Compact spaces with a P-diagonal Tá scéilín agam

K. P. Hart

Faculty EEMCS TU Delft

Praha, 25. července, 2016: 12:00 - 12:30

\mathbb{P} -domination

K. P. Hart Compact spaces with a P-diagonal

A space, X, is \mathbb{P} -dominated

日 マ イ ヨ マ イ

K. P. Hart Compact spaces with a ℙ-diagonal

A space, X, is \mathbb{P} -dominated (stop giggling)

K. P. Hart Compact spaces with a P-diagonal

A space, X, is \mathbb{P} -dominated $\{K_f : f \in \mathbb{P}\}$ of X by compact sets

if there is a cover

A space, X, is \mathbb{P} -dominated (stop giggling) if there is a cover $\{K_f : f \in \mathbb{P}\}$ of X by compact sets such that $f \leq g$ (pointwise) implies $K_f \subseteq K_g$.

A space, X, is \mathbb{P} -dominated if there is a cover $\{K_f : f \in \mathbb{P}\}$ of X by compact sets such that $f \leq g$ (pointwise) implies $K_f \subseteq K_g$.

We call $\{K_f : f \in \mathbb{P}\}$ a \mathbb{P} -dominating cover.

▲□ ▶ ▲ 三 ▶ ▲

K. P. Hart Compact spaces with a P-diagonal

A space, X, has a \mathbb{P} -diagonal

K. P. Hart Compact spaces with a P-diagonal

A space, X, has a \mathbb{P} -diagonal if the complement of the diagonal in X^2 is \mathbb{P} -dominated.

Geometry of topological vector spaces (Cascales, Orihuela)

| / 16

Geometry of topological vector spaces (Cascales, Orihuela); \mathbb{P} -domination yields metrizability for compact subsets.

Geometry of topological vector spaces (Cascales, Orihuela); \mathbb{P} -domination yields metrizability for compact subsets.

A compact space with a \mathbb{P} -diagonal is metrizable if it has countable tightness (no extra conditions if MA(\aleph_1) holds). (Cascales, Orihuela, Tkachuk).

So, question: are compact spaces with \mathbb{P} -diagonals metrizable?

Two important steps in that result: a compact space with a $\mathbb{P}\text{-}diagonal$

Two important steps in that result: a compact space with a $\mathbb{P}\text{-}diagonal$

• does not map onto $[0,1]^{\mathfrak{c}}$

Two important steps in that result: a compact space with a $\mathbb{P}\text{-}diagonal$

• does not map onto $[0,1]^{\mathfrak{c}}$, ever

Two important steps in that result: a compact space with a $\mathbb{P}\text{-}diagonal$

- does not map onto $[0,1]^{\mathfrak{c}}$, ever
- does map onto $[0,1]^{\omega_1}$

Two important steps in that result: a compact space with a $\ensuremath{\mathbb{P}}\xspace$ -diagonal

- does not map onto $[0,1]^{\mathfrak{c}}$, ever
- does map onto $[0,1]^{\omega_1}$, when it has uncountable tightness

Theorem

Every compact space with a \mathbb{P} -diagonal is metrizable.

K. P. Hart Compact spaces with a ℙ-diagonal

'/16

Theorem

Every compact space with a \mathbb{P} -diagonal is metrizable.

Proof.

No compact space with a \mathbb{P} -diagonal maps onto $[0,1]^{\omega_1}$.

Theorem

Every compact space with a \mathbb{P} -diagonal is metrizable.

Proof.

No compact space with a \mathbb{P} -diagonal maps onto $[0,1]^{\omega_1}$.

How does that work?

We work with the Cantor cube 2^{ω_1} . We call a closed subset, *Y*, of 2^{ω_1} BIG

We call a closed subset, Y, of 2^{ω_1} BIG if there is a δ in ω_1 such that $\pi_{\delta}[Y] = 2^{\omega_1 \setminus \delta}$.

We call a closed subset, Y, of 2^{ω_1} BIG if there is a δ in ω_1 such that $\pi_{\delta}[Y] = 2^{\omega_1 \setminus \delta}$. (π_{δ} projects onto $2^{\omega_1 \setminus \delta}$)

We call a closed subset, Y, of 2^{ω_1} BIG if there is a δ in ω_1 such that $\pi_{\delta}[Y] = 2^{\omega_1 \setminus \delta}$. (π_{δ} projects onto $2^{\omega_1 \setminus \delta}$) Combinatorially

We call a closed subset, Y, of 2^{ω_1} BIG if there is a δ in ω_1 such that $\pi_{\delta}[Y] = 2^{\omega_1 \setminus \delta}$. (π_{δ} projects onto $2^{\omega_1 \setminus \delta}$) Combinatorially: a closed set Y is BIG if there is a δ such that for every $s \in \operatorname{Fn}(\omega_1 \setminus \delta, 2)$ there is $y \in Y$ such that $s \subset y$.

K. P. Hart Compact spaces with a P-diagonal

Proposition

A closed set is big if

日 と く ヨ と く

Proposition

A closed set is big if and only if

Proposition

A closed set is big if and only if there are a $\delta \in \omega_1$ and $\rho \in 2^{\delta}$

Proposition

A closed set is big if and only if there are a $\delta \in \omega_1$ and $\rho \in 2^{\delta}$ such that $\{x \in 2^{\omega_1} : \rho \subseteq x\} \subseteq Y$.

Of course 2^{ω_1} is \mathbb{P} -dominated: take $K_f = 2^{\omega_1}$ for all $f \in \mathbb{P}$.

lO / 16

Of course 2^{ω_1} is \mathbb{P} -dominated: take $K_f = 2^{\omega_1}$ for all $f \in \mathbb{P}$.

Here is a Baire category-like result for 2^{ω_1} .

lO / 16

Of course 2^{ω_1} is \mathbb{P} -dominated: take $K_f = 2^{\omega_1}$ for all $f \in \mathbb{P}$.

Here is a Baire category-like result for 2^{ω_1} .

Theorem

If $\{K_f : f \in \mathbb{P}\}$ is a \mathbb{P} -dominating cover of 2^{ω_1} then

Of course 2^{ω_1} is \mathbb{P} -dominated: take $K_f = 2^{\omega_1}$ for all $f \in \mathbb{P}$.

Here is a Baire category-like result for 2^{ω_1} .

Theorem If $\{K_f : f \in \mathbb{P}\}$ is a \mathbb{P} -dominating cover of 2^{ω_1} then some K_f is BIG.

The proof, case 1

$$\mathfrak{d}=\aleph_1$$

日本・モン・

K. P. Hart Compact spaces with a P-diagonal

$\mathfrak{d} = \aleph_1$: straightforward construction of a point not in $\bigcup_f K_f$ if we assume no K_f is BIG

$\mathfrak{d} = \aleph_1$: straightforward construction of a point not in $\bigcup_f K_f$ if we assume no K_f is BIG, using a cofinal family of \aleph_1 many K_f 's.

The proof, case 3

$\mathfrak{b}>\aleph_1$

日 と く ヨ と く

K. P. Hart Compact spaces with a ℙ-diagonal

$\mathfrak{b} > leph_1$: find there are $leph_1$ many $s \in \mathsf{Fn}(\omega_1,2)$ and

.2 / 16

 $\mathfrak{b} > \aleph_1$: find there are \aleph_1 many $s \in \operatorname{Fn}(\omega_1, 2)$ and for each there are many $h \in \mathbb{P}$ such that $s \subseteq y$ for some $y \in K_h$.

 $\mathfrak{b} > \aleph_1$: find there are \aleph_1 many $s \in \mathsf{Fn}(\omega_1, 2)$ and for each there are many $h \in \mathbb{P}$ such that $s \subseteq y$ for some $y \in K_h$.

We cleverly found \aleph_1 many *h*'s such that each \leq^* -upper bound, *f*, for this family has a BIG K_f .

The proof, case 2

 $\mathfrak{d} > \mathfrak{b} = \aleph_1$

白とくヨとく

K. P. Hart Compact spaces with a ℙ-diagonal

l3 / 16

The proof, case 2

$\mathfrak{d} > \mathfrak{b} = \aleph_1$: this is the trickiest one.

K. P. Hart Compact spaces with a ℙ-diagonal

.3 / 16

Theorem (Todorčević)

If $\mathfrak{b} = \aleph_1$ then 2^{ω_1} has a subset X of cardinality \aleph_1

Theorem (Todorčević)

If $\mathfrak{b} = \aleph_1$ then 2^{ω_1} has a subset X of cardinality \aleph_1 and such that every uncountable $A \subseteq X$

Theorem (Todorčević)

If $\mathfrak{b} = \aleph_1$ then 2^{ω_1} has a subset X of cardinality \aleph_1 and such that every uncountable $A \subseteq X$ has a countable subset D such that

Theorem (Todorčević)

If $\mathfrak{b} = \aleph_1$ then 2^{ω_1} has a subset X of cardinality \aleph_1 and such that every uncountable $A \subseteq X$ has a countable subset D such that $\pi_{\delta}[D]$ is dense in $2^{\omega_1 \setminus \delta}$ for some δ .

Theorem (Todorčević)

If $\mathfrak{b} = \aleph_1$ then 2^{ω_1} has a subset X of cardinality \aleph_1 and such that every uncountable $A \subseteq X$ has a countable subset D such that $\pi_{\delta}[D]$ is dense in $2^{\omega_1 \setminus \delta}$ for some δ .

This yields another set of \aleph_1 many h's

Theorem (Todorčević)

If $\mathfrak{b} = \aleph_1$ then 2^{ω_1} has a subset X of cardinality \aleph_1 and such that every uncountable $A \subseteq X$ has a countable subset D such that $\pi_{\delta}[D]$ is dense in $2^{\omega_1 \setminus \delta}$ for some δ .

This yields another set of \aleph_1 many *h*'s; the special properties of *X* ensure

Theorem (Todorčević)

If $\mathfrak{b} = \aleph_1$ then 2^{ω_1} has a subset X of cardinality \aleph_1 and such that every uncountable $A \subseteq X$ has a countable subset D such that $\pi_{\delta}[D]$ is dense in $2^{\omega_1 \setminus \delta}$ for some δ .

This yields another set of \aleph_1 many *h*'s; the special properties of *X* ensure: if *f* is not dominated by any one of the *h*'s then K_f is BIG.

The final step: assume X has a \mathbb{P} -diagonal and a continuous map onto $[0,1]^{\omega_1}$. Then we have a closed subset Y with a \mathbb{P} -diagonal and a continuous map φ of Y onto 2^{ω_1} .

Then we have a closed subset Y with a \mathbb{P} -diagonal and a continuous map φ of Y onto 2^{ω_1} .

Then we find closed sets $Y_0 \supset Y_1 \supset \cdots$ and

Then we have a closed subset Y with a \mathbb{P} -diagonal and a continuous map φ of Y onto 2^{ω_1} .

Then we find closed sets $Y_0 \supset Y_1 \supset \cdots$ and points $y_n \in Y_n \setminus Y_{n+1}$ such that

Then we have a closed subset Y with a \mathbb{P} -diagonal and a continuous map φ of Y onto 2^{ω_1} .

Then we find closed sets $Y_0 \supset Y_1 \supset \cdots$ and points $y_n \in Y_n \setminus Y_{n+1}$ such that $\varphi[Y_n]$ is always BIG and

Then we have a closed subset Y with a \mathbb{P} -diagonal and a continuous map φ of Y onto 2^{ω_1} .

Then we find closed sets $Y_0 \supset Y_1 \supset \cdots$ and points $y_n \in Y_n \setminus Y_{n+1}$ such that $\varphi[Y_n]$ is always BIG and (ultimately) one f such that $\bigcup_n (\{y_n\} \times Y_{n+1}) \subseteq K_f$.

Then we have a closed subset Y with a \mathbb{P} -diagonal and a continuous map φ of Y onto 2^{ω_1} .

Then we find closed sets $Y_0 \supset Y_1 \supset \cdots$ and points $y_n \in Y_n \setminus Y_{n+1}$ such that $\varphi[Y_n]$ is always BIG and (ultimately) one f such that $\bigcup_n (\{y_n\} \times Y_{n+1}) \subseteq K_f$.

For every accumulation point, y, of $\langle y_n : n \in \omega \rangle$ we'll have

Then we have a closed subset Y with a \mathbb{P} -diagonal and a continuous map φ of Y onto 2^{ω_1} .

Then we find closed sets $Y_0 \supset Y_1 \supset \cdots$ and points $y_n \in Y_n \setminus Y_{n+1}$ such that $\varphi[Y_n]$ is always BIG and (ultimately) one f such that $\bigcup_n (\{y_n\} \times Y_{n+1}) \subseteq K_f$.

For every accumulation point, y, of $\langle y_n : n \in \omega \rangle$ we'll have $\langle y, y \rangle \in K_f$, a contradiction.

Cascales, Orihuela and Tkachuk also asked if a compact space with a \mathbb{P} -diagonal would have a small diagonal (answer: yes); this would imply metrizability.

Cascales, Orihuela and Tkachuk also asked if a compact space with a \mathbb{P} -diagonal would have a small diagonal (answer: yes); this would imply metrizability.

I'd like to turn that around: does a space with a small diagonal have a $\mathbb{P}\text{-}\text{diagonal}?$

Cascales, Orihuela and Tkachuk also asked if a compact space with a \mathbb{P} -diagonal would have a small diagonal (answer: yes); this would imply metrizability.

I'd like to turn that around: does a space with a small diagonal have a \mathbb{P} -diagonal? This would settle the metrizability question for spaces with a small diagonal.

Website: fa.its.tudelft.nl/~hart

🔋 Alan Dow and Klaas Pieter Hart,

Compact spaces with a \mathbb{P} -diagonal, Indagationes Mathematicae, **27** (2016), 721–726.

K. P. Hart Compact spaces with a P-diagonal