{i, j}^{-1}\left(Z_{i}\right)$ is 0 -dimensional for each $i \geq 2$ and $j>i$, then $\operatorname{dim} \lim \left\{X_{i}, f_{i, i+1}\right\} \leq \sup \left\{\operatorname{dim} X_{i} \mid i \in \mathbb{N}\right\}$.

To evaluate dimension of generalized inverse limits, we need the following notations.

For a function $f: X \rightarrow 2^{Y}$, we put
$D_{1}(f)=\{x \in X \mid \operatorname{dim} f(x) \geq 1\}, D_{1}\left(f^{-1}\right)=\left\{y \in Y \mid \operatorname{dim} f^{-1}(y) \geq 1\right\}$, where $f^{-1}(B)=\{x \in X \mid f(x) \cap B \neq \emptyset\}$ for a subset B of Y.

Let $X_{i}(i \in \mathbb{N})$ be a sequence of compacta and let $f_{i, i+1}: X_{i+1} \rightarrow 2^{X_{i}}$ be an upper semi-continuous function for each $i \in \mathbb{N}$. Let $y \in X_{n}$ and $x \in X_{n^{\prime}}\left(n \leq n^{\prime}\right)$. We consider the following conditions:

$$
\begin{gathered}
y \leftarrow x: y \in f_{n, n^{\prime}}(x) \\
x \triangleleft: x \in D_{1}\left(f_{n^{\prime}, n^{\prime}+1}^{\prime}\right) \\
\nabla y: n \geq 2 \text { and } y \in D_{1}\left(f_{n-1, n}\right)
\end{gathered}
$$

Also, let $x \in X_{m}$ and $y \in X_{m^{\prime}}\left(m+2 \leq m^{\prime}\right)$. We consider the following condition:

$$
x \hookleftarrow \triangleright y: y \in D_{1}\left(f_{m^{\prime}-1, m^{\prime}}\right) \text { and } \operatorname{dim}\left[f_{m, m^{\prime}-1}^{-1}(x) \cap f_{m^{\prime}-1, m^{\prime}}(y)\right] \geq 1
$$

In particular, we also consider the following condition:

$$
\begin{aligned}
x \diamond y: & m^{\prime}= \\
& m+2, x \in D_{1}\left(f_{m, m+1}^{-1}\right), y \in D_{1}\left(f_{m+1, m+2}\right) \text { and } \\
& \operatorname{dim}\left[f_{m, m+1}^{-1}(x) \cap f_{m+1, m+2}(y)\right] \geq 1 .
\end{aligned}
$$

For each $x_{n} \in X_{n}$ with $x_{n} \in D_{1}\left(f_{n, n+1}^{-1}\right)$, we consider the following sequence:

$$
\triangleright y_{m_{1}} \longleftarrow \triangleright y_{m_{2}} \longleftarrow \triangleright y_{m_{3}} \longleftarrow \cdots \leftarrow \triangleright y_{m_{k-1}} \longleftarrow \triangleright y_{m_{k}} \leftarrow x_{n} \triangleleft,
$$

where $2 \leq m_{1}, m_{k} \leq n, m_{i}+2 \leq m_{i+1}(i=1,2, \ldots, k-1)$ and $y_{m_{i}} \in X_{m_{i}}(i=1,2, \ldots, k)$. In this case, we say that the sequence $\left\{y_{m_{i}}, x_{n} \mid 1 \leq i \leq k\right\}$ is an expand-contract sequence in $\left\{X_{i}, f_{i, i+1}\right\}_{i=1}^{\infty}$ with length k. For any expand-contract sequence

$$
S: \triangleright y_{m_{1}} \longleftarrow \triangleright y_{m_{2}} \longleftarrow \triangleright \cdots \leftarrow \triangleright y_{m_{k-1}} \longleftarrow \triangleright y_{m_{k}} \leftarrow x_{n} \triangleleft,
$$

we put $d(S)=\sum_{i=1}^{k} \operatorname{dim} f_{m_{i}-1, m_{i}}\left(y_{m_{i}}\right)$. We define the index $\tilde{J}\left(\left\{X_{i}, f_{i, i+1}\right\}\right)$ as follows.

$$
\tilde{J}\left(\left\{X_{i}, f_{i, i+1}\right\}\right)
$$

$=\sup \left\{d(S) \mid S\right.$ is an expand-contract sequence in $\left.\left\{X_{i}, f_{i}\right\}_{i=1}^{\infty}\right\}$.

The following is the main theorem of my talk.

Theorem 2.5

Let $X_{i}(i \in \mathbb{N})$ be a sequence of compacta and let $f_{i, i+1}: X_{i+1} \rightarrow 2^{X_{i}}$ be an upper semi-continuous function for each $i \in \mathbb{N}$. Suppose that $\operatorname{dim} D_{1}\left(f_{i, i+1}\right) \leq 0(i \in \mathbb{N})$. Then

$$
\operatorname{dim} \lim _{\leftrightarrows}\left\{X_{i}, f_{i, i+1}\right\} \leq \tilde{J}\left(\left\{X_{i}, f_{i, i+1}\right\}\right)+\sup \left\{\operatorname{dim} X_{i} \mid i \in \mathbb{N}\right\} .
$$

Theorem 2.6

Let $X_{i}(i \in \mathbb{N})$ be a sequence of 1-dimensional compacta and let $f_{i, i+1}: X_{i+1} \rightarrow 2^{X_{i}}$ be a surjective upper semi-continuous function for each $i \in \mathbb{N}$. Suppose that each $i \geq 2, Z_{i}$ is a 0-dimensional closed subset of X_{i} such that $f_{i, i+1} \mid X_{i+1}-Z_{i+1}:\left(X_{i+1}-Z_{i+1}\right) \rightarrow X_{i}$ is a mapping for each $x \in X_{i+1}-Z_{i+1}$ and $i \in \mathbb{N}$. Then

$$
\tilde{J}\left(\left\{X_{i}, f_{i, i+1}\right\}\right) \leq \operatorname{dim} \lim _{\longleftrightarrow}\left\{X_{i}, f_{i, i+1}\right\} \leq \tilde{J}\left(\left\{X_{i}, f_{i, i+1}\right\}\right)+1
$$

Moreover, if there is an expand-contract sequence

$$
\triangleright y_{m_{1}} \longleftarrow \triangleright y_{m_{2}} \longleftarrow \triangleright \cdots \longleftarrow \triangleright y_{m_{k-1}} \longleftarrow \triangleright y_{m_{k}} \leftarrow x_{n} \triangleleft
$$

in $\left\{X_{i}, f_{i, i+1}\right\}$ with length $\tilde{J}\left(\left\{X_{i}, f_{i, i+1}\right\}\right)=k$ such that $\operatorname{dim} \pi_{n}^{-1}\left(x_{n}\right)>0$, then $\operatorname{dim} \lim \left\{X_{i}, f_{i, i+1}\right\}=\tilde{J}\left(\left\{X_{i}, f_{i, i+1}\right\}\right)+1$, where $\pi_{n}: \lim _{\leftrightarrows}\left\{X_{i}, f_{i, i+1}\right\}_{i \geq n} \rightarrow X_{n}$ is the projection defined by $\pi_{n}\left(x_{n}, x_{n+1}, \cdots\right)=x_{n}$.

Now, we will define another index $\tilde{I}\left(\left\{X_{i}, f_{i, i+1}\right\}\right)$ as follows. Let $\left\{X_{i}, f_{i, i+1}\right\}_{i=1}^{\infty}$ be an inverse sequence with set-valued functions. Also, let $x \in X_{m}$ and $y \in X_{m^{\prime}}\left(m+2 \leq m^{\prime}\right)$. We consider the following condition:
$x \triangleleft \succ y: x \in D_{1}\left(f_{m, m+1}^{-1}\right)$ and $\operatorname{dim}\left[f_{m, m+1}^{-1}(x) \cap f_{m+1, m^{\prime}-1}(y)\right] \geq 1$
Note that $x \diamond y$ implies $x \prec \triangleright y$ and $x \triangleleft \succ y$.

For each $x_{n} \in X_{n}$ with $x_{n} \in D_{1}\left(f_{n, n+1}^{-1}\right)$, we consider the following sequence:

$$
\triangleright x_{n} \leftarrow y_{m_{1}} \triangleleft \succ y_{m_{2}} \triangleleft \succ y_{m_{3}} \triangleleft \succ \cdots \triangleleft \succ y_{m_{k-1}} \triangleleft \succ y_{m_{k}} \triangleleft
$$

where $n \leq m_{1}, m_{i}+2 \leq m_{i+1}(i=1,2, \ldots, k-1)$ and $y_{m_{i}} \in X_{m_{i}}(i=1,2, \ldots, k)$.

In this case, we say that the sequence $\left(x_{n}, y_{m_{1}}, y_{m_{2}}, \cdots, y_{m_{k}}\right)$ is an inverse expand-contract sequence in $\left\{X_{i}, f_{i, i+1}\right\}_{i=1}^{\infty}$ with length k. Note that a sequence $\left(x_{n}, y_{m_{1}}, y_{m_{2}}, \cdots, y_{m_{k}}\right)$ is an inverse expand-contract sequence in the inverse sequence $\left\{X_{i}, f_{i, i+1}\right\}_{i=1}^{\infty}$ if and only if the sequence $\left(y_{m_{k}}, y_{m_{k-1}}, \cdots, y_{m_{1}}, x_{n}\right)$ is an expand-contract sequence in the direct sequence $\left\{X_{i}, f_{i, i+1}^{-1}\right\}_{i=1}^{\infty}$.

For any inverse expand-contract sequence

$$
S: \triangleright x_{n} \leftarrow y_{m_{1}} \triangleleft \succ y_{m_{2}} \triangleleft \succ y_{m_{3}} \triangleleft \succ \cdots \triangleleft \succ y_{m_{k-1}} \triangleleft \succ y_{m_{k}} \triangleleft
$$

we put $d(S)=\sum_{i=1}^{k} \operatorname{dim} f_{m_{i}, m_{i}+1}^{-1}\left(y_{m_{i}}\right)$. We define the index $\tilde{I}\left(\left\{X_{i}, f_{i, i+1}\right\}\right)$ as follows.

$$
\tilde{I}\left(\left\{X_{i}, f_{i, i+1}\right\}\right)
$$

$=\sup \left\{d(S) \mid S\right.$ is an inverse expand-contract sequence $\left.\operatorname{in}\left\{X_{i}, f_{i, i+1}\right\}\right\}$. If there is no inverse expand-contract sequence in $\left\{X_{i}, f_{i, i+1}\right\}_{i=1}^{\infty}$, we put $\tilde{I}\left(\left\{X_{i}, f_{i, i+1}\right\}\right)=0$. In general,

$$
\tilde{J}\left(\left\{X_{i}, f_{i, i+1}\right\}\right) \neq \tilde{I}\left(\left\{X_{i}, f_{i, i+1}\right\}\right)
$$

Theorem 2.7

Let $X_{i}(i \in \mathbb{N})$ be a sequence of compacta and let $f_{i, i+1}: X_{i+1} \rightarrow 2^{X_{i}}$ be an upper semi-continuous function for each $i \in \mathbb{N}$. Suppose that $\operatorname{dim} D_{1}\left(f_{i, i+1}^{-1}\right) \leq 0(i \in \mathbb{N})$. Then

$$
\operatorname{dim} \lim _{\leftarrow}\left\{X_{i}, f_{i, i+1}\right\} \leq \tilde{I}\left(\left\{X_{i}, f_{i, i+1}\right\}\right)+\sup \left\{\operatorname{dim} X_{i} \mid i \in \mathbb{N}\right\} .
$$

Examples

Example 1. Let $n \in \mathbb{N}$ with $n \geq 2$ and let $f: I \rightarrow C(I)$ be the surjective upper semi-continuous function defined by
$f(x)=0(x \in[0,1 / n))$ and for $1 \leq i \leq n-1$,
$f(i / n)=[(i-1) / n, i / n], f(x)=i / n(x \in(i / n,(i+1) / n)), f(1)=$ $[(n-1) / n, 1]$. Then

$$
\triangleright 1 / n \diamond 2 / n \diamond \cdots \diamond(n-1) / n \triangleleft
$$

is a maximal expand-contract sequence and hence $\tilde{J}(\{I, f\})=n-1$. In fact, we see that $\lim _{\leftrightarrows}\{I, f\}$ is an n-dimensional stepwise polyhedron.

Example 2. There is an inverse sequence $\left\{I_{i}, f_{i, i+1}\right\}$ of intervals with surjective upper semi-continuous functions such that $\operatorname{dim} D_{1}\left(f_{i, i+1}\right) \leq 0(i \in \mathbb{N})$ and

$$
0=\operatorname{dim} \lim _{\check{n}}\left\{I_{i}, f_{i, i+1}\right\} \neq \tilde{J}\left(\left\{I_{i}, f_{i, i+1}\right\}\right)+1=2 .
$$

Let C be a Cantor set in $[0,1 / 2]$. Let $u: C \rightarrow[0,1 / 2]$ be a surjective map. Consider the following surjective upper semi-continuous functions $f_{i, i+1}: I_{i+1} \rightarrow 2^{I_{i}}(i \in \mathbb{N})$:
(1) $f_{1,2}(x)=u^{-1}(x)(x \in[0,1 / 2])$ and $f_{1,2} \mid[1 / 2,1]:[1 / 2,1] \rightarrow /$ is an onto map.
(2) $f_{2,3}(x)=x(x \in[0,1 / 2)), f_{2,3}(1 / 2)=[0,1 / 2]$,
$f_{2,3}(x)=x(x \in(1 / 2,1])$.
(3) $f_{3,4}(x)=x(x \in[0,1 / 2)), f_{3,4}(x)=\{1 / 2, x\}(x \in[1 / 2,1])$.

Also, we will construct $f_{i, i+1}(i \geq 4)$ as follows. For any $\epsilon>0$, we can construct a surjective upper semi-continuous function $f_{\epsilon}:[1 / 2,1] \rightarrow 2^{[1 / 2,1]}$ such that for some sequence $1 / 2=t_{0}<t_{1}<t_{2}<\cdots<t_{s-1}<t_{s}=1$,
(a) $f_{\epsilon}(1 / 2)=1 / 2, f_{\epsilon}(1)=1$,
(b) $f_{\epsilon} \mid\left(t_{i}, t_{i+1}\right)\left(i=1,2, \ldots, t_{s-1}\right)$ is an injective map and $f_{\epsilon}([1 / 2,1])=[1 / 2,1]$,
(c) $f_{\epsilon}\left(t_{i}\right)$ is two point set for $i=1,2, \ldots, t_{s-1}$ and each diameter of $G\left(f_{\epsilon} \mid\left(t_{i}, t_{i+1}\right)\right)\left(\subset G\left(f_{\epsilon}\right)\right)$ is less than ϵ.

By use of maps $f_{\epsilon}:[1 / 2,1] \rightarrow 2^{[1 / 2,1]}$ for sufficiently small $\epsilon>0$ and by induction on $i(\geq 4)$ we can construct surjective upper-semi continuous functions $f_{i, i+1}: I_{i+1} \rightarrow 2^{l_{i}}$ such that $f_{i, i+1} \mid[0,1 / 2]=$ id and $\left.\operatorname{dim} \underset{\leftrightarrows}{\lim }\left\{[1 / 2,1], f_{i, i+1} \mid[1 / 2,1]\right\}\right\}_{i=4}^{\infty}=0$. Note that

$$
\triangleright x_{3}=1 / 2 \leftarrow x_{3}=1 / 2 \triangleleft\left(x_{3} \in l_{3}\right) .
$$

In fact, $J\left(\left\{I_{i}, f_{i, i+1}\right\}\right)=1$. Since $\operatorname{dim} \lim \left\{[1 / 2,1], f_{i, i+1} \mid[1 / 2,1]\right\}_{i=4}^{\infty}=0$, we see that $\operatorname{dim} \pi_{3}^{-1}\left(x_{3}\right)=0$ and hence $\operatorname{dim} \lim \left\{I_{i}, f_{i, i+1}\right\}=0$.

