# Compact spaces with a $\mathbb{P}$-diagonal Tá scéilín agam 

K. P. Hart<br>Faculty EEMCS<br>TU Delft

Praha, 25. července, 2016: 12:00-12:30

## $\mathbb{P}$-domination

Delft University of Technology

## K. P. Hart

Compact spaces with a $\mathbb{P}$-diagonal
$2 / 16$

## $\mathbb{P}$-domination

## Definition <br> A space, $X$, is $\mathbb{P}$-dominated

## $\mathbb{P}$-domination

## Definition <br> A space, $X$, is $\mathbb{P}$-dominated (stop giggling)

## $\mathbb{P}$-domination

## Definition

A space, $X$, is $\mathbb{P}$-dominated
if there is a cover $\left\{K_{f}: f \in \mathbb{P}\right\}$ of $X$ by compact sets

## $\mathbb{P}$-domination

## Definition

A space, $X$, is $\mathbb{P}$-dominated (stop giggling) if there is a cover $\left\{K_{f}: f \in \mathbb{P}\right\}$ of $X$ by compact sets such that $f \leqslant g$ (pointwise) implies $K_{f} \subseteq K_{g}$.

## P-domination

## Definition

A space, $X$, is $\mathbb{P}$-dominated
if there is a cover $\left\{K_{f}: f \in \mathbb{P}\right\}$ of $X$ by compact sets such that $f \leqslant g$ (pointwise) implies $K_{f} \subseteq K_{g}$.

We call $\left\{K_{f}: f \in \mathbb{P}\right\}$ a $\mathbb{P}$-dominating cover.

## P-diagonal

Delft University of Technology

## K. P. Hart

Compact spaces with a $\mathbb{P}$-diagonal
$3 / 16$

## P-diagonal

## Definition

A space, $X$, has a $\mathbb{P}$-diagonal

## P-diagonal

## Definition

A space, $X$, has a $\mathbb{P}$-diagonal if the complement of the diagonal in $X^{2}$ is $\mathbb{P}$-dominated.

## Origins

Geometry of topological vector spaces (Cascales, Orihuela)

## Origins

Geometry of topological vector spaces (Cascales, Orihuela); $\mathbb{P}$-domination yields metrizability for compact subsets.

## Origins

Geometry of topological vector spaces (Cascales, Orihuela); $\mathbb{P}$-domination yields metrizability for compact subsets.

A compact space with a $\mathbb{P}$-diagonal is metrizable if it has countable tightness (no extra conditions if $\mathrm{MA}\left(\aleph_{1}\right)$ holds). (Cascales, Orihuela, Tkachuk).

## Question

So, question: are compact spaces with $\mathbb{P}$-diagonals metrizable?

Delft University of Technology

## An answer

Yes if CH (Dow, Guerrero Sánchez).

## An answer

Yes if CH (Dow, Guerrero Sánchez).
Two important steps in that result: a compact space with a $\mathbb{P}$-diagonal

## An answer

Yes if CH (Dow, Guerrero Sánchez).
Two important steps in that result: a compact space with a P-diagonal

- does not map onto $[0,1]^{\text {c }}$


## An answer

Yes if CH (Dow, Guerrero Sánchez).
Two important steps in that result: a compact space with a P-diagonal

- does not map onto $[0,1]^{\text {c }}$, ever


## An answer

Yes if CH (Dow, Guerrero Sánchez).
Two important steps in that result: a compact space with a P-diagonal

- does not map onto $[0,1]^{c}$, ever
- does map onto $[0,1]^{\omega_{1}}$


## An answer

Yes if CH (Dow, Guerrero Sánchez).
Two important steps in that result: a compact space with a P-diagonal

- does not map onto $[0,1]^{c}$, ever
- does map onto $[0,1]^{\omega_{1}}$, when it has uncountable tightness


## Theorem

Every compact space with a $\mathbb{P}$-diagonal is metrizable.

## Theorem

Every compact space with a $\mathbb{P}$-diagonal is metrizable.

## Proof.

No compact space with a $\mathbb{P}$-diagonal maps onto $[0,1]^{\omega_{1}}$.

## Theorem

Every compact space with a $\mathbb{P}$-diagonal is metrizable.

## Proof.

No compact space with a $\mathbb{P}$-diagonal maps onto $[0,1]^{\omega_{1}}$.
How does that work?

## BIG sets

We work with the Cantor cube $2^{\omega_{1}}$.

## BIG sets

We work with the Cantor cube $2^{\omega_{1}}$.
We call a closed subset, $Y$, of $2^{\omega_{1}}$ BIG

## BIG sets

We work with the Cantor cube $2^{\omega_{1}}$.
We call a closed subset, $Y$, of $2^{\omega_{1}}$ BIG if there is a $\delta$ in $\omega_{1}$ such that $\pi_{\delta}[Y]=2^{\omega_{1} \backslash \delta}$.

## BIG sets

We work with the Cantor cube $2^{\omega_{1}}$.
We call a closed subset, $Y$, of $2^{\omega_{1}}$ BIG if there is a $\delta$ in $\omega_{1}$ such that $\pi_{\delta}[Y]=2^{\omega_{1} \backslash \delta}$. $\left(\pi_{\delta}\right.$ projects onto $\left.2^{\omega_{1} \backslash \delta}\right)$

## BIG sets

We work with the Cantor cube $2^{\omega_{1}}$.
We call a closed subset, $Y$, of $2^{\omega_{1}}$ BIG if there is a $\delta$ in $\omega_{1}$ such that $\pi_{\delta}[Y]=2^{\omega_{1} \backslash \delta}$. $\left(\pi_{\delta}\right.$ projects onto $\left.2^{\omega_{1} \backslash \delta}\right)$
Combinatorially

## BIG sets

We work with the Cantor cube $2^{\omega_{1}}$.
We call a closed subset, $Y$, of $2^{\omega_{1}}$ BIG if there is a $\delta$ in $\omega_{1}$ such that $\pi_{\delta}[Y]=2^{\omega_{1} \backslash \delta}$. ( $\pi_{\delta}$ projects onto $\left.2^{\omega_{1} \backslash \delta}\right)$
Combinatorially: a closed set $Y$ is BIG if there is a $\delta$ such that for every $s \in \operatorname{Fn}\left(\omega_{1} \backslash \delta, 2\right)$ there is $y \in Y$ such that $s \subseteq y$.

## BIG sets

A nice property of BIG sets.

Delft Univ

## BIG sets

A nice property of BIG sets.
Proposition
A closed set is big if

## BIG sets

A nice property of BIG sets.
Proposition
A closed set is big if and only if

## BIG sets

A nice property of BIG sets.

## Proposition

A closed set is big if and only if there are a $\delta \in \omega_{1}$ and $\rho \in 2^{\delta}$

## BIG sets

A nice property of BIG sets.

## Proposition

A closed set is big if and only if there are a $\delta \in \omega_{1}$ and $\rho \in 2^{\delta}$ such that $\left\{x \in 2^{\omega_{1}}: \rho \subseteq x\right\} \subseteq Y$.

## $\mathbb{P}$-domination in $2^{\omega_{1}}$

Of course $2^{\omega_{1}}$ is $\mathbb{P}$-dominated: take $K_{f}=2^{\omega_{1}}$ for all $f \in \mathbb{P}$.

## $\mathbb{P}$-domination in $2^{\omega_{1}}$

Of course $2^{\omega_{1}}$ is $\mathbb{P}$-dominated: take $K_{f}=2^{\omega_{1}}$ for all $f \in \mathbb{P}$.
Here is a Baire category-like result for $2^{\omega_{1}}$.

## $\mathbb{P}$-domination in $2^{\omega_{1}}$

Of course $2^{\omega_{1}}$ is $\mathbb{P}$-dominated: take $K_{f}=2^{\omega_{1}}$ for all $f \in \mathbb{P}$.
Here is a Baire category-like result for $2^{\omega_{1}}$.

## Theorem

If $\left\{K_{f}: f \in \mathbb{P}\right\}$ is a $\mathbb{P}$-dominating cover of $2^{\omega_{1}}$ then

## $\mathbb{P}$-domination in $2^{\omega_{1}}$

Of course $2^{\omega_{1}}$ is $\mathbb{P}$-dominated: take $K_{f}=2^{\omega_{1}}$ for all $f \in \mathbb{P}$.
Here is a Baire category-like result for $2^{\omega_{1}}$.

## Theorem

If $\left\{K_{f}: f \in \mathbb{P}\right\}$ is a $\mathbb{P}$-dominating cover of $2^{\omega_{1}}$ then some $K_{f}$ is BIG.

Delft Univ
$\mathfrak{d}=\aleph_{1}$ : straightforward construction of a point not in $\bigcup_{f} K_{f}$ if we assume no $K_{f}$ is BIG
$\mathfrak{d}=\aleph_{1}$ : straightforward construction of a point not in $\bigcup_{f} K_{f}$ if we assume no $K_{f}$ is BIG, using a cofinal family of $\aleph_{1}$ many $K_{f}$ 's.

TUDelft
$\mathfrak{b}>\aleph_{1}$

Delft University of Technology
$\mathfrak{b}>\aleph_{1}$ : find there are $\aleph_{1}$ many $s \in \operatorname{Fn}\left(\omega_{1}, 2\right)$ and
$\mathfrak{b}>\aleph_{1}$ : find there are $\aleph_{1}$ many $s \in \operatorname{Fn}\left(\omega_{1}, 2\right)$ and for each there are many $h \in \mathbb{P}$ such that $s \subseteq y$ for some $y \in K_{h}$.
$\mathfrak{b}>\aleph_{1}$ : find there are $\aleph_{1}$ many $s \in \operatorname{Fn}\left(\omega_{1}, 2\right)$ and for each there are many $h \in \mathbb{P}$ such that $s \subseteq y$ for some $y \in K_{h}$.

We cleverly found $\aleph_{1}$ many $h$ 's such that each $\leqslant^{*}$-upper bound, $f$, for this family has a BIG $K_{f}$.

## The proof, case 2

$\mathfrak{d}>\mathfrak{b}=\aleph_{1}$

Deif University of Technology

## The proof, case 2

$\mathfrak{d}>\mathfrak{b}=\aleph_{1}:$ this is the trickiest one.
$\mathfrak{d}>\mathfrak{b}=\aleph_{1}$ : this is the trickiest one.
We borrow
$\mathfrak{d}>\mathfrak{b}=\aleph_{1}$ : this is the trickiest one.
We borrow
Theorem (Todorčević)
If $\mathfrak{b}=\aleph_{1}$ then $2^{\omega_{1}}$ has a subset $X$ of cardinality $\aleph_{1}$
$\mathfrak{d}>\mathfrak{b}=\aleph_{1}$ : this is the trickiest one.
We borrow
Theorem (Todorčević)
If $\mathfrak{b}=\aleph_{1}$ then $2^{\omega_{1}}$ has a subset $X$ of cardinality $\aleph_{1}$ and such that every uncountable $A \subseteq X$
$\mathfrak{d}>\mathfrak{b}=\aleph_{1}$ : this is the trickiest one.
We borrow
Theorem (Todorčević)
If $\mathfrak{b}=\aleph_{1}$ then $2^{\omega_{1}}$ has a subset $X$ of cardinality $\aleph_{1}$ and such that every uncountable $A \subseteq X$ has a countable subset $D$ such that
$\mathfrak{d}>\mathfrak{b}=\aleph_{1}:$ this is the trickiest one.
We borrow

## Theorem (Todorčević)

If $\mathfrak{b}=\aleph_{1}$ then $2^{\omega_{1}}$ has a subset $X$ of cardinality $\aleph_{1}$ and such that every uncountable $A \subseteq X$ has a countable subset $D$ such that $\pi_{\delta}[D]$ is dense in $2^{\omega_{1} \backslash \delta}$ for some $\delta$.
$\mathfrak{d}>\mathfrak{b}=\aleph_{1}:$ this is the trickiest one.
We borrow

## Theorem (Todorčević)

If $\mathfrak{b}=\aleph_{1}$ then $2^{\omega_{1}}$ has a subset $X$ of cardinality $\aleph_{1}$ and such that every uncountable $A \subseteq X$ has a countable subset $D$ such that $\pi_{\delta}[D]$ is dense in $2^{\omega_{1} \backslash \delta}$ for some $\delta$.

This yields another set of $\aleph_{1}$ many $h$ 's
$\mathfrak{d}>\mathfrak{b}=\aleph_{1}:$ this is the trickiest one.
We borrow

## Theorem (Todorčević)

If $\mathfrak{b}=\aleph_{1}$ then $2^{\omega_{1}}$ has a subset $X$ of cardinality $\aleph_{1}$ and such that every uncountable $A \subseteq X$ has a countable subset $D$ such that $\pi_{\delta}[D]$ is dense in $2^{\omega_{1} \backslash \delta}$ for some $\delta$.

This yields another set of $\aleph_{1}$ many $h$ 's; the special properties of $X$ ensure
$\mathfrak{d}>\mathfrak{b}=\aleph_{1}:$ this is the trickiest one.
We borrow

## Theorem (Todorčević)

If $\mathfrak{b}=\aleph_{1}$ then $2^{\omega_{1}}$ has a subset $X$ of cardinality $\aleph_{1}$ and such that every uncountable $A \subseteq X$ has a countable subset $D$ such that $\pi_{\delta}[D]$ is dense in $2^{\omega_{1} \backslash \delta}$ for some $\delta$.

This yields another set of $\aleph_{1}$ many $h$ 's; the special properties of $X$ ensure: if $f$ is not dominated by any one of the $h$ 's then $K_{f}$ is BIG.

## Finishing up

The final step: assume $X$ has a $\mathbb{P}$-diagonal and a continuous map onto $[0,1]^{\omega_{1}}$.

## Finishing up

The final step: assume $X$ has a $\mathbb{P}$-diagonal and a continuous map onto $[0,1]^{\omega_{1}}$.
Then we have a closed subset $Y$ with a $\mathbb{P}$-diagonal and a continuous map $\varphi$ of $Y$ onto $2^{\omega_{1}}$.

## Finishing up

The final step: assume $X$ has a $\mathbb{P}$-diagonal and a continuous map onto $[0,1]^{\omega_{1}}$.
Then we have a closed subset $Y$ with a $\mathbb{P}$-diagonal and a continuous map $\varphi$ of $Y$ onto $2^{\omega_{1}}$.
Then we find closed sets $Y_{0} \supset Y_{1} \supset \cdots$ and

## Finishing up

The final step: assume $X$ has a $\mathbb{P}$-diagonal and a continuous map onto $[0,1]^{\omega_{1}}$.
Then we have a closed subset $Y$ with a $\mathbb{P}$-diagonal and a continuous map $\varphi$ of $Y$ onto $2^{\omega_{1}}$.
Then we find closed sets $Y_{0} \supset Y_{1} \supset \cdots$ and points $y_{n} \in Y_{n} \backslash Y_{n+1}$ such that

## Finishing up

The final step: assume $X$ has a $\mathbb{P}$-diagonal and a continuous map onto $[0,1]^{\omega_{1}}$.
Then we have a closed subset $Y$ with a $\mathbb{P}$-diagonal and a continuous map $\varphi$ of $Y$ onto $2^{\omega_{1}}$.
Then we find closed sets $Y_{0} \supset Y_{1} \supset \cdots$ and points $y_{n} \in Y_{n} \backslash Y_{n+1}$ such that $\varphi\left[Y_{n}\right]$ is always BIG and

## Finishing up

The final step: assume $X$ has a $\mathbb{P}$-diagonal and a continuous map onto $[0,1]^{\omega_{1}}$.
Then we have a closed subset $Y$ with a $\mathbb{P}$-diagonal and a continuous map $\varphi$ of $Y$ onto $2^{\omega_{1}}$.
Then we find closed sets $Y_{0} \supset Y_{1} \supset \cdots$ and points $y_{n} \in Y_{n} \backslash Y_{n+1}$ such that $\varphi\left[Y_{n}\right]$ is always BIG and (ultimately) one $f$ such that $\bigcup_{n}\left(\left\{y_{n}\right\} \times Y_{n+1}\right) \subseteq K_{f}$.

The final step: assume $X$ has a $\mathbb{P}$-diagonal and a continuous map onto $[0,1]^{\omega_{1}}$.
Then we have a closed subset $Y$ with a $\mathbb{P}$-diagonal and a continuous map $\varphi$ of $Y$ onto $2^{\omega_{1}}$.
Then we find closed sets $Y_{0} \supset Y_{1} \supset \cdots$ and points $y_{n} \in Y_{n} \backslash Y_{n+1}$ such that $\varphi\left[Y_{n}\right]$ is always BIG and (ultimately) one $f$ such that $\bigcup_{n}\left(\left\{y_{n}\right\} \times Y_{n+1}\right) \subseteq K_{f}$.
For every accumulation point, $y$, of $\left\langle y_{n}: n \in \omega\right\rangle$ we'll have

The final step: assume $X$ has a $\mathbb{P}$-diagonal and a continuous map onto $[0,1]^{\omega_{1}}$.
Then we have a closed subset $Y$ with a $\mathbb{P}$-diagonal and a continuous map $\varphi$ of $Y$ onto $2^{\omega_{1}}$.
Then we find closed sets $Y_{0} \supset Y_{1} \supset \cdots$ and points $y_{n} \in Y_{n} \backslash Y_{n+1}$ such that $\varphi\left[Y_{n}\right]$ is always BIG and (ultimately) one $f$ such that $\bigcup_{n}\left(\left\{y_{n}\right\} \times Y_{n+1}\right) \subseteq K_{f}$.
For every accumulation point, $y$, of $\left\langle y_{n}: n \in \omega\right\rangle$ we'll have $\langle y, y\rangle \in K_{f}$, a contradiction.

Cascales, Orihuela and Tkachuk also asked if a compact space with a $\mathbb{P}$-diagonal would have a small diagonal (answer: yes); this would imply metrizability.

Cascales, Orihuela and Tkachuk also asked if a compact space with a $\mathbb{P}$-diagonal would have a small diagonal (answer: yes); this would imply metrizability.

I'd like to turn that around: does a space with a small diagonal have a $\mathbb{P}$-diagonal?

Cascales, Orihuela and Tkachuk also asked if a compact space with a $\mathbb{P}$-diagonal would have a small diagonal (answer: yes); this would imply metrizability.

I'd like to turn that around: does a space with a small diagonal have a $\mathbb{P}$-diagonal?
This would settle the metrizability question for spaces with a small diagonal.

## Light reading

Website: fa.its.tudelft.nl/~hart
國 Alan Dow and Klaas Pieter Hart,
Compact spaces with a $\mathbb{P}$-diagonal, Indagationes Mathematicae, 27 (2016), 721-726.

