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Linearly Compact Spaces

Linearly Compact Spaces

Let K be an arbitrary field endowed with the discrete topology.

Definition
A topological vector space V over K is said to be linearly topologized if it is
a Hausdorff space in which there is a neighbourhood basis B at 0 consisting
of linear subspaces of V .

A closed linear variety M of a linearly topologized vector space V is a coset
v +W of a closed linear subspace W of V .

Definition (Lefschetz, 1942)

A linearly topologized space V is linearly compact if, and only if, any
collection of closed linear varieties of V with the finite intersection property
has non-empty intersection.
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Linearly Compact Spaces

Linearly Compact Spaces

Proposition (Lefschetz, 1942)

Every linearly compact space V over a discrete field K is a product of
one-dimensional spaces. In particular, V is compact if, and only if, K is finite.

General properties

Let V be a linearly topologized space. Thus
(a) if W is a linearly compact subspace of V , then W is closed;
(b) if V is a linearly compact space, W a closed subspace of V , then W is

linearly compact;
(c) linear compactness is preserved under continuous homomorphisms;
(d)
(e) the product of linearly compact spaces is linearly compact;
(f) an inverse limit of linearly compact spaces is linearly compact;
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Locally Linearly Compact Spaces

Locally Linearly Compact Spaces (briefly, l.l.c. spaces)

Definition (Lefschetz, 1942)

A linearly topologized space is said to be locally linearly compact if there is a
neighbourhood basis at 0 consisting of linearly compact open subspaces.

Remark

Clearly, both discrete and linearly compact spaces are l.l.c. spaces.
An l.l.c. space V over a finite field F is a totally disconnected LCA group.

Theorem (Lefschetz, 1942)

A n.a.s.c. for a vector space V to be locally linearly compact is that
V ∼= Vd × Vc , where Vd is discrete and Vc is linearly compact.

Remark
An l.l.c. space is topologically isomorphic to

⊕
i∈I K×

∏
j∈J K.
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Historical remarks on entropy

Historical remarks and motivations

Locally linearly compact spaces
over FINITE fields

Totally disconnected LCA groups

2012 – Virili
Algebraic entropy for continuous
endomorphisms of LCA groups

1981 – Peters
Algebraic entropy for

topological automorphisms
of LCA groups

2012 – Dikranjan, Sanchis and Virili
Topological entropy for continuous

endomorphisms of LC groups

1974 – Hood
Topological entropy for unif. continuous

self-maps of uniform spaces

1971 – Bowen
Topological entropy for unif. continuous

self-maps of metric spaces

1965 – Adler, Konheim, McAndrew
Topological entropy for continuous

self-maps of compact spaces
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Topological entropy: the definition

Topological entropy for l.l.c spaces

Let φ : V → V be a continuous endomorphism of an l.l.c. space V .

Definition (C., Giordano Bruno)

For n ∈ N and U ∈ B(V ) = {linearly compact open subspaces of V }, let

Cn(φ,U) = U ∩ φ−1U ∩ φ−2U ∩ . . . ∩ φ−n+1U,

which is called the nth partial φ-cotrajectory of U in V .
The topological entropy of φ is given by

ent∗(φ) = sup{H∗(φ,U) | U ∈ B(V )} ∈ N ∪ {∞}, where

H∗(φ,U) = lim
n→∞

1
n
dim

By mirroring the definition of the topological entropy for totally disconnected LC groups,
which is based on the finite index of a partial cotrajectory into its compact open subgroup.
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Algebraic entropy: the definition

Algebraic entropy for l.l.c spaces

Definition (C., Giordano Bruno)

For n ∈ N and U ∈ B(V ), let

Tn(φ,U) = U + φU + φ2U + . . .+ φn−1U,

which is called the nth partial φ-trajectory of U in V .

The algebraic entropy of φ is given by

ent(φ) = sup{H(φ,U) | U ∈ B(V )} ∈ N ∪ {∞}, where

H(φ,U) = lim
n→∞

1
n
dim

(
Tn(φ,U)

U

)
.

Inspired by the definition of the algebraic entropy for compactly covered LC groups,
by the algebraic entropy (w.r.t. the dimension) for discrete vector spaces,

by the intrinsic entropy defined for (discrete) abelian groups
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Algebraic entropy: the definition

Comparison of entropies

Remark

Let V be an l.l.c. space over a finite field F and φ : V → V a continuous
endomorphism. Then

ent(φ) =
1

log |K|
· halg (φ) and ent∗(φ) =

1
log |K|

· htop(φ),

where halg (_) and htop(_) denote respectively the algebraic and
topological entropy defined for totally disconnected LCA groups.
Let V be a discrete vector space over an arbitrary field K, and
φ : V → V a linear map. Then

ent(φ) = entdim(φ).

A. Giordano Bruno, L. Salce, A soft introduction to algebraic entropy.
Arab. J. Math. 1.1 (2012): 69-87.
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A. Giordano Bruno, L. Salce, A soft introduction to algebraic entropy.
Arab. J. Math. 1.1 (2012): 69-87.
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Algebraic entropy: the definition

Comparison of entropies
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Properties and examples

General properties

Proposition

Let φ : V → V be a continuous endomorphism of an l.l.c. space V , then
1 (Invariance under conjugation)

for every topological isomorphism α : V →W of l.l.c. spaces, one has

ent(φ) = ent(αφα−1) and ent∗(φ) = ent∗(αφα−1);

2 (Logarithmic law) for all k ≥ 0, one has

ent(φk) = k · ent(φ) and ent∗(φk) = k · ent∗(φ);

3 (Monotonicity under restrictions and quotients)
for every closed linear subspace W of V such that φW ≤W one has

ent(φ) ≥ max{ent(φ �W ), ent(φ)},

ent∗(φ) ≥ max{ent∗(φ �W ), ent∗(φ)},

where φ : V /W → V /W is induced by φ.
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Properties and examples

Example: the Bernoulli shifts

Let Vc =
∏∞

n=0 K. Clearly, Vc is linearly compact.

One may define

Vcβ : Vc → Vc , Vcβ((x0, x1, . . .)) = (x1, x2, x3, . . .), ∀(xn)n∈N ∈ Vc ,

which is called the left Bernoulli shift over Vc .

Analogously, let Vd =
⊕∞

n=0 K. Clearly, Vd is discrete. Thus

βVd
: Vd → Vd , βV ((x0, x1, . . .)) = (0, x0, x1, . . .), ∀(xn)n∈N ∈ Vd ,

be the right Bernoulli shift over Vd .
Easily,

ent(βVd
) = 1 = ent∗(Vcβ) and ent(Vcβ) = 0 = ent∗(βVd

)
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be the right Bernoulli shift over Vd .
Easily, ent(βVd

) = 1 = ent∗(Vcβ) and ent(Vcβ) = 0 = ent∗(βVd
)

Fact (C., Giordano Bruno)

Let φ : V → V be a continuous endomorphism of an l.l.c. space V , then
(a) ent(φ) = 0 whenever V is linearly compact,
(b) ent∗(φ) = 0 whenever V is discrete.

11 / 26



Introduction Entropies for l.l.c. spaces Addition Theorem for l.l.c. spaces

Properties and examples

Let V = Vc × Vd be an l.l.c. space and φ a continuous endomorphism.

Let

ι∗ : V∗ → V , p∗ : V → V∗, ∗ ∈ {c , d},

be the canonical injections and projections. Accordingly, we may associate to
φ the following decomposition

φ =

(
φcc φdc
φcd φdd

)
.

Theorem (C., Giordano Bruono)

Let φ : V → V be a continuous endomorphism of an l.l.c. space V . Then

ent(φ) = ent(φdd) and ent∗(φ) = ent∗(φcc).
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Properties and examples

Limit free formula

Limit free formula (C., Giodano Bruno)

Let V be an l.l.c. space, φ : V → V a continuous endomorphism. For every
linearly compact open subspace U

one has an open linear subspace U− such that

H(φ,U) = dim
( U−

φ−1U−

)
,

one has a linearly compact subspace U+ of V such that

H∗(φ,U) = dim
(φU+

U+

)
.

Inspired by Willis’ work concerning the scale function for totally disconnected LC groups.
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Reduction to full subcategories

Addition Theorem

Remark
We say that the Addition Theorem (breifly, AT) holds for the topological
entropy ent∗ over l.l.c. spaces if

ent∗(φ) = ent∗(φ �W ) + ent∗(φ),

for every closed linear subspace W of V such that φW ≤W and the map
φ : V /W → V /W is induced by φ. Analogously, for ent.
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Reduction to full subcategories

Addition theorem: algebraic entropy

Step 1 Reduction to discrete vector spaces.

Theorem (C., Giordano Bruno)

The Addition Theorem holds for ent over l.l.c. spaces if, and only if, the
Addition Theorem holds for ent over discrete vector spaces.

Step 2 Recall that
ent = entdim over discrete vector spaces,
entdim is known to satisfy AT:

A. Giordano Bruno, L. Salce, A soft introduction to algebraic
entropy. Arab. J. Math. 1.1 (2012): 69-87.
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Addition Theorem for linearly compact spaces - Part I

Addition theorem: topological entropy

PART I PART II

Reduction to cont. endomorphisms
of Linearly Compact spaces

Reduction to top. Automorphisms
of linearly compact spaces

Reduction to top. Automorphisms
of linearly compact spaces

Addition Theorem
for topological automorphisms

Bridge Theorem

Addition Theorem for ent
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Addition Theorem for linearly compact spaces - Part I

Addition Theorem for linearly compact spaces - Part I

Reduction to automorphisms

1 For a continuous endomorphism φ : V → V of a linearly compact space
V , let LV denote the inverse limit of the following inverse system

· · · φ−→ V
φ−→ V

φ−→ · · · φ−→ V
φ−→ V0 = V .

2 The natural map
∏
φ :
∏

n∈N V →
∏

n∈N V such that {xn} 7→ {φ(xn)}
induces a continuous endomorphism Lφ : LV → LV making the
following diagram ∏

n∈N V
∏
φ // ∏

n∈N V

LV

ι

OO

Lφ
// LV

ι

OO

commute, where ι is the canonical embedding.
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Addition Theorem for linearly compact spaces - Part I

Addition Theorem - Part I

Proposition (C., Giordano Bruno)

For every continuous endomorphism φ of a linearly compact space V , one has
that the following hold:
(a) LV is a linearly compact space;

(b) Lφ : LV → LV is a topological automorphism;

(c) ent∗(φ) = ent∗(Lφ).

L. Salce and S. Virili.The addition theorem for algebraic entropies induced
by non-discrete length functions. Forum Mathematicum. 2015.
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Bridge Theorem

Lefschetz Duality

Let CHom(V,K) be the space of all continuous endomorphisms from V to K.

Definition
For a linear subspace A of V , the annihilator of A in CHom(V,K) is defined
by

A⊥ = {χ ∈ CHom(V,K) : χ(A) = 0}.

We denote by V̂ the vector space CHom(V,K) endowed with the topology
locally generated by

{A⊥ | A ≤ V , A linearly compact},

which is an l.l.c. space.

In particular, V is discrete if, and only if, V̂ is linearly compact; V is linearly
compact if, and only if, V̂ is discrete.

Remark
If dim(V ) <∞, then V̂ coincide with classical dual space of V .

20 / 26
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In particular, V is discrete if, and only if, V̂ is linearly compact; V is linearly
compact if, and only if, V̂ is discrete.

Remark
If dim(V ) <∞, then V̂ coincide with classical dual space of V .
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Lefschetz Duality

Theorem (Lefschetz, 1942)

An l.l.c. space V is topologically isomorphic to ̂̂V .

Corollary

The dual functor V 7→ V̂ defines a duality between the full subcategory of all
linearly compact spaces and the full subcategory of all discrete vector spaces.

Remark
This result is the analogue of Pontryagin-van Kampen duality in the context
of locally linearly compact spaces.
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Theorem (C., Giordano Bruno)

Let V be an l.l.c. space and φ : V → V a continuous endomorphism. Then,
for every U ∈ B(V ),

H?(φ,U) = H(φ̂,U⊥),

where φ̂ : V̂ → V̂ is given by χ→ χ ◦ φ. Consequently,

ent?(φ) = ent(φ̂).

D. Dikranjan, A. Giordano Bruno, The Bridge Theorem for totally
disconnected LCA groups. Topology and its Appl. 169 (2014)
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Example: the Bernoulli shifts

Let Vc =
∏∞

n=0 K. Clearly, Vc is linearly compact. One may define

Vcβ : Vc → Vc , Vcβ((x0, x1, . . .)) = (x1, x2, x3, . . .), ∀(xn)n∈N ∈ Vc ,

which is called the left Bernoulli shift over Vc .

Analogously, let Vd =
⊕∞

n=0 K. Clearly, Vd is discrete. Thus

βVd
: Vd → Vd , βV ((x0, x1, . . .)) = (0, x0, x1, . . .), ∀(xn)n∈N ∈ Vd ,

be the right Bernoulli shift over Vd .

Easily, one has that

Vc = V̂d and Vcβ = β̂Vd

ent(βVd
) = 1 = ent∗(Vcβ)

ent(Vcβ) = 0 = ent∗(βVd
)
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Theorem (C., Giordano Bruno)

Let V be an l.l.c. space, φ ∈ EndKLLC(V ) and W a φ-invariant closed linear
subspace of V . Then

ent(φ) = ent(φ �W ) + ent(φ)

if, and only if,
ent∗(φ̂) = ent∗(φ̂ �W⊥) + ent∗(φ̂).

Consequently, AT holds for ent over KLLC if, and only if, AT holds for ent∗
over KLLC.
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Thanks for your attention
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