$\begin{array}{l} \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ LOA(x, X) \mbox{ is an absolute retract}\\ LOA(X)\\ \mbox{Relation between properties of X and properties of $LOA(X)$\\ Induced maps} \end{array}$

The hyperspace of large order arcs

Mauricio Esteban Chacón-Tirado

Benemérita Universidad Autónoma de Puebla

12th Symposium on General Topology, July 2016

A (1) < A (1)</p>

$\begin{array}{c} \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ LOA(x,X) \mbox{ is an absolute retract}\\ LOA(X)\\ \mbox{Relation between properties of X and properties of $LOA(X)$\\ Induced maps} \end{array}$

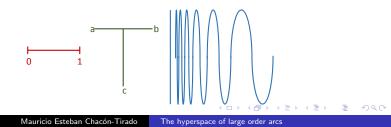
Definitions

Definition

A continuum is a compact connected metric space.

Examples

The unit interval [0,1], a simple triod, the closure of the graph $\sin(\frac{1}{x})$.



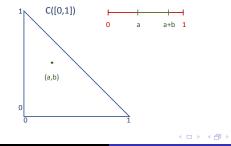
Preliminaries

Properties of the hyperspace of large order arcs LOA(x, X) is an absolute retract LOA(x) Relation between properties of X and properties of LOA(X) Induced maps

Hyperspace of subcontinua

Definition

Given a continuum X, let C(X) be the hyperspace of subcontinua of X, consisting of all subcontinua of X. We let C(X) be metrized with the Hausdorff metric.



$\label{eq:product} \begin{array}{c} \mbox{Preliminaries} \\ \mbox{Properties of the hyperspace of large order arcs} \\ LOA(x, X) \mbox{ is an absolute retract} \\ LOA(X) \\ \mbox{Relation between properties of } X \mbox{ and properties of } LOA(X) \\ \mbox{Induced maps} \end{array}$

Hausdorff metric

Definition

Let X be a continuum with metric d, given $A \in C(X)$ and $\varepsilon > 0$, the neighbourhood of radius ε centered in A is defined as the set $N_{\varepsilon}(A) = \bigcup \{B_{\varepsilon}(a) : a \in A\}$, where $B_{\varepsilon}(a)$ is the open ball in X of radius ε centered in a.

If a continuum X consists of only one point, we say that X is degenerate, and if X consists of more than one point, we say that X is non-degenerate.

Preliminaries Properties of the hyperspace of large order arcs LOA(x, X) is an absolute retract LOA(X) Relation between properties of X and properties of LOA(X) Induced maps

Definition

Given a continuum X and $A, B \in C(X)$, the Hausdorff metric H in C(X) is defined for each $A, B \in C(X)$ by $H(A, B) = \inf \{ \varepsilon > 0 : A \subset N_{\varepsilon}(B) \text{ and } B \subset N_{\varepsilon}(A) \}.$

Image: A = A

Preliminaries Properties of the hyperspace of large order arcs LOA(x, X) is an absolute retract LOA(X) Relation between properties of X and properties of LOA(X) Induced maps Whitney maps

Definition

Let X be a continuum with more than one point. A map $\mu : C(X) \rightarrow [0,1]$ is a Whitney map if the following conditions hold:

•
$$\mu(X) = 1$$
 and $\mu(\{x\}) = 0$ for each $x \in X$,

• if $A, B \in C(X)$ and $A \subsetneq B$, then $\mu(A) < \mu(B)$.

Theorem

Let X be a continuum with more than one point. Then there exists a Whitney map $\mu : C(X) \rightarrow [0,1]$.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Preliminaries Properties of the hyperspace of large order arcs LOA(x, X) is an absolute retract LOA(X) Relation between properties of X and properties of LOA(X) Induced maps Whitney maps

Definition

Let X be a continuum with more than one point. A map $\mu : C(X) \rightarrow [0,1]$ is a Whitney map if the following conditions hold:

•
$$\mu(X) = 1$$
 and $\mu(\{x\}) = 0$ for each $x \in X$,

• if
$$A, B \in C(X)$$
 and $A \subsetneq B$, then $\mu(A) < \mu(B)$.

Theorem

Let X be a continuum with more than one point. Then there exists a Whitney map $\mu: C(X) \rightarrow [0,1]$.

・ロト ・同ト ・ヨト ・ヨト

Preliminaries Properties of the hyperspace of large order arcs LOA(x, X) is an absolute retract LOA(X) Relation between properties of X and properties of LOA(X) Induced maps Whitney maps

Definition

Let X be a continuum with more than one point. A map $\mu : C(X) \rightarrow [0,1]$ is a Whitney map if the following conditions hold:

•
$$\mu(X) = 1$$
 and $\mu(\{x\}) = 0$ for each $x \in X$,

• if
$$A, B \in C(X)$$
 and $A \subsetneq B$, then $\mu(A) < \mu(B)$.

Theorem

Let X be a continuum with more than one point. Then there exists a Whitney map $\mu : C(X) \rightarrow [0,1]$.

Preliminaries Properties of the hyperspace of large order arcs LOA(x, X) is an absolute retract LOA(X) Relation between properties of X and properties of LOA(X) Induced maps

Order arcs

Definition

An order arc in C(X) is a subcontinuum $\mathcal{O} \subset C(X)$ homeomorphic to an arc, such that for each $A, B \in \mathcal{O}$, we have that $A \subset B$ or $B \subset A$.

We also call the degenerate subcontinua of C(X) order arcs.

Theorem

Let X be a continuum and $A, B \in C(X)$ such that $A \subset B$. Then there exists an order arc $\mathcal{O} \subset C(X)$ that joins A to B.

< ロ > < 同 > < 回 > < 回 >

Preliminaries Properties of the hyperspace of large order arcs LOA(x, X) is an absolute retract LOA(X) Relation between properties of X and properties of LOA(X) Induced maps

Order arcs

Definition

An order arc in C(X) is a subcontinuum $\mathcal{O} \subset C(X)$ homeomorphic to an arc, such that for each $A, B \in \mathcal{O}$, we have that $A \subset B$ or $B \subset A$.

We also call the degenerate subcontinua of C(X) order arcs.

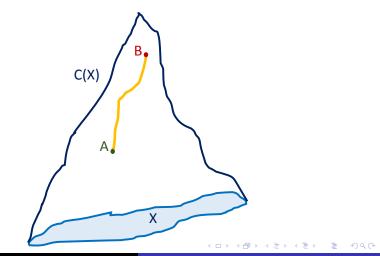
Theorem

Let X be a continuum and $A, B \in C(X)$ such that $A \subset B$. Then there exists an order arc $\mathcal{O} \subset C(X)$ that joins A to B.

Preliminaries

Properties of the hyperspace of large order arcs LOA(x, X) is an absolute retract LOA(X)Relation between properties of X and properties of LOA(X)Induced maps

Order arc joining A to B

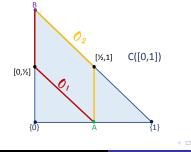


Preliminaries

Properties of the hyperspace of large order arcs LOA(x, X) is an absolute retract LOA(x). Relation between properties of X and properties of LOA(X) Induced maps

Examples of orders arcs

Let
$$X = [0, 1]$$
, $A = \{\frac{1}{2}\}$ and $B = [0, 1]$. Define the sets
 $\mathcal{O}_1 = \{[t, \frac{1}{2}] : 0 \le t \le \frac{1}{2}\} \cup \{[0, t] : \frac{1}{2} \le t \le 1\}$ and
 $\mathcal{O}_2 = \{[\frac{1}{2}, t] : \frac{1}{2} \le t \le 1\} \cup \{[t, 1] : 0 \le t \le \frac{1}{2}\}$, then \mathcal{O}_1 and \mathcal{O}_2
are two distinct order arcs joining A to B .



- ∢ 同 ▶ - ∢ 三

Preliminaries Properties of the hyperspace of large order arcs LOA(x, X) is an absolute retract LOA(X) Relation between properties of X and properties of LOA(X) Induced maps Order arcs

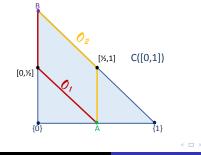
The set of all order arcs OA(X) of a continuum X was studied by Curtis and Lynch for locally connected continua. They characterized those continua X such that OA(X) is homeomorphic to a Hilbert cube. The showed that if X is the union of a circle and an interval at the middle point of the interval, then OA(X) is a Hilbert cube. We see that taking the space OA(X) loses information about the space X.

 $\begin{array}{c} \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ LOA(x,X) \mbox{ is an absolute retract}\\ LOA(X)\\ \mbox{Relation between properties of X and properties of $LOA(X)$\\ Induced maps} \end{array}$

Large order arcs

Definition

Given a continuum X, a large order arc in C(X) is an order arc in C(X) that joins X to an element of the form $\{x\}$, for some $x \in X$.



 $\begin{array}{c} \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ LOA(x, X) \mbox{ is an absolute retract}\\ LOA(X)\\ \mbox{Relation between properties of X and properties of }LOA(X)\\ \mbox{Induced maps} \end{array}$

Basic properties of large order arcs

Proposition

Let X be a continuum, $x \in X$ and A an order that in C(X) that contains $\{x\}$ and X. Then the following properties hold:

- if $\{y\} \in \mathcal{A}$ for some $y \in X$, then x = y,
- given a Whitney map $\mu : C(X) \rightarrow [0,1]$, then $\mu(\mathcal{A}) = [0,1]$ and μ is a homeomprhism between \mathcal{A} and [0,1],
- the endpoints of \mathcal{A} are X and $\{x\}$,
- if \mathcal{B} is an order arc in C(X) such that $\mathcal{A} \subset \mathcal{B}$ then $\mathcal{A} = \mathcal{B}$.

< ロ > < 同 > < 回 > < 回 >

 $\begin{array}{c} \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ LOA(x,X) \mbox{ is an absolute retract}\\ LOA(X)\\ \mbox{Relation between properties of X and properties of LOA(X)}\\ \mbox{Induced maps} \end{array}$

Basic properties of large order arcs

Proposition

Let X be a continuum, $x \in X$ and A an order that in C(X) that contains $\{x\}$ and X. Then the following properties hold:

- if $\{y\} \in \mathcal{A}$ for some $y \in X$, then x = y,
- given a Whitney map $\mu : C(X) \rightarrow [0,1]$, then $\mu(\mathcal{A}) = [0,1]$ and μ is a homeomprhism between \mathcal{A} and [0,1],
- the endpoints of A are X and $\{x\}$,

• if \mathcal{B} is an order arc in C(X) such that $\mathcal{A} \subset \mathcal{B}$ then $\mathcal{A} = \mathcal{B}$.

・ロト ・同ト ・ヨト ・ヨト

 $\begin{array}{c} \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ LOA(x, X) \mbox{ is an absolute retract}\\ LOA(X)\\ \mbox{Relation between properties of X and properties of }LOA(X)\\ \mbox{Induced maps} \end{array}$

Basic properties of large order arcs

Proposition

Let X be a continuum, $x \in X$ and A an order that in C(X) that contains $\{x\}$ and X. Then the following properties hold:

- if $\{y\} \in \mathcal{A}$ for some $y \in X$, then x = y,
- given a Whitney map $\mu : C(X) \rightarrow [0,1]$, then $\mu(\mathcal{A}) = [0,1]$ and μ is a homeomprhism between \mathcal{A} and [0,1],
- the endpoints of A are X and $\{x\}$,

• if \mathcal{B} is an order arc in C(X) such that $\mathcal{A} \subset \mathcal{B}$ then $\mathcal{A} = \mathcal{B}$.

イロト イポト イヨト イヨト

 $\label{eq:constraint} \begin{array}{c} \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ LOA(x,X) \mbox{ is an absolute retract}\\ LOA(X)\\ \mbox{Relation between properties of X and properties of LOA(X)}\\ \mbox{Induced maps} \end{array}$

Basic properties of large order arcs

Proposition

Let X be a continuum, $x \in X$ and A an order that in C(X) that contains $\{x\}$ and X. Then the following properties hold:

- if $\{y\} \in \mathcal{A}$ for some $y \in X$, then x = y,
- given a Whitney map $\mu : C(X) \rightarrow [0,1]$, then $\mu(\mathcal{A}) = [0,1]$ and μ is a homeomprhism between \mathcal{A} and [0,1],
- the endpoints of A are X and $\{x\}$,
- if \mathcal{B} is an order arc in C(X) such that $\mathcal{A} \subset \mathcal{B}$ then $\mathcal{A} = \mathcal{B}$.

イロト イポト イヨト イヨト

 $\begin{array}{c} & \mbox{Preliminaries} \\ \mbox{Properties of the hyperspace of large order arcs} \\ & LOA(x, X) \mbox{ is an absolute retract} \\ & LOA(X) \\ \mbox{Relation between properties of } X \mbox{ and properties of } LOA(X) \\ & \mbox{Induced maps} \end{array}$

Definitions

Definition

Given a continuum X and $x \in X$, let LOA(X) be the hyperspace of all large order arcs in C(X), and let LOA(x, X) be the hyperspace of all large order arcs that contain the element $\{x\}$.

We consider LOA(X) and LOA(x, X) as subspaces of C(C(X)).

Preliminaries **Properties of the hyperspace of large order arcs** LOA(x, X) is an absolute retract LOA(X)Relation between properties of X and properties of LOA(X)Induced maps

Proposition

Let X be a continuum and $x \in X$. Then LOA(x, X) and LOA(X) are non-empty continua.

Proposition

 $LOA(X) = \bigcup_{x \in X} LOA(x, X).$

(日) (同) (三) (三)

э

 $\begin{array}{c} \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ LOA(x, X) \mbox{ is an absolute retract}\\ LOA(X)\\ \mbox{Relation between properties of X and properties of $LOA(X)$\\ Induced maps} \end{array}$

Proposition

Let X be a continuum and $x \in X$. Then LOA(x, X) and LOA(X) are non-empty continua.

Proposition

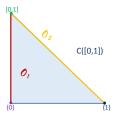
$$LOA(X) = \bigcup_{x \in X} LOA(x, X).$$

Image: A math a math

 $\begin{array}{c} & \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ & LOA(x,X) \mbox{ is an absolute retract}\\ & LOA(x)\\ \mbox{Relation between properties of } X \mbox{ and properties of } LOA(X)\\ \mbox{Induced maps} \end{array}$

LOA(x, X) can be degenerate

Let X = [0, 1] and x = 0 or 1, then LOA(x, [0, 1]) is degenerate. More specificly, $\mathcal{O}_1 = \{[0, t] : 0 \le t \le 1\}$ is the only element of $LOA(\{0\}, [0, 1])$, and $\mathcal{O}_2 = \{[t, 1] : 0 \le t \le 1\}$ is the only element of $LOA(\{1\}, [0, 1])$.



・ 同 ト ・ ヨ ト ・ ヨ ト

 $\begin{array}{c} \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ LOA(x, X) \mbox{ is an absolute retract}\\ LOA(X)\\ \mbox{Relation between properties of X and properties of $LOA(X)$\\ Induced maps} \end{array}$

Theorem[Chacón-Tirado]

Let X be a continuum and $x \in X$. Then LOA(x, X) and LOA(X) are closed subspaces of C(C(X)).

Theorem[Chacón-Tirado]

Let X be a continuum and $x \in X$. Then LOA(x, X) is an arcwise connected continuum, and LOA(X) is a continuum.

• □ ▶ • □ ▶ • □ ▶ • □

 $\begin{array}{c} \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ LOA(x,X) \mbox{ is an absolute retract}\\ LOA(X)\\ \mbox{Relation between properties of X and properties of $LOA(X)$\\ Induced maps} \end{array}$

Theorem[Chacón-Tirado]

Let X be a continuum and $x \in X$. Then LOA(x, X) and LOA(X) are closed subspaces of C(C(X)).

Theorem[Chacón-Tirado]

Let X be a continuum and $x \in X$. Then LOA(x, X) is an arcwise connected continuum, and LOA(X) is a continuum.

 $\begin{array}{c} \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ \mbox{LOA}(x,X) \mbox{ is an absolute retract}\\ \mbox{LOA}(X)\\ \mbox{Relation between properties of X and properties of $LOA(X)$\\ \mbox{Induced maps} \end{array}$

Absolute retract

Definition

Let $X \subset Y$ topological spaces. We say that X is a retract of Y if there exists a retractions $r : Y \to X$, that is, r is a map such that r(x) = x for each $x \in X$.

Definition

We say that a topological space X is an absolute retract(AR) if whenever X is embedded as a closed subspace of a space Y, then X is a retract of Y.

(日) (同) (三) (三)

 $\begin{array}{c} \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ LOA(x,X) \mbox{ is an absolute retract}\\ LOA(X)\\ \mbox{Relation between properties of X and properties of $LOA(X)$\\ \mbox{Induced maps} \end{array}$

Absolute retract

Definition

Let $X \subset Y$ topological spaces. We say that X is a retract of Y if there exists a retractions $r : Y \to X$, that is, r is a map such that r(x) = x for each $x \in X$.

Definition

We say that a topological space X is an absolute retract(AR) if whenever X is embedded as a closed subspace of a space Y, then X is a retract of Y.

< D > < A > < B >

Preliminaries Properties of the hyperspace of large order arcs LOA(x, X) is an absolute retract LOA(X)Relation between properties of X and properties of LOA(X)Induced maps

LOA(x, X) is an AR

Theorem[Chacón-Tirado]

Let X be a continuum and $x \in X$. Then LOA(x, X) is an AR.

(日) (同) (三) (三)

|--|

Definition

- A X is called:
 - decomposable if X can be represented as the union of two proper subcontinua of X.
 - indecomposable if X is not decomposable, and
 - hereditarily indecomposable if each subcontinuum of X is indecomposable.

|--|

Definition

- A X is called:
 - decomposable if X can be represented as the union of two proper subcontinua of X.
 - indecomposable if X is not decomposable, and
 - hereditarily indecomposable if each subcontinuum of X is indecomposable.

|--|

Definition

- A X is called:
 - decomposable if X can be represented as the union of two proper subcontinua of X.
 - indecomposable if X is not decomposable, and
 - hereditarily indecomposable if each subcontinuum of X is indecomposable.

Knaster buckethandle is a indecomposable continuum:

The pseudo-arc is a hereditarily indecomposable continuum.

• • • • • • • •

 $\begin{array}{c} \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ LOA(x, X) \mbox{ is an absolute retract}\\ LOA(X)\\ \mbox{Relation between properties of X and properties of }LOA(X)\\ \mbox{Induced maps} \end{array}$

When LOA(x, X) is degenerate

Theorem[Chacón-Tirado]

Let X be a continuum and $x \in X$. Then LOA(x, X) is degenerate if and only if for each $A, B \in C(X)$ such that $x \in A \cap B$, we have that $A \subset B$ or $B \subset A$.

Corollary

Let X be a continuum. Then LOA(x, X) is degenerate for each $x \in X$ if and only if X is hereditarily indecomposable.

Corollary

If X is a hereditarily indecomposable continuum, then LOA(X) is homeomorphic to X.

 $\begin{array}{c} \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ LOA(x, X) \mbox{ is an absolute retract}\\ LOA(X)\\ \mbox{Relation between properties of X and properties of LOA(X)}\\ \mbox{Induced maps} \end{array}$

When LOA(x, X) is degenerate

Theorem[Chacón-Tirado]

Let X be a continuum and $x \in X$. Then LOA(x, X) is degenerate if and only if for each $A, B \in C(X)$ such that $x \in A \cap B$, we have that $A \subset B$ or $B \subset A$.

Corollary

Let X be a continuum. Then LOA(x, X) is degenerate for each $x \in X$ if and only if X is hereditarily indecomposable.

Corollary

If X is a hereditarily indecomposable continuum, then LOA(X) is homeomorphic to X.

 $\begin{array}{c} \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ LOA(x, X) \mbox{ is an absolute retract}\\ LOA(X)\\ \mbox{Relation between properties of X and properties of LOA(X)}\\ \mbox{Induced maps} \end{array}$

When LOA(x, X) is degenerate

Theorem[Chacón-Tirado]

Let X be a continuum and $x \in X$. Then LOA(x, X) is degenerate if and only if for each $A, B \in C(X)$ such that $x \in A \cap B$, we have that $A \subset B$ or $B \subset A$.

Corollary

Let X be a continuum. Then LOA(x, X) is degenerate for each $x \in X$ if and only if X is hereditarily indecomposable.

Corollary

If X is a hereditarily indecomposable continuum, then LOA(X) is homeomorphic to X.

Preliminaries Properties of the hyperspace of large order arcs *LOA*(*x*, *X*) is an absolute retract *LOA*(*X*) Relation between properties of *X* and properties of *LOA*(*X*) Induced maps

Definition

A closed subset Y in a compact metric space X is called a Z-set if for each $\varepsilon > 0$ there exists a map $f : X \to X \setminus Y$ such that $d(x, f(x)) < \varepsilon$ for each $x \in X$.

Definition

A map $f : X \to X$ is called Z-map if its image is a Z-set.

・ロト ・同ト ・ヨト ・ヨト

 $\begin{array}{c} \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ LOA(x,X) \mbox{ is an absolute retract}\\ LOA(X)\\ \mbox{Relation between properties of X and properties of $LOA(X)$\\ Induced maps} \end{array}$

Definition

A closed subset Y in a compact metric space X is called a Z-set if for each $\varepsilon > 0$ there exists a map $f : X \to X \setminus Y$ such that $d(x, f(x)) < \varepsilon$ for each $x \in X$.

Definition

A map $f : X \to X$ is called Z-map if its image is a Z-set.

< ロ > < 同 > < 回 > < 回 >

 $\begin{array}{c} \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ LOA(x,X) \mbox{ is an absolute retract}\\ LOA(X)\\ \mbox{Relation between properties of X and properties of }LOA(X)\\ \mbox{Induced maps} \end{array}$

When LOA(x, X) is non-degenerate

Theorem[Toruńczyk]

Let X be an AR. If the identity map on X is uniform limit of Z-maps, then X is homeomorphic to the Hilbert cube.

Theorem[Chacón-Tirado]

Let X is a continuum and $x \in X$. If LOA(x, X) is non-degenerate, then the identity map on LOA(x, X) is uniform limit of Z-maps, then by Toruńczyk, LOA(x, X) is homeomorphic to the Hilbert cube.

< 口 > < 同 > < 三 > < 三

 $\begin{array}{l} & \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ & LOA(x,X) \mbox{ is an absolute retract}\\ & LOA(X)\\ \mbox{Relation between properties of X and properties of $LOA(X)$}\\ & \mbox{Induced maps} \end{array}$

When LOA(x, X) is non-degenerate

Theorem[Toruńczyk]

Let X be an AR. If the identity map on X is uniform limit of Z-maps, then X is homeomorphic to the Hilbert cube.

Theorem[Chacón-Tirado]

Let X is a continuum and $x \in X$. If LOA(x, X) is non-degenerate, then the identity map on LOA(x, X) is uniform limit of Z-maps, then by Toruńczyk, LOA(x, X) is homeomorphic to the Hilbert cube.

A B > A B >

We consider the metric on LOA(x, X) as the induced by the Hausdorff metric on C(C(X)).

Theorem[Chacón-Tirado]

Let LOA(x, X) be metrized with the Hausdorff metric on C(C(X)). Then the open balls in LOA(x, X) are arcwise connected.

Induced maps

When X is an AR

Theorem[Chacón-Tirado]

If X is an AR, then LOA(X) is an AR.

Theorem[Chacón-Tirado]

if X is an AR, then the identity map on LOA(X) is a uniform limit of Z-maps.

Corollary

If X is an AR, then LOA(X) is homeomorphic to the Hilbert cube.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

When X is an AR

Theorem[Chacón-Tirado]

If X is an AR, then LOA(X) is an AR.

Theorem[Chacón-Tirado]

if X is an AR, then the identity map on LOA(X) is a uniform limit of Z-maps.

Corollary

If X is an AR, then LOA(X) is homeomorphic to the Hilbert cube.

A B > A B >

Induced maps

When X is an AR

Theorem[Chacón-Tirado]

If X is an AR, then LOA(X) is an AR.

Theorem[Chacón-Tirado]

if X is an AR, then the identity map on LOA(X) is a uniform limit of Z-maps.

Corollary

If X is an AR, then LOA(X) is homeomorphic to the Hilbert cube.

A B > A B >

Topological groups

Definition

A topological group is a topological space X endowed with a group operation $\cdot : X \times X \to X$ such that \cdot and the inverse are continuous.

Induced maps

Definition

A continuum X is called homogeneous if for each $x, y \in X$ there exists a homeomorphism $h: X \to X$ such that h(x) = y.

< ロ > < 同 > < 回 > < 回 >

Topological groups

Definition

A topological group is a topological space X endowed with a group operation $\cdot : X \times X \to X$ such that \cdot and the inverse are continuous.

Induced maps

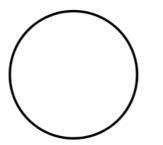
Definition

A continuum X is called homogeneous if for each $x, y \in X$ there exists a homeomorphism $h: X \to X$ such that h(x) = y.

< ロ > < 同 > < 回 > < 回 >

Examples

The unit circle, products of circles, dyadic solenoids...



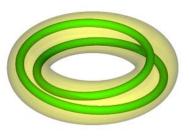


Image: A mathematical states and a mathem

Topological groups

Theorem[Chacón-Tirado]

Let X be a topological group and $x \in X$. Then LOA(X) is homeomorphic to $X \times LOA(x, X)$.

Induced maps

Corollary[Chacón-Tirado]

Let S^1 be the unit circle. Then $LOA(S^1)$ is homeomorphic to $S^1 \times Q$, where Q is the Hilbert cube.

・ロト ・同ト ・ヨト ・ヨト

Topological groups

Theorem[Chacón-Tirado]

Let X be a topological group and $x \in X$. Then LOA(X) is homeomorphic to $X \times LOA(x, X)$.

Corollary[Chacón-Tirado]

Let S^1 be the unit circle. Then $LOA(S^1)$ is homeomorphic to $S^1 \times Q$, where Q is the Hilbert cube.

< D > < P > < P > < P >

 $\begin{array}{c} \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ LOA(x, X) \mbox{ is an absolute retract}\\ LOA(X)\\ \mbox{Relation between properties of X and properties of $LOA(X)$\\ \mbox{Induced maps}\\ \end{array}$

Theorem

If X is a topological group, then LOA(X) is homogeneous.

Question

If X is homogeneous, is it true that LOA(X) is homogeneous?.

(日) (同) (三) (三)

Theorem

If X is a topological group, then LOA(X) is homogeneous.

Question

If X is homogeneous, is it true that LOA(X) is homogeneous?.

A B > A B >

 $\begin{array}{l} \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ LOA(x, X) \mbox{ is an absolute retract}\\ LOA(X)\\ \mbox{Relation between properties of } X \mbox{ and properties of } LOA(X)\\ \mbox{Induced maps}\\ \mbox{Induced maps}\\ \end{array}$

Relation between properties of X and properties of LOA(X)

Theorem[Chacón-Tirado]

LOA(X) is arcwise connected if and only if X is arcwise connected.

Theorem[Chacón-Tirado]

LOA(X) is locally connected if and only if X is locally connected.

< 口 > < 同 > < 三 > < 三

 $\begin{array}{l} \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ LOA(x, X) \mbox{ is an absolute retract}\\ LOA(X)\\ \mbox{Relation between properties of X and properties of $LOA(X)$}\\ \mbox{Induced maps} \end{array}$

Relation between properties of X and properties of LOA(X)

Theorem[Chacón-Tirado]

LOA(X) is arcwise connected if and only if X is arcwise connected.

Theorem[Chacón-Tirado]

LOA(X) is locally connected if and only if X is locally connected.

< D > < P > < P > < P >

 $\begin{array}{l} & \text{Preliminaries} \\ & \text{Properties of the hyperspace of large order arcs} \\ & LOA(x,X) \text{ is an absolute retract} \\ & LOA(X) \\ & \text{Relation between properties of } X \text{ and properties of } LOA(X) \\ & \text{Induced maps} \end{array}$

Theorem[Chacón-Tirado]

The fundamental groups of X and of LOA(X) are isomorphic.

Theorem[Chacón-Tirado]

Let X be a contractible continuum. Then LOA(X) is contractible.

Image: A = A

 $\begin{array}{c} & \text{Preliminaries} \\ \text{Properties of the hyperspace of large order arcs} \\ & LOA(x,X) \text{ is an absolute retract} \\ & LOA(X) \\ \end{array}$ Relation between properties of X and properties of LOA(X) Induced maps

Theorem[Chacón-Tirado]

The fundamental groups of X and of LOA(X) are isomorphic.

Theorem[Chacón-Tirado]

Let X be a contractible continuum. Then LOA(X) is contractible.

A B > A B >

Connectedness im kleinen

Definition

A continuum X is called connected im kleinen (cik) at a point $x \in X$ if for each $\varepsilon > 0$ there exists a subcontinuum of X with diameter less than ε that contains x in its interior.

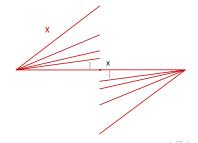
< D > < A > < B >

 $\begin{array}{l} \mbox{Preliminaries} \\ \mbox{Properties of the hyperspace of large order arcs} \\ LOA(x, X) \mbox{ is an absolute retract} \\ LOA(X) \\ \mbox{Relation between properties of X and properties of } LOA(X) \\ \mbox{Induced maps} \end{array}$

Theorem[Chacón-Tirado]

Let X be a continuum cik at $x \in X$. Then for each $\mathcal{L} \in LOA(x, X)$ we have that LOA(X) is cik at \mathcal{L} .

The converse is not true. Consider X and x as in the picture below, then X is not cik at x, and LOA(X) is cik at any point $\mathcal{L} \in LOA(x, X)$.



Aposyndesis

Aposyndesis is a separation property weaker than connectedness im kleinen.

Definition

A continuum X is called aposyndetic if for each $p, q \in X$, with $p \neq q$, there exists a subcontinuum of X that contains p in its interior, and does not contain q.

Theorem[Chacón-Tirado]

Let X be aposyndetic. Then LOA(X) is aposyndetic.

< ロ > < 同 > < 回 > < 回 >

 $\begin{array}{l} & \mbox{Preliminaries}\\ & \mbox{Properties of the hyperspace of large order arcs}\\ & LOA(x,X) \mbox{ is an absolute retract}\\ & LOA(X)\\ & \mbox{Relation between properties of X and properties of $LOA(X)$}\\ & \mbox{Induced maps} \end{array}$

Aposyndesis

Aposyndesis is a separation property weaker than connectedness im kleinen.

Definition

A continuum X is called aposyndetic if for each $p, q \in X$, with $p \neq q$, there exists a subcontinuum of X that contains p in its interior, and does not contain q.

Theorem[Chacón-Tirado]

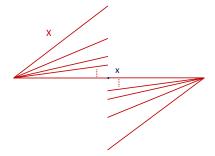
Let X be aposyndetic. Then LOA(X) is aposyndetic.

< ロ > < 同 > < 回 > < 国 > < 国 > < 国

 $\begin{array}{l} \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ LOA(x, X) \mbox{ is an absolute retract}\\ LOA(X)\\ \mbox{Relation between properties of X and properties of $LOA(X)$}\\ \mbox{Induced maps} \end{array}$

Conjecture

We believe that the same example as before shows that the converse of the previous theorem is not true, LOA(X) is aposyndetic while X is not.



 $\begin{array}{c} & \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ & LOA(x, X) \mbox{ is an absolute retract}\\ & LOA(X)\\ \mbox{Relation between properties of X and properties of LOA(X)}\\ & \mbox{Induced mass} \end{array}$

Fixed point property

Definition

A continuum X has the fixed point property (FPP) if each map $f: X \to X$ has a fixed point.

Theorem[Chacón-Tirado]

If X is a continuum such that LOA(X) has the FPP, then X has the FPP.

 $\begin{array}{l} & \mbox{Preliminaries}\\ & \mbox{Properties of the hyperspace of large order arcs}\\ & LOA(x,X) \mbox{ is an absolute retract}\\ & LOA(X)\\ & \mbox{Relation between properties of X and properties of $LOA(X)$\\ & \mbox{ Induced maps} \end{array}$

Fixed point property

Definition

A continuum X has the fixed point property (FPP) if each map $f: X \to X$ has a fixed point.

Theorem[Chacón-Tirado]

If X is a continuum such that LOA(X) has the FPP, then X has the FPP.

< D > < P > < P > < P >

 $\begin{array}{l} & \mbox{Preliminaries}\\ & \mbox{Properties of the hyperspace of large order arcs}\\ & LOA(x,X) \mbox{ is an absolute retract}\\ & LOA(X)\\ & \mbox{Relation between properties of X and properties of $LOA(X)$}\\ & \mbox{Induced maps} \end{array}$

Fixed point property

Since absolute retracts have the FPP, we have the following theorem

Theorem

Let X be an absolute retract. Then LOA(X) has the FPP.

< D > < A > < B >

 $\begin{array}{l} & \mbox{Preliminaries} \\ & \mbox{Properties of the hyperspace of large order arcs} \\ & LOA(x,X) \mbox{ is an absolute retract} \\ & LOA(X) \\ & \mbox{Relation between properties of } X \mbox{ and properties of } LOA(X) \\ & \mbox{ Induced maps} \end{array}$

Fixed point property

Theorem[Chacón, Herrera, Macías]

Let X be a chainable continuum such that each arc-component is compact. Then LOA(X) has the FPP.

Question

Let X be a continuum with the FPP. Is it true that LOA(X) has the FPP?

• □ > • □ > • □ > • □ > •

Induced maps

In the present section, let X, Y be continua and $f : X \to Y$ is a surjective mapping. Let us remember that the induced map $C(f) : C(X) \to C(Y)$ is defined by C(f)(A) = f(A), for each $A \in C(X)$.

Definition

The induced map $LOA(f) : LOA(X) \to LOA(Y)$ is defined for each $\mathcal{L} \in LOA(X)$ by $LOA(f)(\mathcal{L}) = \{f(L) : L \in \mathcal{L}\}.$

Since f is surjective, then LOA(f) is well defined, and since LOA(f) is just the restriction of the induced map C(C(f)), then LOA(f) is continuous.

・ロト ・同ト ・ヨト ・ヨト

 $\begin{array}{l} & \mbox{Preliminaries}\\ & \mbox{Properties of the hyperspace of large order arcs}\\ & LOA(x, X) \mbox{ is an absolute retract}\\ & LOA(X)\\ & \mbox{Relation between properties of } X \mbox{ and properties of } LOA(X)\\ & \mbox{Induced maps} \end{array}$

Definitions

Definition

The map $f : X \to Y$ is called weakly confluent is its induced map C(f) is surjective, and f is called confluent if for each $B \in C(Y)$ and each component A of $f^{-1}(B)$, we have that f(A) = B.

Theorem

If the map LOA(f) is surjective, then f is weakly confluent.

Theorem

If f is confluent, then MOA(f) is surjective.

< D > < A > < B >

 $\begin{array}{l} & \mbox{Preliminaries}\\ & \mbox{Properties of the hyperspace of large order arcs}\\ & LOA(x,X) \mbox{ is an absolute retract}\\ & LOA(X)\\ & \mbox{Relation between properties of } X \mbox{ and properties of } LOA(X)\\ & \mbox{Induced maps} \end{array}$

Definitions

Definitions

The map f is called monotone(light) if $f^{-1}(y)$ is connected (totally disconnected) for each $y \in Y$.

Theorem

If f is monotone, then LOA(f) is monotone.

Theorem

If LOA(f) is injective, then f is light.

< 口 > < 同 > < 三 > < 三

 $\begin{array}{l} \mbox{Preliminaries}\\ \mbox{Properties of the hyperspace of large order arcs}\\ LOA(x,X) \mbox{ is an absolute retract}\\ LOA(X)\\ \mbox{Relation between properties of X and properties of $LOA(X)$}\\ \mbox{Induced maps} \end{array}$

Theorem

Let $f : [0,1] \rightarrow [0,1]$ be an onto map such that LOA(f) is light. Then f is a homeomorphism.

Theorem

Let X be a continuum $f : X \to [0, 1]$ be an onto map such that LOA(f) is light. Then f is a homeomorphism.

THANK YOU

<ロ> <同> <同> < 同> < 同>

æ