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Abstract

Let X be a non-empty set. We consider the class C consisting of triads
(s,x ,I), where s = (sd)d∈D is a net in X , x ∈ X and I is an ideal of D.
We shall find several properties of C such that there exists a topology τ
for X satisfying the following equivalence: ((sd)d∈D,x ,I) ∈ C, where I
is a proper D-admissible, if and only if (sd)d∈D I-converges to x relative
to the topology τ .
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Preliminaries

In this section, we recall some of the basic concepts related to the con-
vergence of nets in topological spaces and we refer to [10] for more
details.

Ideals
Let D be a non-empty set. A family I of subsets of D is called ideal if I
has the following properties:

1 ∅ ∈ I.
2 If A ∈ I and B ⊆ A, then B ∈ I.
3 If A,B ∈ I, then A ∪B ∈ I.

The ideal I is called proper if D ∉ I.
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Preliminaries

Directed set
A partially ordered set D is called directed if every two elements of D
have an upper bound in D.

If (D,⩽D) and (E ,⩽E) are directed sets, then the Cartesian product D×E
is directed by ⩽, where (d1,e1) ⩽ (d2,e2) if and only if d1 ⩽D d2 and
e1 ⩽E e2. Also, if (Ed ,⩽d) is a directed set for each d in a set D, then
the product

∏
d∈D

Ed = {f ∶ D → ⋃
d∈D

Ed ∶ f (d) ∈ Ed for all d ∈ D}

is directed by ⩽, where f ⩽ g if and only if f (d) ⩽d g(d), for all d ∈ D.
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Preliminaries

Net
A net in a set X is an arbitrary function s from a non-empty directed set
D to X . If s(d) = sd , for all d ∈ D, then the net s will be denoted by the
symbol (sd)d∈D.

Semisubnet
A net (tλ)λ∈Λ in X is said to be a semisubnet of the net (sd)d∈D in X if
there exists a function ϕ ∶ Λ → D such that t = s ○ ϕ. We write (tλ)

ϕ
λ∈Λ to

indicate the fact that ϕ is the function mentioned above.
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Preliminaries

Subnet
A net (tλ)λ∈Λ in X is said to be a subnet of the net (sd)d∈D in X if there
exists a function ϕ ∶ Λ→ D with the following properties:

1 t = s ○ ϕ, or equivalently, tλ = sϕ(λ) for every λ ∈ Λ.
2 For every d ∈ D there exists λ0 ∈ Λ such that ϕ(λ) ⩾ d whenever
λ ⩾ λ0.

Remark
Suppose that (tλ)

ϕ
λ∈Λ is a subnet of the net (sd)d∈D in X . For every ideal

I of the directed set D, we consider the family {A ⊆ Λ ∶ ϕ(A) ∈ I}. This
family is an ideal of Λ which will be denoted by IΛ(ϕ).
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Preliminaries

Convergence of a net
We say that a net (sd)d∈D converges to a point x ∈ X if for every open
neighbourhood U of x there exists a d0 ∈ D such that x ∈ U for all d ⩾ d0.
In this case we write lim

d∈D
sd = x .
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Preliminaries

I-convergence of a net ([14])
Let X be a topological space and I an ideal of a directed set D. We
say that a net (sd)d∈D I-converges to a point x ∈ X if for every open
neighbourhood U of x ,

{d ∈ D ∶ sd ∉ U} ∈ I.

In this case we write I − lim
d∈D

sd = x and we say that x is the I-limit of the

net (xd)d∈D.

If X is a Hausdorff space, then a proper I-convergent net has a unique
I-limit ([14]).
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Preliminaries

Natural (Asymptotic) density ([8], [17])
If A ⊆ N, then A(n) will denote the set {k ∈ A ∶ k ≤ n} and ∣A(n)∣ will
stand for the cardinality of A(n). The natural density of A is defined by

d(A) = lim
n→∞

∣A(n)∣
n

,

if the limit exists.
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Preliminaries

In what follows (X , ρ) is a fixed metric space and I denotes a proper
ideal of subsets of N.

I-convergence of a sequence in a metric space ([12])
A sequence (xn)n∈N of elements of X is said to be I-convergent to x ∈ X
if and only if for each ε > 0 the set Aε = {n ∈ N ∶ ρ(xn,x) ≥ ε} ∈ I.

Example
Take for I the class If of all finite subsets of N. Then If is a proper ideal
and If -convergence coincides with the usual convergence with respect
to the metric ρ in X .

Example
Denote by Id the class of all subsets A of N with d(A) = 0. Then Id is
a proper ideal and Id-convergence coincides with the statistical conver-
gence.
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Preliminaries

Let D be a directed set. For all d ∈ D we set Md = {d ′ ∈ D ∶ d ′ ≥ d}.

D-admissible ideal ([14])
An ideal I of D is called D-admissible, if D ∖Md ∈ I, for all d ∈ D.

Proposition ([14])
Let X be a topological space, x ∈ X , and D a directed set. Then,

I0(D) = {A ⊆ D ∶ A ⊆ D ∖Md for some d ∈ D}

is a proper ideal of D. Moreover, a net (sd)d∈D converges to a point x
of a space X if and only if (sd)d∈D I0(D)-converges to x .
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Preliminaries

Proposition ([14, Theorem 3])
Let X be a topological space and A ⊆ X . If the net (sd)d∈D in A I-
converges to the point x ∈ X , where I is a proper ideal of D, then
x ∈ ClX (A).
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Basic propositions

In what follows X is a topological space, x ∈ X , (sd)d∈D is a net of X ,
and I is an ideal of D.

Proposition
If (sd)d∈D is a net such that sd = x for every d ∈ D, then I − lim

d∈D
sd = x .

Proposition
If I0(D)− lim

d∈D
sd = x , then for every subnet (tλ)λ∈Λ of the net (sd)d∈D we

have I0(Λ) − lim
λ∈Λ

tλ = x .

Proposition
If I − lim

d∈D
sd = x , then for every semisubnet (tλ)

ϕ
λ∈Λ of the net (sd)d∈D we

have IΛ(ϕ) − lim
λ∈Λ

tλ = x .
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Basic propositions

Proposition
If I − lim

d∈D
sd = x , where I is a proper ideal of D, then there exists a

semisubnet (tλ)λ∈Λ of the net (sd)d∈D such that I0(Λ) − lim
λ∈Λ

tλ = x .

Proposition
Let D be a directed set and I a D-admissible ideal of D. If (sd)d∈D
does not I-converge to x , then there exists a subnet (tλ)

ϕ
λ∈Λ of the net

(sd)d∈D such that:

1 Λ ⊆ D.
2 ϕ(λ) = λ, for every λ ∈ Λ.
3 No semisubnet (rk)

f
k∈K of (tλ)

ϕ
λ∈Λ IK -converges to x , for every

proper ideal IK of K .
4 IΛ(ϕ) is a proper and Λ-admissible ideal of Λ.
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Basic propositions

Proposition
We suppose the following:

1 D is a directed set.
2 ID is a proper ideal of D.
3 Ed is a directed set for each d ∈ D.
4 IEd is a proper ideal of Ed for each d ∈ D.
5 ID × I∏d∈D Ed is the family of all subsets of D ×∏d∈D Ed for which:

A ∈ ID × I∏d∈D Ed if and only if there exists AD ∈ ID such that

{f (d) ∶ (d , f ) ∈ A} ∈ IEd , for each d ∈ D ∖AD.

Then, the family ID × I∏d∈D Ed is a proper ideal of D ×∏d∈D Ed .
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Basic propositions

Proposition
We suppose the following:

1 D is a directed set.
2 ID is a proper ideal of D.
3 Ed is a directed set for each d ∈ D.
4 IEd is a proper ideal of Ed for each d ∈ D.
5 (s(d ,e))e∈Ed is a net from Ed to a topological space X for each

d ∈ D.
6 ID − lim

d∈D
(IEd − lim

e∈Ed
s(d ,e)) = x .

Then, the net r ∶ D ×∏d∈D Ed → X , where r(d , f ) = s(d , f (d)), for every
(d , f ) ∈ D ×∏d∈D Ed , ID × I∏d∈D Ed -converges to x .
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Main theorem

I-convergence classes
Let X be a non-empty set and let C be a class consisting of triads
(s,x ,I), where s = (sd)d∈D is a net in X , x ∈ X , and I is an ideal of
D. We say that the net s I-converges (C) to x if (s,x ,I) ∈ C. We write
I − lim

d∈D
sd ≡ x(C).
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Main theorem

I-convergence classes
Let X be a non-empty set and let C be a class consisting of triads
(s,x ,I), where s = (sd)d∈D is a net in X , x ∈ X and I is an ideal of
D. We say that C is a I-convergence class for X if it satisfies the follow-
ing conditions:

(C1) If (sd)d∈D is a net such that sd = x for every d ∈ D and I is an
ideal of D, then I − lim

d∈D
sd ≡ x(C).

(C2) If I0(D) − lim
d∈D

sd ≡ x(C), then for every subnet (tλ)λ∈Λ of the net

(sd)d∈D we have I0(Λ) − lim
λ∈Λ

tλ ≡ x(C).

(C3) If I − lim
d∈D

sd ≡ x(C), where I is an ideal of D, then for every

semisubnet (tλ)λ∈Λ of the net (sd)d∈D we have
IΛ(ϕ) − lim

λ∈Λ
tλ ≡ x(C).
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Main theorem

I-convergence classes
(C4) If I − lim

d∈D
sd = x(C), where I is a proper ideal of D, then there

exists a semisubnet (tλ)
ϕ
λ∈Λ of the net (sd)d∈D such that

I0(Λ) − lim
λ∈Λ

tλ = x(C).

(C5) Let D be a directed set and I a D-admissible ideal of D. If
(sd)d∈D does not I-converge (C) to x , then there exists a subnet
(tλ)

ϕ
λ∈Λ of the net (sd)d∈D such that:

1 Λ ⊆ D.
2 ϕ(λ) = λ, for every λ ∈ Λ.
3 No semisubnet (rk)

f
k∈K of (tλ)

ϕ
λ∈Λ IK -converges (C) to x , for

every proper ideal IK of K .
4 IΛ(ϕ) is a proper and Λ-admissible ideal of Λ.

20 / 31



Main theorem

I-convergence classes
(C6) We consider the following hypotheses:

1 D is a directed set.
2 ID is a proper ideal of D.
3 Ed is a directed set for each d ∈ D.
4 IEd is a proper ideal of Ed .
5 (s(d ,e))e∈Ed is a net from Ed to X for each d ∈ D.
6 ID − lim

d∈D
td ≡ x(C), where IEd − lim

e∈Ed
s(d ,e) ≡ td(C), for every

d ∈ D.

Then, the net r ∶ D ×∏d∈D Ed → X , where r(d , f ) = s(d , f (d)), for
every (d , f ) ∈ D ×∏d∈D Ed , ID × I∏d∈D Ed -converges (C) to x .
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Main theorem

Theorem
Let C be a I-convergence class for a set X . We consider the func-
tion cl ∶ P(X) → P(X), where cl(A) is the set of all x ∈ X such that,
for some net (sd)d∈D in A and a proper ideal I of the directed set D,
(sd)d∈D I-convergences (C) to x . Then, cl is a closure operator on X
and ((sd)d∈D,x ,I) ∈ C, where I is a proper D-admissible ideal, if and
only if (sd)d∈D I-converges to x relative to the topology τI associated
with cl.
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Problems

Convergence classes (J. Kelley)
Let X be a non-empty set and let C be a class consisting of pairs (s,x),
where s = (sn)n∈D is a net in X and x ∈ X . We say that C is a conver-
gence class for X if it satisfies the conditions listed below. For con-
venience, we say that s converges (C) to x or that lim sn = x(C) iff
(s,x) ∈ C.

(C1) If s is a net such that sn = x for each n, then s converges (C) to x .
(C2) If s converge (C) to x , then so does each subnet of s.
(C3) If s does not converge (C) to x , then there exists a subnet of s no

subnet of which converges (C) to x .
(C4) Let D be a directed set, let Em be a directed set and for each

m ∈ D, let F be the product D ×∏m∈D Em and for (m, f ) ∈ F let
R(m, f ) = (m, f (m)). If lim

m
lim

n
S(m,n) = x(C), then S ○R

converges (C) to x .
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Problems

Theorem (J. Kelley)
Let (C) be a convergence class for a set X , and for each subset A of
X let cl(A) be the set of all points x such that, for some net s in A, s
convergences (C) to x . Then cl is a closure operator, and (s,x) ∈ C if
and only if s converges to x relative to the topology τ associated with
cl.
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Problems

Problem
Compare the above topologies τI and τ .
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