Ideal quasi-normal convergence and related notions

Pratulananda Das*, L. Bukovský, J. Šupina

* Department of Mathematics, Jadavpur University, West Bengal

イロン 不得 とくほ とくほ とうほ

 $\begin{array}{l} \mbox{Basic notions} \\ \mbox{Properties of the Ideal and Decompositions} \\ \mbox{Equivalences with classical notions} \\ (\mathcal{I},\mathcal{J}) \mbox{QN}, (\mathcal{I},\mathcal{J}) \mbox{WQN} \mbox{ and properties of } C_{\rho}(\mathcal{X}) \\ \mbox{\mathcal{I}-γ-covers} \end{array}$

Basic notions

• *Ideal*: A hereditary family $\mathcal{I} \subseteq \mathcal{P}(\omega)$ ($B \in \mathcal{I}$ for any $B \subseteq A \in \mathcal{I}$) that is closed under unions ($A \cup B \in \mathcal{I}$ for any $A, B \in \mathcal{I}$), contains all finite subsets of ω and $\omega \notin \mathcal{I}$.

イロト 不得 とくほ とくほ とうほ

 Basic notions

 Properties of the Ideal and Decompositions

 Equivalences with classical notions

 $(\mathcal{I}, \mathcal{J})$ QN, $(\mathcal{I}, \mathcal{J})$ wQN and properties of $C_{\mathcal{P}}(X)$
 \mathcal{I} - γ -covers

Basic notions

- *Ideal*: A hereditary family $\mathcal{I} \subseteq \mathcal{P}(\omega)$ ($B \in \mathcal{I}$ for any $B \subseteq A \in \mathcal{I}$) that is closed under unions ($A \cup B \in \mathcal{I}$ for any $A, B \in \mathcal{I}$), contains all finite subsets of ω and $\omega \notin \mathcal{I}$.
- *Filter:* For A ⊆ P(ω) we denote A^d = {ω \ A : A ∈ A}. A family F ⊆ P(ω) is called a filter if F^d is an ideal.

イロト 不得 とくほと くほとう

 Basic notions

 Properties of the Ideal and Decompositions

 Equivalences with classical notions

 $(\mathcal{I}, \mathcal{J})$ QN, $(\mathcal{I}, \mathcal{J})$ wQN and properties of $C_{\mathcal{P}}(X)$
 \mathcal{I} - γ -covers

Basic notions

- *Ideal*: A hereditary family $\mathcal{I} \subseteq \mathcal{P}(\omega)$ ($B \in \mathcal{I}$ for any $B \subseteq A \in \mathcal{I}$) that is closed under unions ($A \cup B \in \mathcal{I}$ for any $A, B \in \mathcal{I}$), contains all finite subsets of ω and $\omega \notin \mathcal{I}$.
- *Filter:* For A ⊆ P(ω) we denote A^d = {ω \ A : A ∈ A}. A family F ⊆ P(ω) is called a filter if F^d is an ideal.
- Associated Filter: If *I* is a proper ideal in *Y* (i.e. *Y* ∉ *I*, *I* ≠ {Ø}), then the family of sets *F*(*I*) = {*M* ⊂ *Y* : there exists *A* ∈ *I* : *M* = *Y* \ *A*} is a *filter* in *Y*.

イロト イポト イヨト イヨト 三日

 Basic notions

 Properties of the Ideal and Decompositions

 Equivalences with classical notions

 $(\mathcal{I}, \mathcal{J})$ QN, $(\mathcal{I}, \mathcal{J})$ wQN and properties of $C_{\mathcal{P}}(X)$
 \mathcal{I} - γ -covers

Basic notions

- *Ideal*: A hereditary family $\mathcal{I} \subseteq \mathcal{P}(\omega)$ ($B \in \mathcal{I}$ for any $B \subseteq A \in \mathcal{I}$) that is closed under unions ($A \cup B \in \mathcal{I}$ for any $A, B \in \mathcal{I}$), contains all finite subsets of ω and $\omega \notin \mathcal{I}$.
- *Filter:* For A ⊆ P(ω) we denote A^d = {ω \ A : A ∈ A}. A family F ⊆ P(ω) is called a filter if F^d is an ideal.
- Associated Filter: If *I* is a proper ideal in *Y* (i.e. *Y* ∉ *I*, *I* ≠ {Ø}), then the family of sets *F*(*I*) = {*M* ⊂ *Y* : there exists *A* ∈ *I* : *M* = *Y* \ *A*} is a *filter* in *Y*. It is called the filter associated with the ideal *I*.

イロト 不得 とくほ とくほ とうほ

 Basic notions

 Properties of the Ideal and Decompositions

 Equivalences with classical notions

 $(\mathcal{I}, \mathcal{J})$ QN, $(\mathcal{I}, \mathcal{J})$ wQN and properties of $C_p(X)$
 \mathcal{I} - γ -covers

Basic notions

- *Ideal*: A hereditary family $\mathcal{I} \subseteq \mathcal{P}(\omega)$ ($B \in \mathcal{I}$ for any $B \subseteq A \in \mathcal{I}$) that is closed under unions ($A \cup B \in \mathcal{I}$ for any $A, B \in \mathcal{I}$), contains all finite subsets of ω and $\omega \notin \mathcal{I}$.
- *Filter:* For A ⊆ P(ω) we denote A^d = {ω \ A : A ∈ A}. A family F ⊆ P(ω) is called a filter if F^d is an ideal.
- Associated Filter: If \mathcal{I} is a proper ideal in Y (i.e.

 $Y \notin \mathcal{I}, \mathcal{I} \neq \{\emptyset\}$), then the family of sets $\mathcal{F}(\mathcal{I}) = \{M \subset Y :$ there exists $A \in \mathcal{I} : M = Y \setminus A\}$ is a *filter* in *Y*.

It is called the filter associated with the ideal \mathcal{I} .

• If $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is an ideal then $\mathcal{B} \subseteq \mathcal{I}$ is a **base** of \mathcal{I} if for any $A \in \mathcal{I}$ there is $B \in \mathcal{B}$ such that $A \subseteq B$. We recall a folklore fact: the family of all finite intersections of elements of a family $\mathcal{A} \subseteq [\omega]^{\omega}$ is a base of some filter if and only if \mathcal{A} has the **finite intersection property**, shortly **f.i.p.**

 $\begin{array}{l} \mbox{Basic notions} \\ \mbox{Properties of the Ideal and Decompositions} \\ \mbox{Equivalences with classical notions} \\ (\mathcal{I},\mathcal{J}) \mbox{QN}, (\mathcal{I},\mathcal{J}) \mbox{wQN} \mbox{ and properties of } \mathcal{C}_{p}(X) \\ \mbox{\mathcal{I}-γ-covers} \end{array}$

• *cof(I):* For an ideal *I* we denote

 $\operatorname{cof}(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land \mathcal{A} \text{ is a base of } \mathcal{I}\}.$

▲□▶▲□▶▲□▶▲□▶ □ のQの

• *cof(I):* For an ideal *I* we denote

 $\operatorname{cof}(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land \mathcal{A} \text{ is a base of } \mathcal{I}\}.$

almost contained: A set A is almost contained in a set B, written A ⊆* B, if A \ B is finite. Assume that A ⊆ I is such that every B ∈ I is almost contained in some A ∈ A. Then B = {A ∪ F : A ∈ A ∧ F ∈ [ω]^{<ω}} is a base of I. Moreover, if A is infinite, then |B| = |A|.

イロン 不得 とくほ とくほ とうほ

• *cof(I):* For an ideal *I* we denote

 $\operatorname{cof}(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land \mathcal{A} \text{ is a base of } \mathcal{I}\}.$

- almost contained: A set A is almost contained in a set B, written A ⊆* B, if A \ B is finite. Assume that A ⊆ I is such that every B ∈ I is almost contained in some A ∈ A. Then B = {A ∪ F : A ∈ A ∧ F ∈ [ω]^{<ω}} is a base of I. Moreover, if A is infinite, then |B| = |A|.
- *P-ideal:* An ideal *I* is said to be a P-ideal, if for any countable *A* ⊆ *I* there exists a set *B* ∈ *I* such that *A* ⊆* *B* for each *A* ∈ *A*. Some authors say that *I* satisfies the property (AP). If *A* ⊆ *ω* is such that *ω* \ *A* is infinite, then

$$\langle \boldsymbol{A} \rangle^* = \{ \boldsymbol{B} \subseteq \omega : \boldsymbol{B} \subseteq^* \boldsymbol{A} \}$$

イロン 不得 とくほ とくほ とうほう

is a P-ideal with a countable base.

pseudointersection: An infinite set B ⊆ ω is said to be a *pseudointersection* of a family A ⊆ [ω]^ω if B ⊆* A for any A ∈ A. We can introduce the dual notion: a set B is a *pseudounion* of the family A if ω \ B is infinite and if A ⊆* B for any A ∈ A. Thus an ideal I is P-ideal if and only if every countable subfamily of I has a pseudounion belonging to I. If a pseudounion A of I belongs to I, then I = ⟨A⟩*.

イロン 不得 とくほ とくほ とうほ

 $\begin{array}{l} \mbox{Basic notions}\\ \mbox{Properties of the Ideal and Decompositions}\\ \mbox{Equivalences with classical notions}\\ (\mathcal{I},\mathcal{J}) \mbox{QN}, (\mathcal{I},\mathcal{J}) \mbox{wQN} \mbox{ and properties of } \mathcal{C}_{\rho}(X)\\ \mbox{\mathcal{I}-γ-covers} \end{array}$

- *pseudointersection:* An infinite set B ⊆ ω is said to be a *pseudointersection* of a family A ⊆ [ω]^ω if B ⊆* A for any A ∈ A. We can introduce the dual notion: a set B is a *pseudounion* of the family A if ω \ B is infinite and if A ⊆* B for any A ∈ A. Thus an ideal I is P-ideal if and only if every countable subfamily of I has a pseudounion belonging to I. If a pseudounion A of I belongs to I, then I = ⟨A⟩*.
- **Tall ideal:** An ideal \mathcal{I} is **tall**, if for any $B \in [\omega]^{\omega}$, there exists an $A \in \mathcal{I}$ such that $A \cap B$ is infinite. Thus, an ideal \mathcal{I} has a pseudounion if and only if \mathcal{I} is not tall.

イロン 不良 とくほう 不良 とうほ

• *pseudointersection number:* The **pseudointersection number** is the cardinal

 $\mathfrak{p} = \min\{|\mathcal{A}| : (\mathcal{A} \subseteq [\omega]^{\omega} \text{ has f.i.p. and has no pseudointersection})$

イロン 不得 とくほ とくほ とうほ

Thus, if \mathcal{I} is an ideal with $cof(\mathcal{I}) < \mathfrak{p}$, then \mathcal{I} has a pseudounion. Since $\mathfrak{p} > \aleph_0$, any ideal with a countable base has a pseudounion.

• *pseudointersection number:* The **pseudointersection number** is the cardinal

 $\mathfrak{p} = \min\{|\mathcal{A}| : (\mathcal{A} \subseteq [\omega]^{\omega} \text{ has f.i.p. and has no pseudointersection}\}$

Thus, if \mathcal{I} is an ideal with $cof(\mathcal{I}) < \mathfrak{p}$, then \mathcal{I} has a pseudounion. Since $\mathfrak{p} > \aleph_0$, any ideal with a countable base has a pseudounion.

• An ideal \mathcal{I} with a countable base can be constructed with a pseudounion such that no pseudounion of \mathcal{I} belongs to \mathcal{I} and such that \mathcal{I} is not a P-ideal. Assuming $\mathfrak{p} > \aleph_1$, one can construct a P-ideal \mathcal{I} with an uncountable base of cardinality $< \mathfrak{p}$ such that no pseudounion of \mathcal{I} belongs to \mathcal{I} .

• *Ideal convergence:* A sequence $\langle x_n : n \in \omega \rangle$ of elements of a topological space $X \mathcal{I}$ -**converges** to $x \in X$, written $x_n \xrightarrow{\mathcal{I}} x$, if for each neighborhood U of x, the set $\{n \in \omega : x_n \notin U\} \in \mathcal{I}$, i.e., if the function $\langle x_n : n \in \omega \rangle$ from ω into X converges modulo filter \mathcal{I}^d to x in the sense of H. Cartan.

イロト イポト イヨト イヨト 三日

- **Ideal convergence:** A sequence $\langle x_n : n \in \omega \rangle$ of elements of a topological space $X \mathcal{I}$ -**converges** to $x \in X$, written $x_n \xrightarrow{\mathcal{I}} x$, if for each neighborhood U of x, the set $\{n \in \omega : x_n \notin U\} \in \mathcal{I}$, i.e., if the function $\langle x_n : n \in \omega \rangle$ from ω into X converges modulo filter \mathcal{I}^d to x in the sense of H. Cartan.
- Ideal divergence: A sequence ⟨x_n : n ∈ ω⟩ is *I*-divergent to ∞, written x_n → ∞, if {n : x_n < a} ∈ *I* for any positive real a > 0.

イロト 不得 とくほ とくほ とうほ

- Ideal convergence: A sequence ⟨x_n : n ∈ ω⟩ of elements of a topological space X I-converges to x ∈ X, written x_n → x, if for each neighborhood U of x, the set {n ∈ ω : x_n ∉ U} ∈ I, i.e., if the function ⟨x_n : n ∈ ω⟩ from ω into X converges modulo filter I^d to x in the sense of H. Cartan.
- Ideal divergence: A sequence ⟨x_n : n ∈ ω⟩ is *I*-divergent to ∞, written x_n → ∞, if {n : x_n < a} ∈ *I* for any positive real a > 0.

• By function *f*, we always mean a **real function** defined on *X*. A sequence of real functions $\langle f_n : n \in \omega \rangle$

 \mathcal{I} -converges to a real function f on X, written $f_n \xrightarrow{\mathcal{I}} f$, if $f_n(x) \xrightarrow{\mathcal{I}} f(x)$ for each $x \in X$.

• \mathcal{I} - *Quasinormal convergence:* A sequence of real functions $\langle f_n : n \in \omega \rangle$ on $X \mathcal{I}$ -quasi-normally converges to a real function f on X, shortly $f_n \xrightarrow{\mathcal{IQN}} f$ on X, if there exists a sequence of reals $\langle \varepsilon_n : n \in \omega \rangle$ that \mathcal{I} -converges to 0 (the **control sequence**) and such that $\{n \in \omega : |f_n(x) - f(x)| \ge \varepsilon_n\} \in \mathcal{I}$ for any $x \in X$.

イロト イポト イヨト イヨト 三日

- \mathcal{I} *Quasinormal convergence:* A sequence of real functions $\langle f_n : n \in \omega \rangle$ on $X \mathcal{I}$ -quasi-normally converges to a real function f on X, shortly $f_n \xrightarrow{\mathcal{IQN}} f$ on X, if there exists a sequence of reals $\langle \varepsilon_n : n \in \omega \rangle$ that \mathcal{I} -converges to 0 (the **control sequence**) and such that $\{n \in \omega : |f_n(x) f(x)| \ge \varepsilon_n\} \in \mathcal{I}$ for any $x \in X$.
- *strongly* \mathcal{I} -*quasi-normal convergence:* We say that a sequence strongly \mathcal{I} -quasi-normally converges to f if the control sequence is $\langle 2^{-n} : n \in \omega \rangle$. We write $f_n \xrightarrow{s\mathcal{I}QN} f$. In fact one can replace the sequence $\langle 2^{-n} : n \in \omega \rangle$ by any sequence $\langle \varepsilon_n : n \in \omega \rangle$ of positive reals such that $\sum_{n=0}^{\infty} \varepsilon_n < \infty$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

 $\begin{array}{l} \mbox{Basic notions} \\ \mbox{Properties of the Ideal and Decompositions} \\ \mbox{Equivalences with classical notions} \\ (\mathcal{I},\mathcal{J}) \mbox{QN}, (\mathcal{I},\mathcal{J}) \mbox{wQN} \mbox{ and properties of } \mathcal{C}_{\rho}(X) \\ \mbox{\mathcal{I}-γ-covers} \end{array}$

• \mathcal{I} - Uniform Convergence A sequence of real functions $\langle f_n : n \in \omega \rangle$ on $X \mathcal{I}$ -uniformly converges to a real function f, shortly $f_n \xrightarrow{\mathcal{I} \cdot u} f$, if there exists a set $A \in \mathcal{I}$ such that $\{n \in \omega : |f_n(x) - f(x)| \ge \varepsilon\} \subseteq A$ for any $\varepsilon > 0$ and any $x \in X$.

イロト 不得 とくほ とくほ とうほ

 $\begin{array}{l} \mbox{Basic notions} \\ \mbox{Properties of the Ideal and Decompositions} \\ \mbox{Equivalences with classical notions} \\ (\mathcal{I},\mathcal{J}) \mbox{QN}, (\mathcal{I},\mathcal{J}) \mbox{wQN} \mbox{ and properties of } \mathcal{C}_{\rho}(X) \\ \mbox{\mathcal{I}-γ-covers} \end{array}$

- \mathcal{I} Uniform Convergence A sequence of real functions $\langle f_n : n \in \omega \rangle$ on $X \mathcal{I}$ -uniformly converges to a real function f, shortly $f_n \xrightarrow{\mathcal{I}-u} f$, if there exists a set $A \in \mathcal{I}$ such that $\{n \in \omega : |f_n(x) f(x)| \ge \varepsilon\} \subseteq A$ for any $\varepsilon > 0$ and any $x \in X$.
 - Evidently the notion of \mathcal{I} Uniform Convergence is stronger than the notion of \mathcal{I} Quasinormal convergence which is again stronger than the notion of \mathcal{I} pointwise convergence. Examples have been constructed in this respect.

イロン 不得 とくほ とくほ とうほ

Theorem 1

Ideal quasi-normal convergence and related notions

Basic notions **Properties of the Ideal and Decompositions** Equivalences with classical notions $(\mathcal{I},\mathcal{J})$ QN, $(\mathcal{I},\mathcal{J})$ wQN and properties of $C_p(X)$ \mathcal{I} - γ -covers

Theorem 1

Theorem

The following are equivalent

(i)
$$\operatorname{cof}(\mathcal{I}) = \kappa$$
.

(ii) For any set X and for any sequence of real functions, if $f_n \xrightarrow{\mathcal{I}QN} f$ on X, then there exist sets $X_{\xi}, \xi < \kappa$ such that $X = \bigcup_{\xi < \kappa} X_{\xi}$ and $f_n \xrightarrow{\mathcal{I}-u} f$ on each X_{ξ} . (iii) For any set $X \subseteq \mathcal{P}(\omega)$ and for any sequence of real functions, if $f_n \xrightarrow{\mathcal{IQN}} f$ on X, then there exit sets $X_{\xi}, \xi < \kappa$ such that $X = \bigcup_{\xi < \kappa} X_{\xi}$ and $f_n \xrightarrow{\mathcal{I} \cdot u} f$ on each X_{ξ} . Moreover, if X is a topological space and f_n , $n \in \omega$ are continuous, then in both cases we can assume that the sets X_{ε} are closed.

Theorem 2

◆□> <回> < E> < E> < E < のへの</p>

Basic notions Properties of the Ideal and Decompositions Equivalences with classical notions $(\mathcal{I}, \mathcal{J})$ QN, $(\mathcal{I}, \mathcal{J})$ wQN and properties of $C_{\rho}(X)$ \mathcal{I} - γ -covers

Theorem 2

Theorem

The following are equivalent:

- (i) The set C is a pseudounion of the ideal \mathcal{I} .
- (ii) For every set X and every $f_n \xrightarrow{\mathcal{IQN}} f$ on X with the control $\langle \varepsilon_n : n \in \omega \rangle$, there exist sets X_k , $k \in \omega$ such that $X = \bigcup X_k$

and $f_n \stackrel{\langle C \rangle^* \text{-u}}{\longrightarrow} f$ with same control $\langle \varepsilon_n : n \in \omega \rangle$ on each X_k .

(iii) For every set X and every $f_n \xrightarrow{\mathcal{IQN}} f$ on X with the control $\langle \varepsilon_n : n \in \omega \rangle$, there exists a cardinal (may be finite) κ and there exist sets $X_{\xi}, \xi < \kappa$ such that $X = \bigcup_{\xi < \kappa} X_{\xi}$ and

 $f_n \stackrel{\langle C \rangle^* \text{-u}}{\longrightarrow} f \text{ with same control} \langle \varepsilon_n : n \in \omega \rangle \text{ on each } X_{\xi}.$

Lemma 1

Lemma 1

Assume that $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is an ideal with a pseudounion *C*. Let $A = \omega \setminus C$. Then

- a) For any sequence $\langle x_n : n \in \omega \rangle$ of reals, if $x_n \xrightarrow{\mathcal{I}} 0$ then $x_{e_A(n)} \to 0$.
- b) For any sequence $\langle f_n : n \in \omega \rangle$ of real functions defined on X, if $f_n \xrightarrow{\mathcal{I}} 0$ on X, then $f_{e_A(n)} \to 0$ on X.
- c) For any sequence $\langle f_n : n \in \omega \rangle$ of real functions defined on X, if $f_n \xrightarrow{\mathcal{IQN}} 0$ on X, then $f_{e_A(n)} \xrightarrow{QN} 0$ on X.

• $(\mathcal{I},\mathcal{J})$ *QN-space:* A topological space *X* is an $(\mathcal{I},\mathcal{J})$ QN-space if for any sequence $\langle f_n : n \in \omega \rangle$ of continuous real functions \mathcal{I} -converging to 0 on *X*, we have $f_n \xrightarrow{\mathcal{J}QN} 0$.

イロト 不得 とくほ とくほ とうほ

- $(\mathcal{I},\mathcal{J})$ *QN-space:* A topological space *X* is an $(\mathcal{I},\mathcal{J})$ QN-space if for any sequence $\langle f_n : n \in \omega \rangle$ of continuous real functions \mathcal{I} -converging to 0 on *X*, we have $f_n \xrightarrow{\mathcal{J} QN} 0$.
- (*I*, *J*)*wQN-space*: A topological space *X* is an (*I*, *J*)*wQN-space* if for any sequence ⟨*f_n* : *n* ∈ ω⟩ of continuous real functions *I*-converging to zero on *X*, there exists a sequence ⟨*m_n* : *n* ∈ ω⟩ such that *f_{m_n} J*^{QN} 0.

イロト 不得 とくほ とくほ とうほ

- $(\mathcal{I},\mathcal{J})$ *QN-space:* A topological space *X* is an $(\mathcal{I},\mathcal{J})$ QN-space if for any sequence $\langle f_n : n \in \omega \rangle$ of continuous real functions \mathcal{I} -converging to 0 on *X*, we have $f_n \xrightarrow{\mathcal{J}QN} 0$.
- (*I*, *J*)*wQN-space*: A topological space *X* is an (*I*, *J*)*wQN-space* if for any sequence ⟨*f_n* : *n* ∈ ω⟩ of continuous real functions *I*-converging to zero on *X*, there exists a sequence ⟨*m_n* : *n* ∈ ω⟩ such that *f_{m_n} J*QN → 0.
 - We can take $m_n \xrightarrow{\mathcal{J}} \infty$. Indeed, instead of $\langle f_n : n \in \omega \rangle$, consider the sequence $\langle |f_n| + 2^{-n} : n \in \omega \rangle$. Then for any a > 0 and any $x \in X$ we have

$$\{n: m_n \leq a\} \subseteq \{n: |f_{m_n}(x)| + 2^{-m_n} \geq 2^{-a}\} \in \mathcal{J}.$$

イロト 不得 トイヨト イヨト 三日

- $(\mathcal{I},\mathcal{J})$ *QN-space:* A topological space *X* is an $(\mathcal{I},\mathcal{J})$ QN-space if for any sequence $\langle f_n : n \in \omega \rangle$ of continuous real functions \mathcal{I} -converging to 0 on *X*, we have $f_n \xrightarrow{\mathcal{J} QN} 0$.
- (*I*, *J*)*wQN-space*: A topological space *X* is an (*I*, *J*)*wQN-space* if for any sequence ⟨*f_n* : *n* ∈ ω⟩ of continuous real functions *I*-converging to zero on *X*, there exists a sequence ⟨*m_n* : *n* ∈ ω⟩ such that *f_{m_n} J*^{QN} 0.
 - We can take $m_n \xrightarrow{\mathcal{J}} \infty$. Indeed, instead of $\langle f_n : n \in \omega \rangle$, consider the sequence $\langle |f_n| + 2^{-n} : n \in \omega \rangle$. Then for any a > 0 and any $x \in X$ we have

$$\{n:m_n\leq a\}\subseteq \{n:|f_{m_n}(x)|+2^{-m_n}\geq 2^{-a}\}\in \mathcal{J}.$$

• If the sequence $\langle f_n : n \in \omega \rangle$ is decreasing we obtain the notions of an $(\mathcal{I}, \mathcal{J})$ mQN-space and an $(\mathcal{I}, \mathcal{J})$ wmQN-space.

Theorem 3

 $\begin{array}{l} {\rm Basic \ notions} \\ {\rm Properties \ of \ the \ Ideal \ and \ Decompositions} \\ {\rm Equivalences \ with \ classical \ notions} \\ {\rm (\mathcal{I},\mathcal{J})QN, $(\mathcal{I},\mathcal{J}$)wQN \ and \ properties \ of $C_{\rho}(X)$ \\ \mathcal{I}-γ-covers $\ \ C_{\rho}(X)$ \\ \end{array}$

Theorem 3

Theorem

Let \mathcal{I} and \mathcal{J} be ideals on ω .

- a) If I has a pseudounion, then every JwQN-space is an (I,J)wQN-space.
- b) If J has a pseudounion, then every JQN-space is a QN-space and every (I, J)wQN-space is an (I,Fin)wQN-space.

イロン 不良 とくほう 不良 とうほ

Theorem 3

Theorem

Let \mathcal{I} and \mathcal{J} be ideals on ω .

- a) If I has a pseudounion, then every JwQN-space is an (I,J)wQN-space.
- b) If J has a pseudounion, then every JQN-space is a QN-space and every (I, J)wQN-space is an (I,Fin)wQN-space.

イロン 不良 とくほう 不良 とうほ

• Similar results hold true for $(\mathcal{I}, \mathcal{J})$ mQN-spaces and $(\mathcal{I}, \mathcal{J})$ wmQN-spaces.

Theorem 3

Theorem

Let \mathcal{I} and \mathcal{J} be ideals on ω .

- a) If *I* has a pseudounion, then every *J*wQN-space is an (*I*,*J*)wQN-space.
- b) If J has a pseudounion, then every JQN-space is a QN-space and every (I, J)wQN-space is an (I,Fin)wQN-space.
- Similar results hold true for $(\mathcal{I}, \mathcal{J})$ mQN-spaces and $(\mathcal{I}, \mathcal{J})$ wmQN-spaces.

Corollary

If $\mathcal{I} \subseteq \mathcal{J}$ and the ideal \mathcal{J} has a pseudounion, then every $(\mathcal{I}, \mathcal{J})QN$ -space is a QN-space.

Problem

For which ideal \mathcal{I} not containing an isomorphic copy of $Fin \times Fin$ do we have $\mathcal{I}QN \neq QN$? Similarly for $\mathcal{I}QN$ -, $\mathcal{I}wQN$ -, $\mathcal{I}mQN$ and $\mathcal{I}wmQN$ -spaces.

イロン 不得 とくほ とくほ とうほ

Problem

For which ideal \mathcal{I} not containing an isomorphic copy of $Fin \times Fin$ do we have $\mathcal{I}QN \neq QN$? Similarly for $\mathcal{I}QN$ -, $\mathcal{I}wQN$ -, $\mathcal{I}mQN$ and $\mathcal{I}wmQN$ -spaces.

• J. Šupina has very recently showed that assuming $\mathfrak{p} = \mathfrak{c}$, for a γ -space X which is not a QN-space (the existence of such space was proved by Bukovski et al) there exists a tall ideal \mathcal{I} , not containing an isomorphic copy of Fin×Fin, such that X is an \mathcal{I} QN-space. We can even assume that \mathcal{I} is a maximal ideal. Anyway, that is only very partial answer to our Problem 5.

Basic notions Properties of the Ideal and Decompositions Equivalences with classical notions $(\mathcal{I},\mathcal{J})$ QN, $(\mathcal{I},\mathcal{J})$ wQN and properties of $C_p(X)$ \mathcal{I} - γ -covers

 (α₁): We recall that a topological space Y has the Arkhangel'skii's property (α₁) if

> (α_1) for any $y \in Y$ and any sequence $\langle \langle y_{n,m} : m \in \omega \rangle : n \in \omega \rangle$ of sequences such that $\lim_{m \to \infty} y_{n,m} = y$ for each n, there exists a sequence $\langle z_m : m \in \omega \rangle$ such that $\lim_{m \to \infty} z_m = y$ and $\{y_{n,m} : m \in \omega\} \subseteq^* \{z_m : m \in \omega\}$ for each n,

> > イロト 不得 とくほ とくほ とうほ

 (α₁): We recall that a topological space Y has the Arkhangel'skii's property (α₁) if

> (α_1) for any $y \in Y$ and any sequence $\langle \langle y_{n,m} : m \in \omega \rangle : n \in \omega \rangle$ of sequences such that $\lim_{m\to\infty} y_{n,m} = y$ for each n, there exists a sequence $\langle z_m : m \in \omega \rangle$ such that $\lim_{m\to\infty} z_m = y$ and $\{y_{n,m} : m \in \omega\} \subseteq^* \{z_m : m \in \omega\}$ for each n,

(α₄): Y has the Arkhangel'skii's property (α₄) if

 (α_4) for any $y \in Y$ and any sequence $\langle \langle y_{n,m} : m \in \omega \rangle : n \in \omega \rangle$ of sequences such that $\lim_{m \to \infty} y_{n,m} = y$ for each n, there exists a sequence $\langle m_n : n \in \omega \rangle$ such that $\lim_{n \to \infty} y_{n,m_n} = y$. Basic notions Properties of the Ideal and Decompositions Equivalences with classical notions $(\mathcal{I},\mathcal{J})$ QN, $(\mathcal{I},\mathcal{J})$ wQN and properties of $C_p(X)$ $\mathcal{I}_{-\gamma}$ -covers

For ideals \mathcal{I} and \mathcal{J} we can modify the properties (α_1) and (α_4) for the space $C_p(X)$ (or any space of real functions):

 $(\mathcal{I}, \mathcal{J} - \alpha_1)$ If a sequence $\langle \langle f_{n,m} : m \in \omega \rangle : n \in \omega \rangle$ of sequences of continuous real functions is such that $f_{n,m} \xrightarrow{\mathcal{I}} 0$ for each n, then there exists a sequence $\langle B_n : n \in \omega \rangle \subseteq \mathcal{J}, \bigcup_{n \in \omega} B_n = \omega$, such that

$$(\forall \varepsilon > 0)(\forall x \in X)(\exists A \in \mathcal{J})(\forall n, m)(m \notin A \cup B_n \to |f_{n,m}(x)| < \varepsilon).$$
(1)

イロト 不得 トイヨト イヨト 三日

Basic notions Properties of the Ideal and Decompositions Equivalences with classical notions $(\mathcal{I},\mathcal{J})$ QN, $(\mathcal{I},\mathcal{J})$ wQN and properties of $C_p(X)$ $\mathcal{I}_{-\gamma}$ -covers

For ideals \mathcal{I} and \mathcal{J} we can modify the properties (α_1) and (α_4) for the space $C_p(X)$ (or any space of real functions):

 $(\mathcal{I}, \mathcal{J} - \alpha_1)$ If a sequence $\langle \langle f_{n,m} : m \in \omega \rangle : n \in \omega \rangle$ of sequences of continuous real functions is such that $f_{n,m} \xrightarrow{\mathcal{I}} 0$ for each n, then there exists a sequence $\langle B_n : n \in \omega \rangle \subseteq \mathcal{J}, \bigcup_{n \in \omega} B_n = \omega$, such that

$$(\forall \varepsilon > 0)(\forall x \in X)(\exists A \in \mathcal{J})(\forall n, m)(m \notin A \cup B_n \to |f_{n,m}(x)| < \varepsilon).$$
(1)

and

 $(\mathcal{I}, \mathcal{J} - \alpha_4)$ If a sequence $\langle \langle f_{n,m} : m \in \omega \rangle : n \in \omega \rangle$ of sequences of continuous real functions is such that $f_{n,m} \xrightarrow{\mathcal{I}} 0$ for each *n*, then there exists a sequence $\langle m_n : n \in \omega \rangle$ such that $f_{n,m_n} \xrightarrow{\mathcal{J}} 0$. Basic notions Properties of the Ideal and Decompositions Equivalences with classical notions $(\mathcal{I},\mathcal{J})$ QN, $(\mathcal{I},\mathcal{J})$ wQN and properties of $C_{P}(X)$ $\mathcal{I}_{-\gamma}$ -covers

Theorem 4 and 5

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ● ●

Basic notions Properties of the Ideal and Decompositions Equivalences with classical notions $(\mathcal{I},\mathcal{J})$ QN, $(\mathcal{I},\mathcal{J})$ wQN and properties of $C_p(X)$ \mathcal{I} - γ -covers

Theorem 4 and 5

Theorem

If X is a topological space then the following are equivalent:

イロト 不得 とくほ とくほ とうほ

(i) X is an $(\mathcal{I}, s\mathcal{J})wQN$ -space.

(ii) $C_{\rho}(X)$ has the property $(\mathcal{I}, \mathcal{J}-\alpha_4)$.

Basic notions Properties of the Ideal and Decompositions Equivalences with classical notions $(\mathcal{I},\mathcal{J})$ QN, $(\mathcal{I},\mathcal{J})$ wQN and properties of C_p(X) \mathcal{I} - γ -covers

Theorem 4 and 5

Theorem

If X is a topological space then the following are equivalent:

(i) X is an
$$(\mathcal{I}, s\mathcal{J})$$
wQN-space.

(ii) $C_{\rho}(X)$ has the property $(\mathcal{I}, \mathcal{J} \cdot \alpha_4)$.

Theorem

For any topological space X and any ideal \mathcal{I} , the following are equivalent.

イロン 不良 とくほう 不良 とうほ

(i) X is an $(\mathcal{I}, \mathcal{J})$ QN-space.

(ii) $C_{\rho}(X)$ possesses the property $(\mathcal{I}, \mathcal{J} \cdot \alpha_1)$.

Basic notions Properties of the Ideal and Decompositions Equivalences with classical notions $(\mathcal{I},\mathcal{J})$ QN, $(\mathcal{I},\mathcal{J})$ wQN and properties of $C_{p}(X)$ \mathcal{I} - γ -covers

We can also introduce the ideal convergence modifications of properties (α_0) and $(\alpha_0)^*$ for the space $C_p(X)$, which were introduced by Bukovski and Hales (2007):

 $(\mathcal{I}, \mathcal{J} - \alpha_0)$ If a sequence $\langle \langle f_{n,m} : m \in \omega \rangle : n \in \omega \rangle$ of sequences of continuous real functions is such that $f_{n,m} \xrightarrow{\mathcal{I}} 0$ for each n, then there exists a \mathcal{J} -diverging to ∞ sequence $\langle n_m : m \in \omega \rangle$ such that $f_{n_m,m} \xrightarrow{\mathcal{J}QN} 0$.

イロト 不得 トイヨト イヨト 三日

Basic notions Properties of the Ideal and Decompositions Equivalences with classical notions $(\mathcal{I},\mathcal{J})$ QN, $(\mathcal{I},\mathcal{J})$ wQN and properties of $C_{p}(X)$ \mathcal{I} - γ -covers

We can also introduce the ideal convergence modifications of properties (α_0) and $(\alpha_0)^*$ for the space $C_p(X)$, which were introduced by Bukovski and Hales (2007):

 $(\mathcal{I}, \mathcal{J} - \alpha_0)$ If a sequence $\langle \langle f_{n,m} : m \in \omega \rangle : n \in \omega \rangle$ of sequences of continuous real functions is such that $f_{n,m} \xrightarrow{\mathcal{I}} 0$ for each n, then there exists a \mathcal{J} -diverging to ∞ sequence $\langle n_m : m \in \omega \rangle$ such that $f_{n_m,m} \xrightarrow{\mathcal{J}QN} 0$.

and

 $(\mathcal{I}, \mathcal{J} - \alpha_0^*)$ If a sequence $\langle f_n : n \in \omega \rangle$ pointwise converges to 0 and a sequence $\langle \langle f_{n,m} : m \in \omega \rangle : n \in \omega \rangle$ of sequences of continuous real functions is such that $f_{n,m} \xrightarrow{\mathcal{I}} f_n$ for each n, then there exists a \mathcal{J} -diverging to ∞ sequence $\langle n_m : m \in \omega \rangle$ such that $f_{n,m,m} \xrightarrow{\mathcal{J}QN} 0$. Basic notions Properties of the Ideal and Decompositions Equivalences with classical notions $(\mathcal{I},\mathcal{J})$ QN, $(\mathcal{I},\mathcal{J})$ wQN and properties of $C_{p}(X)$ \mathcal{I} - γ -covers

We can also introduce the ideal convergence modifications of properties (α_0) and $(\alpha_0)^*$ for the space $C_p(X)$, which were introduced by Bukovski and Hales (2007):

 $(\mathcal{I}, \mathcal{J} - \alpha_0)$ If a sequence $\langle \langle f_{n,m} : m \in \omega \rangle : n \in \omega \rangle$ of sequences of continuous real functions is such that $f_{n,m} \xrightarrow{\mathcal{I}} 0$ for each n, then there exists a \mathcal{J} -diverging to ∞ sequence $\langle n_m : m \in \omega \rangle$ such that $f_{n_m,m} \xrightarrow{\mathcal{J}QN} 0$.

and

 $(\mathcal{I}, \mathcal{J} - \alpha_0^*)$ If a sequence $\langle f_n : n \in \omega \rangle$ pointwise converges to 0 and a sequence $\langle \langle f_{n,m} : m \in \omega \rangle : n \in \omega \rangle$ of sequences of continuous real functions is such that $f_{n,m} \xrightarrow{\mathcal{I}} f_n$ for each n, then there exists a \mathcal{J} -diverging to ∞ sequence $\langle n_m : m \in \omega \rangle$ such that $f_{n,m,m} \xrightarrow{\mathcal{J}QN} 0$. Basic notions Properties of the Ideal and Decompositions Equivalences with classical notions $(\mathcal{I},\mathcal{J})$ QN, $(\mathcal{I},\mathcal{J})$ wQN and properties of $C_p(X)$ \mathcal{I} - γ -covers

Theorem 5

Theorem

For a topological space X the following are equivalent.

イロト 不得 とくほ とくほ とうほ

- (i) X is an $(\mathcal{I}, \mathcal{J})$ QN-space.
- (ii) $C_p(X)$ has the property $(\mathcal{I}, \mathcal{J} \alpha_0)$.
- (iii) $C_{\rho}(X)$ has the property $(\mathcal{I}, \mathcal{J} \alpha_0^*)$.

I-γ-cover: Let *I* be an ideal. A sequence (*U_n* : *n* ∈ ω) of subsets of a topological space *X* is said to be an *I*-γ-cover, if for every *n*, *U_n* ≠ *X*, and for every *x* ∈ *X*, the set {*n* ∈ ω : *x* ∉ *U_n*} belongs to *I*.

イロト 不得 とくほ とくほ とうほ

I-γ-cover: Let *I* be an ideal. A sequence (*U_n* : *n* ∈ ω) of subsets of a topological space *X* is said to be an *I*-γ-cover, if for every *n*, *U_n* ≠ *X*, and for every *x* ∈ *X*, the set {*n* ∈ ω : *x* ∉ *U_n*} belongs to *I*.

• We shall identify a countable γ -cover with a Fin- γ -cover. One can easily observe that in this case the enumeration is inessential. The family of all open \mathcal{I} - γ -covers of a given topological space X will be denoted by \mathcal{I} - Γ .

イロン 不良 とくほう 不良 とうほ

I-γ-cover: Let *I* be an ideal. A sequence (*U_n* : *n* ∈ ω) of subsets of a topological space *X* is said to be an *I*-γ-cover, if for every *n*, *U_n* ≠ *X*, and for every *x* ∈ *X*, the set {*n* ∈ ω : *x* ∉ *U_n*} belongs to *I*.

• We shall identify a countable γ -cover with a Fin- γ -cover. One can easily observe that in this case the enumeration is inessential. The family of all open \mathcal{I} - γ -covers of a given topological space X will be denoted by \mathcal{I} - Γ .

• A cover $\langle V_n : n \in \omega \rangle$ is called a **refinement of the cover** $\langle U_n : n \in \omega \rangle$ if $V_n \subseteq U_n$ for each $n \in \omega$. An \mathcal{I} - γ -cover $\langle U_n : n \in \omega \rangle$ is **shrinkable** if there exists a closed \mathcal{I} - γ -cover that is a refinement of $\langle U_n : n \in \omega \rangle$. We denote by \mathcal{I} - Γ^{sh} the family of all open shrinkable \mathcal{I} - γ -covers.

• If $\langle U_n : n \in \omega \rangle$ and $\langle V_n : n \in \omega \rangle$ are \mathcal{I} - γ -covers, then $\langle U_n \cap V_n : n \in \omega \rangle$ is an \mathcal{I} - γ -cover. If $\langle U_n : n \in \omega \rangle$ and $\langle V_n : n \in \omega \rangle$ are shrinkable \mathcal{I} - γ -covers, then $\langle U_n \cap V_n : n \in \omega \rangle$ is a shrinkable \mathcal{I} - γ -cover. Finally, if $\langle U_n : n \in \omega \rangle$ is an \mathcal{I} - γ -cover and $U_n \subseteq V_n$ for each n, then $\langle V_n : n \in \omega \rangle$ is an \mathcal{I} - γ -cover.

イロト イポト イヨト イヨト 三日

Basic notions Properties of the Ideal and Decompositions Equivalences with classical notions $(\mathcal{I}, \mathcal{J})$ QN, $(\mathcal{I}, \mathcal{J})$ wQN and properties of $C_p(X)$ \mathcal{I} - γ -covers

• If $\langle U_n : n \in \omega \rangle$ and $\langle V_n : n \in \omega \rangle$ are \mathcal{I} - γ -covers, then $\langle U_n \cap V_n : n \in \omega \rangle$ is an \mathcal{I} - γ -cover. If $\langle U_n : n \in \omega \rangle$ and $\langle V_n : n \in \omega \rangle$ are shrinkable \mathcal{I} - γ -covers, then $\langle U_n \cap V_n : n \in \omega \rangle$ is a shrinkable \mathcal{I} - γ -cover. Finally, if $\langle U_n : n \in \omega \rangle$ is an \mathcal{I} - γ -cover and $U_n \subset V_n$ for each *n*, then $\langle V_n : n \in \omega \rangle$ is an \mathcal{I} - γ -cover. • For two families \mathcal{A}, \mathcal{B} of sequences of subsets of X, we introduce similarly as M. Scheepers did, the property $S_1(\mathcal{A},\mathcal{B})$ as follows: for every sequence $\langle \langle U_{n,m} : m \in \omega \rangle : n \in \omega \rangle$ of sequences from \mathcal{A} , there exists a sequence $\langle m_n : n \in \omega \rangle$ of natural numbers such that $\langle U_{n,m_n} : n \in \omega \rangle \in \mathcal{B}$. If a topological space X possesses the property $S_1(\mathcal{A},\mathcal{B})$ we shall say that X is an $S_1(\mathcal{A},\mathcal{B})$ -space.

イロト 不得 とくほ とくほ とうほ

• A topological space X (or a subset with the subspace topology) with the property $S_1(\Omega, \Gamma)$ is a γ -space, where Ω is the family of all ω -covers⁴ of X. The basic results concerning the existence of γ -spaces were proved by F. Galvin and A.W. Miller.

⁴An open cover \mathcal{A} of X is an ω cover, if for every finite $F \subseteq X$, there exists a set $U \in \mathcal{A}$ such that $F \subseteq U$.

• A topological space X (or a subset with the subspace topology) with the property $S_1(\Omega, \Gamma)$ is a γ -space, where Ω is the family of all ω -covers⁴ of X. The basic results concerning the existence of γ -spaces were proved by F. Galvin and A.W. Miller.

• As above, one can easily show that if *X* is an S₁(\mathcal{I} - Γ , \mathcal{J} - Γ)-space, then for every sequence $\langle \langle U_{n,m} : m \in \omega \rangle : n \in \omega \rangle$ of sequences of \mathcal{I} - γ -covers there exists a sequence $\langle m_n : n \in \omega \rangle$ of natural numbers such that $m_n \xrightarrow{\mathcal{J}} \infty$ and $\langle U_{n,m_n} : n \in \omega \rangle$ is a \mathcal{J} - γ -cover.

⁴An open cover \mathcal{A} of X is an ω cover, if for every finite $F \subseteq X$, there exists a set $U \in \mathcal{A}$ such that $F \subseteq U$.

Basic notions Properties of the Ideal and Decompositions Equivalences with classical notions $(\mathcal{I}, \mathcal{J})$ QN, $(\mathcal{I}, \mathcal{J})$ wQN and properties of $C_{\rho}(X)$ \mathcal{I}_{γ} -covers

Theorem 6

Bukovski and hales had found a characterization of wQN-spaces by covers, namely wQN $\equiv S_1(\Gamma^{sh},\Gamma)$. We can show similar result.

イロト 不得 とくほ とくほ とうほ

Basic notions Properties of the Ideal and Decompositions Equivalences with classical notions $(\mathcal{I}, \mathcal{J})$ QN, $(\mathcal{I}, \mathcal{J})$ wQN and properties of $C_{\mathcal{P}}(X)$ $\mathcal{I}\gamma$ -covers

Theorem 6

Bukovski and hales had found a characterization of wQN-spaces by covers, namely $wQN\equiv S_1(\Gamma^{sh},\Gamma)$. We can show similar result.

Theorem

If X is a normal topological space, then the following are equivalent:

イロト 不得 とくほ とくほ とうほ

(i) X is an $(\mathcal{I}, s\mathcal{J})$ wQN-space,

(ii) X is an
$$S_1(\mathcal{I}$$
- Γ^{sh}, \mathcal{J} - Γ)-space.

References

M. Balcerzak, K. Dems, A. Komisarski, *Statistical convergence and ideal convergence for sequences of functions*, J. Math. Anal. Appl. **328** (2007), 715–729.
 N. Bourbaki, TOPOLOGIE GÉNÉRALE, Hermann & Sci, Paris 1940.

[3] Z. Bukovská, *Quasinormal convergence*, Math. Slovaca **41** (1991), 137–146.

[4] L. Bukovský, THE STRUCTURE OF THE REAL LINE, Monog.

Mat., vol 71, Springer-Birkhäuser, Basel, 2011.

[5] L. Bukovský, I. Recław, M. Repický, Spaces not

distinguishing pointwise and quasi-normal convergence of real

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

functions, Topology Appl. 41 (1991), 25–40.
[6] L. Bukovský, J. Haleš, *QN-spaces, wQN-spaces and covering properties*, Topology Appl. 154 (2007), 848–858.
[7] H. Cartan, *Théorie des filtres*, C. R. Acad. Sci. Paris 205 (1937), 595–598.

[8] H. Cartan, *Filtres et ultrafiltres*, C. R. Acad. Sci. Paris **205** (1937), 777–779.

[9] Á. Császár, M. Laczkovich, *Discrete and equal convergence*, Studia Sci. Math. Hungarica **10** (1975), 463–472.
[10] P. Das, *Certain types of open covers and selection principles using ideals*, Houston J. Math. **39** (2013), 637–650.
[11] P. Das, D. Chandra, *Spaces not distinguishing pointwise*

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

```
\begin{array}{l} \text{Basic notions} \\ \text{Properties of the Ideal and Decompositions} \\ \text{Equivalences with classical notions} \\ (\mathcal{I},\mathcal{J})\text{QN}, (\mathcal{I},\mathcal{J})\text{wQN} \text{ and properties of } C_{\mathcal{P}}(X) \\ \\ \mathcal{I}\text{-}\gamma\text{-covers} \end{array}
```

and I-quasinormal convergence of real functions, Comment Math. Univ. Carolin. 54 (2013), 83–96. [12] P. Das, D. Chandra, $(\mathcal{I}, \mathcal{J})$ -quasinormal spaces, manuscript, 2013. [13] G. Di Maio, Lj.D.R. Kočinac, Statistical convergence in topology, Topology Appl. 156 (2008), 28-45. [14] R. Filipów, M. Staniszewski, On ideal equal convergence, Cent. Eur. J. Math. 12 (2014), 896–910. [15] F. Galvin, A.W. Miller, γ -sets and other singular sets of real numbers, Topology Appl. 17 (1984), 145–155. [16] J. Jasinski, I. Recław, On spaces with the ideal convergence property, Collog. Math. 111 (2008), 43–50.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ のへぐ

[17] P. Kostyrko, T. Šalát, W. Wilczyński, \mathcal{I} -convergence, Real Anal. Exchange **26** (2000/2001), 669–685.

[18] F. Rothberger, *Sur les familles indénombrables de suites de nombress naturels et les problémes concernant la propriété C*, Proc. Cambridge Phil. Soc. **37** (1941), 109–126. [19] M. Sakai, *The sequence selection properties of* $C_p(X)$,

Topology Appl. **154** (2007), 552–560.

[20] M. Scheepers, Gaps in ${}^{\omega}\omega$, In: Set theory of the Reals (

H. Judah, ed.), Israel Mathematical Conference Proceedings **6** (1993), 439–561.

[21] M. Scheepers, *Combinatorics of open covers I: Ramsey theory,* Topology Appl. **69** (1996), 31–62.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

[22] M. Scheepers, Sequential convergence in C_p(X) and a covering property, East-West J. Math. 1 (1999), 207–214.
[23] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73–74.
[24] J. Šupina, Ideal QN-spaces, preprint.

イロン 不良 とくほう 不良 とうほ

THANK YOU FOR YOUR ATTENTION

▲ロト ▲帰 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()