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On productively paracompact spaces.

We consider the problem of characterizing those spaces

whose product with every paracompact space is paracompact.

Such spaces are called productively paracompact.

We denote the class of all paracompact spaces by P
and the class of all productively paracompact spaces by PP .

Early examples of non-productively paracompact spaces are

the Sorgenfrey line S , the irrationals P and the Michael line M .
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No internal characterization of spaces X ∈ PP has been found,

but the problem has been solved in some restricted situations.

For example, results of Michael and Morita show

that a metrizable space is in PP iff the space is σ -locally compact.

In 1971, R. Telgarsky found an important sufficient condition

for membership in PP .

His condition involves the topological game G(X,DC),

where DC refers to the family of all subsets of X

which are discrete unions of compact sets.
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The game G(X,DC) has two players, I and II.

In a play of the game, I and II take turns in choosing subsets of X .

Player I chooses sets E1 ,E2, . . . , En, . . .

Player II chooses sets F1 ,F2, . . . , Fn, . . .

If we set F0 = X , then for n = 1, 2, . . . , the sets En and Fn

must satisfy the following conditions:

− En is in DC and En ⊂ Fn−1 ;

− Fn is closed and Fn ⊂ Fn−1 \ En .

Player I winns the game if
⋂
n∈N Fn = ∅ , otherwise Player II winns.

If Player I has a way of winning every possible play of the game,

then we say that Player I has a winning strategy in the game,

and we also describe this situation by saying that X is DC -like.
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Theorem (Telgarsky) Every paracompact DC -like space

belongs to PP .

Obviously, if X is σ -DC , then X is DC -like.

Telgarsky proved DC -likeness also from the weaker assumption

that X has a σ -closure-preserving cover by compact closed subsets.

In a metrizable space, every locally compact subset is an Fσ -set.

Hence a metrizable space X is σ -locally compact iff X is σ -DC .
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K. Alster conjectured that the converse of Telgarsky’s theorem holds,

i.e., that every member of PP is DC -like.

Alster has verified his conjecture for certain special classes of spaces,

for example, for all ω1 -metrizable spaces.

I have verified the conjecture for those X ∈ P
which have a paracompact Čech-Stone remainder X∗ = βX \X .

Such an X is said to be paracompact at infinity.
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A neighbornet of X is a binary relation U on X such that,

for every x ∈ X , the set U{x} is a neighborhood of x in X .

A neighbornet U of X is co-compact provided that,

for every x ∈ X , the set U−1{x} is compact.

Alster has shown that a paracompact space is DC -like

(and hence productively paracompact)

if the space has a co-compact neighbornet.

The following is a slight extension of Alster’s result.
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Lemma Let X be a paracompact space,

and let G = {z ∈ X : z has a compact neighborhood in X} .

Assume that X has a neighbornet U such that,

for every x ∈ X , the set U−1{x} \G is compact.

Then X is DC -like.
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A. X is productively paracompact.

B. X × Y is strongly collectionwise T2 for every paracompact Y .

C. X has a neighbornet U such that,

for every x ∈ X , the set U−1{x} \G is compact,

where G = {z ∈ X : z has a compact neighborhood in X} .

D. X is DC -like.

Proof. A⇒B: Every paracompact space is strongly collectionwise T2 .

C⇒D: By the above lemma.

D⇒A: By Telgarsky’s Theorem.

The implication B⇒C is a consequence of the following result.
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Lemma Let X be paracompact at infinity. Assume that

X × Y is strongly collectionwise T2 for every paracompact Y .

Then X has a neighbornet U such that,

for every compact K ⊂ X , the set U−1K \G is compact.

Proof. Denote by τ the topology of βX .

Define a new topology π for βX by requiring

that every point of X is π -isolated

and every point z ∈ X∗ has a π -neighborhood base

by sets O \G , where O is a τ -neighborhood of z .

Denote by Z the set βX equipped with the topology π .

We have τ ⊂ π , and hence Z is Hausdorff.

-



To see that Z is paracompact, note that X∗ is paracompact in Z ,

and use the result of Wicke and Worrell that a locally finite open family

of a subspace can be extended to a locally-finite-in-itself open family

of the closure of the subspace.



To see that Z is paracompact, note that X∗ is paracompact in Z ,

and use the result of Wicke and Worrell that a locally finite open family

of a subspace can be extended to a locally-finite-in-itself open family

of the closure of the subspace.

Since Z is paracompact, Z ×X is strongly collectionwise Hausdorff.



To see that Z is paracompact, note that X∗ is paracompact in Z ,

and use the result of Wicke and Worrell that a locally finite open family

of a subspace can be extended to a locally-finite-in-itself open family

of the closure of the subspace.

Since Z is paracompact, Z ×X is strongly collectionwise Hausdorff.

The set {(x, x) : x ∈ X} is closed and discrete in Z ×X .



To see that Z is paracompact, note that X∗ is paracompact in Z ,

and use the result of Wicke and Worrell that a locally finite open family

of a subspace can be extended to a locally-finite-in-itself open family

of the closure of the subspace.

Since Z is paracompact, Z ×X is strongly collectionwise Hausdorff.

The set {(x, x) : x ∈ X} is closed and discrete in Z ×X .

Hence there exists a neighbornet U of X such that the family

U =
{
{x} × U{x} : x ∈ X

}
is discrete in Z ×X .



To see that Z is paracompact, note that X∗ is paracompact in Z ,

and use the result of Wicke and Worrell that a locally finite open family

of a subspace can be extended to a locally-finite-in-itself open family

of the closure of the subspace.

Since Z is paracompact, Z ×X is strongly collectionwise Hausdorff.

The set {(x, x) : x ∈ X} is closed and discrete in Z ×X .

Hence there exists a neighbornet U of X such that the family

U =
{
{x} × U{x} : x ∈ X

}
is discrete in Z ×X .

Let K ⊂ X be compact.



To see that Z is paracompact, note that X∗ is paracompact in Z ,

and use the result of Wicke and Worrell that a locally finite open family

of a subspace can be extended to a locally-finite-in-itself open family

of the closure of the subspace.

Since Z is paracompact, Z ×X is strongly collectionwise Hausdorff.

The set {(x, x) : x ∈ X} is closed and discrete in Z ×X .

Hence there exists a neighbornet U of X such that the family

U =
{
{x} × U{x} : x ∈ X

}
is discrete in Z ×X .

Let K ⊂ X be compact. To show that ClX
(
U−1K \G

)
is compact,



To see that Z is paracompact, note that X∗ is paracompact in Z ,

and use the result of Wicke and Worrell that a locally finite open family

of a subspace can be extended to a locally-finite-in-itself open family

of the closure of the subspace.

Since Z is paracompact, Z ×X is strongly collectionwise Hausdorff.

The set {(x, x) : x ∈ X} is closed and discrete in Z ×X .

Hence there exists a neighbornet U of X such that the family

U =
{
{x} × U{x} : x ∈ X

}
is discrete in Z ×X .

Let K ⊂ X be compact. To show that ClX
(
U−1K \G

)
is compact,

it suffices to show that Cl βX
(
U−1K \G

)
⊂ X .
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Let p ∈ X∗ . By discreteness of U ,

each point (p, k) ∈ {p} ×K has a neighborhood in Z ×X
which does not meet {x} × U{x} for any x ∈ X .

It follows from compactness of {p} ×K
that there exists a neighborhood W of p in βX

such that (W \G)×K does not meet any {x} × U{x} .

Now if x ∈ (W \G) ∩X , then U{x} ∩K = ∅ .

Hence
(
U−1K

)
∩
(
W \G

)
= ∅ , i.e.,

(
U−1K \G

)
∩W = ∅ .

This shows that p 6∈ Cl βX
(
U−1K \G

)
.
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We say that a neighbornet U of X is strongly co-compact

if U−1K is compact for every compact K ⊂ X .

It is not difficult to see that Heath’s V-space

has a (transitive) co-finite neighbornet

but it does not have a strongly co-compact neighbornet.

The previous lemma establishes the following result.

Proposition Assume that X is productively paracompact

and paracompact at infinity. Then the subspace X \ LC(X)

has a strongly co-compact neighbornet.

Corollary Assume that X is nowhere locally compact,

productively paracompact and paracompact at infinity.

Then X has a strongly co-compact neighbornet.
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Problem Let X be productively paracompact

and paracompact at infinity.

Does X have a (strongly) co-compact neighbornet?

Some partial answers:

Proposition Let X be productively paracompact

and Lindelöf at infinity.

Then X has a strongly co-compact neighbornet.

Proof. Consider the nowhere locally compact space X ×Q .
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Three famous non-productively paracompact spaces,

the irrationals P , the Michael line M and the Sorgenfrey line S ,

are all first countable and suborderable.

Alster and Szewczak have showed that a first countable

productively paracompact suborderable space

has a co-compact neighbornet.

Nyikos and I have shown that suborderable spaces

of point-countable type are paracompact at infinity.

Hence the previous results can be applied to such spaces.

Proposition Let X be productively paracompact, suborderable

and of point-countable type. Then X has a co-compact neighbornet.
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With nowhere local compactness we get a stronger conclusion.

Proposition A nowhere locally compact productively paracompact

suborderable space X of point-countable type

has a transitive strongly co-compact neighbornet.

Proof. By results mentioned earlier,

X has a strongly co-compact neighbornet U .

Note that each neighbornet Un is strongly co-compact.

By a result of Kofner, U3 contains a transitive neighbornet V .

The neighbornet V is strongly co-compact.

-



The existence of a transitive strongly co-compact neighbornet can be

characterized in terms of the existence of a special closure-preserving

cover by compact sets.



The existence of a transitive strongly co-compact neighbornet can be

characterized in terms of the existence of a special closure-preserving

cover by compact sets.

Lemma X has a transitive strongly co-compact neighbornet

iff X has a closure-preserving cover F by compact sets such that

every compact subset of X is contained in some member of F .



The existence of a transitive strongly co-compact neighbornet can be

characterized in terms of the existence of a special closure-preserving

cover by compact sets.

Lemma X has a transitive strongly co-compact neighbornet

iff X has a closure-preserving cover F by compact sets such that

every compact subset of X is contained in some member of F .

CX = {C ⊂ X : C is compact}



The existence of a transitive strongly co-compact neighbornet can be

characterized in terms of the existence of a special closure-preserving

cover by compact sets.

Lemma X has a transitive strongly co-compact neighbornet

iff X has a closure-preserving cover F by compact sets such that

every compact subset of X is contained in some member of F .

CX = {C ⊂ X : C is compact}

“CX has a closure-preserving dominating subfamily ”
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Morita proved that a metrizable space is productively paracompact

iff the space is Fσ -locally compact.

The preceding results can be used to derive Morita’s result and

other characterizations of productively paracompact metrizable spaces.

Theorem The following are equivalent for a metrizable space X :

A. X is productively paracompact.

B. CX has a closure-preserving dominating subfamily.

C. X has a σ -closure-preserving cover by σ -compact sets.

D. X has a σ -discrete cover by compact sets.

E. X is σ -locally compact.


