A Cardinality Bound for Hausdorff Spaces

Nathan Carlson

California Lutheran University

Co-author: Jack Porter

Twelfth Symposium on General Topology Prague, July 29, 2016

イロト イポト イヨト イヨト

Overview

All spaces are Hausdorff.

• We give a unifying cardinality bound for Hausdorff spaces *X* from which it follows that

Overview

くロト (過) (目) (日)

Overview

All spaces are Hausdorff.

• We give a unifying cardinality bound for Hausdorff spaces *X* from which it follows that

(a) $|X| \leq 2^{L(X)\chi(X)}$ (Arhangel'skiĭ, 1969), and

Overview

ヘロア 人間 アメヨア 人口 ア

Overview

All spaces are Hausdorff.

- We give a unifying cardinality bound for Hausdorff spaces *X* from which it follows that
 - (a) $|X| \leq 2^{L(X)\chi(X)}$ (Arhangel'skiĭ, 1969), and

Overview

(b) $|X| \le 2^{\chi(X)}$ if X is H-closed (Dow, Porter 1982).

くロト (過) (目) (日)

Overview

All spaces are Hausdorff.

- We give a unifying cardinality bound for Hausdorff spaces *X* from which it follows that
 - (a) $|X| \le 2^{L(X)\chi(X)}$ (Arhangel'skiĭ, 1969), and

Overview

- (b) $|X| \le 2^{\chi(X)}$ if X is H-closed (Dow, Porter 1982).
- Using convergent open ultrafilters we construct an operator
 c : P(X) → P(X) with the property that

$$cl(A) \subseteq c(A) \subseteq cl_{\theta}(A)$$

for all $A \subseteq X$.

ヘロト ヘアト ヘビト ヘビト

Overview

All spaces are Hausdorff.

- We give a unifying cardinality bound for Hausdorff spaces *X* from which it follows that
 - (a) $|X| \le 2^{L(X)\chi(X)}$ (Arhangel'skiĭ, 1969), and

Overview

- (b) $|X| \le 2^{\chi(X)}$ if X is H-closed (Dow, Porter 1982).
- Using convergent open ultrafilters we construct an operator
 c : P(X) → P(X) with the property that

$$cl(A) \subseteq c(A) \subseteq cl_{\theta}(A)$$

for all $A \subseteq X$.

• We show $|c(A)| \leq |A|^{\chi(X)}$

ヘロト ヘアト ヘビト ヘビト

Overview

All spaces are Hausdorff.

- We give a unifying cardinality bound for Hausdorff spaces *X* from which it follows that
 - (a) $|X| \le 2^{L(X)\chi(X)}$ (Arhangel'skiĭ, 1969), and
 - (b) $|X| \le 2^{\chi(X)}$ if X is H-closed (Dow, Porter 1982).
- Using convergent open ultrafilters we construct an operator $c: \mathcal{P}(X) \to \mathcal{P}(X)$ with the property that

$$cl(A) \subseteq c(A) \subseteq cl_{\theta}(A)$$

for all $A \subseteq X$.

- We show $|c(A)| \leq |A|^{\chi(X)}$
- We use a standard closing-off argument

(雪) (ヨ) (ヨ)

Background

 \widehat{U} , the operator *c*, and the invariants $\widehat{L}(X)$, aL'(X) and $t_c(X)$ A closing-off argument

Background

Recall:

Definition

A space X is H-closed if for every open cover \mathcal{V} of X there exists $\mathcal{W} \in [\mathcal{V}]^{<\omega}$ such that $X = \bigcup_{W \in \mathcal{W}} c/W$.

ヘロア 人間 アメヨア 人口 ア

ъ

Background

 \widehat{U} , the operator *c*, and the invariants $\widehat{L}(X)$, aL'(X) and $t_c(X)$ A closing-off argument

Background

Recall:

Definition

A space X is H-closed if for every open cover \mathcal{V} of X there exists $\mathcal{W} \in [\mathcal{V}]^{<\omega}$ such that $X = \bigcup_{W \in \mathcal{W}} c/W$.

Theorem

A space is H-closed if and only if it is closed in any Hausdorff space in which it is embedded.

ヘロト ヘ戸ト ヘヨト ヘヨト

In 1982, Dow and Porter proved the following theorems.

Theorem

If X is an H-closed space with a dense set of isolated points then $|X| \le 2^{\chi(X)}$.

This theorem can be extended to the general Hausdorff setting:

(In fact, the above theorem can be extended further by recent results of Bella and C.).

イロト イポト イヨト イヨト

In 1982, Dow and Porter proved the following theorems.

Theorem

If X is an H-closed space with a dense set of isolated points then $|X| \le 2^{\chi(X)}$.

This theorem can be extended to the general Hausdorff setting:

Theorem

If X is a space with a dense set of isolated points then

$$|X| \leq 2^{wL(X)\chi(X)}.$$

(In fact, the above theorem can be extended further by recent results of Bella and C.).

イロト イポト イヨト イヨト

Background

 \widehat{U} , the operator *c*, and the invariants $\widehat{L}(X)$, aL'(X) and $t_c(X)$ A closing-off argument

Theorem

Every H-closed space X can be embedded as the remainder of an H-closed extension Y of a discrete space such that |X| = |Y| and $\chi(X) = \chi(Y)$.

Combining the previous two theorems:

イロト 不得 とくほ とくほとう

Background

 \widehat{U} , the operator *c*, and the invariants $\widehat{L}(X)$, aL'(X) and $t_c(X)$ A closing-off argument

Theorem

Every H-closed space X can be embedded as the remainder of an H-closed extension Y of a discrete space such that |X| = |Y| and $\chi(X) = \chi(Y)$.

Combining the previous two theorems:

Theorem (Dow, Porter)

If X is H-closed then $|X| \leq 2^{\chi(X)}$ (in fact, $|X| \leq 2^{\psi_c(X)}$).

ヘロト ヘアト ヘビト ヘビト

Background

 \widehat{U} , the operator *c*, and the invariants $\widehat{L}(X)$, aL'(X) and $t_c(X)$ A closing-off argument

Theorem

Every H-closed space X can be embedded as the remainder of an H-closed extension Y of a discrete space such that |X| = |Y| and $\chi(X) = \chi(Y)$.

Combining the previous two theorems:

Theorem (Dow, Porter)

If X is H-closed then $|X| \leq 2^{\chi(X)}$ (in fact, $|X| \leq 2^{\psi_c(X)}$).

 Porter gave a simplified approach to the theorem at the top in 1993

・ロト ・ 理 ト ・ ヨ ト ・

Background

 \widehat{U} , the operator *c*, and the invariants $\widehat{L}(X)$, aL'(X) and $t_c(X)$ A closing-off argument

Theorem

Every H-closed space X can be embedded as the remainder of an H-closed extension Y of a discrete space such that |X| = |Y| and $\chi(X) = \chi(Y)$.

Combining the previous two theorems:

Theorem (Dow, Porter)

If X is H-closed then $|X| \leq 2^{\chi(X)}$ (in fact, $|X| \leq 2^{\psi_c(X)}$).

- Porter gave a simplified approach to the theorem at the top in 1993
- The theorem at the top depends heavily on finiteness and is not known to extend to a general Hausdorff setting

・ロット (雪) () () () ()

> In 2006 Hodel used κ-nets and a very different closing-off argument to show that |X| ≤ 2^{χ(X)} if X is H-closed.

くロト (過) (目) (日)

ъ

- In 2006 Hodel used κ-nets and a very different closing-off argument to show that |X| ≤ 2^{χ(X)} if X is H-closed.
- Again, this approach seems not to generalize to a general Hausdorff cardinality bound.

イロト イポト イヨト イヨト

Question (Bella)

Does there exist a cardinality bound for a Hausdorff space X that generalizes Arhangel'skii's Theorem and the Dow-Porter result?

We can reframe this question:

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Question (Bella)

Does there exist a cardinality bound for a Hausdorff space X that generalizes Arhangel'skii's Theorem and the Dow-Porter result?

Overview

We can reframe this question:

Question

Does there exists a property \mathcal{P} of a Hausdorff space that generalizes both Lindelöf and H-closed spaces such that $|X| \leq 2^{\chi(X)}$ for a space X with property \mathcal{P} ?

ヘロア 人間 アメヨア 人口 ア

The property "almost Lindelöf", a generalization of both H-closed and Lindelöf, would seem to be a natural candidate for the property \mathcal{P} .

Definition

For a space X and $A \subseteq X$, the almost Lindelöf degree of A in X, aL(A, X), is the least infinite cardinal κ such that for every open cover \mathcal{V} of A there exists $\mathcal{W} \in [\mathcal{V}]^{\leq \kappa}$ such that $A \subseteq \bigcup_{W \in \mathcal{W}} c/W$. The almost Lindelöf degree of X is aL(X) = aL(X, X), and X is almost Lindelöf if aL(X) is countable.

イロト イポト イヨト イヨト

 $\begin{array}{c} & \text{Overview} \\ & \text{Background} \\ \hat{U}, \text{ the operator } c, \text{ and the invariants } \hat{L}(X), aL'(X) \text{ and } t_c(X) \\ & \text{A closing-off argument} \end{array}$

However:

Theorem (Bella/Yaschenko 1998)

If κ is a non-measurable cardinal then there exists an almost-Lindelöf, first-countable Hausdorff space X such that $|X| > \kappa$.

ヘロン ヘアン ヘビン ヘビン

3

The set \widehat{U} and the invariant $\widehat{L}(X)$

• For a space X, fix an open ultrafilter assignment $f: X \rightarrow EX$, where

 $EX = \{ \mathcal{U} : \mathcal{U} \text{ is a convergent open ultrafilter on } X \}.$

イロト イポト イヨト イヨト

The set \widehat{U} and the invariant $\widehat{L}(X)$

• For a space X, fix an open ultrafilter assignment $f: X \rightarrow EX$, where

 $EX = \{ \mathcal{U} : \mathcal{U} \text{ is a convergent open ultrafilter on } X \}.$

• *f* is also called a section of *EX*.

・ 回 ト ・ ヨ ト ・ ヨ ト

The set \widehat{U} and the invariant $\widehat{L}(X)$

• For a space X, fix an open ultrafilter assignment $f: X \rightarrow EX$, where

 $EX = \{ \mathcal{U} : \mathcal{U} \text{ is a convergent open ultrafilter on } X \}.$

- *f* is also called a section of *EX*.
- For all $x \in X$, denote f(x) by \mathcal{U}_x .

・ 同 ト ・ ヨ ト ・ ヨ ト

The set \widehat{U} and the invariant $\widehat{L}(X)$

• For a space X, fix an open ultrafilter assignment $f: X \rightarrow EX$, where

 $EX = \{ \mathcal{U} : \mathcal{U} \text{ is a convergent open ultrafilter on } X \}.$

- *f* is also called a section of *EX*.
- For all $x \in X$, denote f(x) by \mathcal{U}_x .

Definition

For a non-empty open set $U \subseteq X$, define

$$\widehat{U} = \{ x \in X : U \in \mathfrak{U}_x \}.$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

· < 프 > < 프 >

Proposition

For all non-empty open sets $U, V \subseteq X$,

Nathan Carlson A Cardinality Bound for Hausdorff Spaces

イロト 不得 とくほ とくほとう

Proposition

For all non-empty open sets $U, V \subseteq X$, (a) $U \subseteq int(clU) \subseteq int(clU) = \widehat{U} \subseteq clU$,

Nathan Carlson A Cardinality Bound for Hausdorff Spaces

ヘロン ヘアン ヘビン ヘビン

3

Proposition

For all non-empty open sets $U, V \subseteq X$,

(a)
$$U \subseteq Int(CIU) \subseteq Int(CIU) = U \subseteq CIU,$$

(b)
$$U \cap V = U \cap V$$
 and $U \cup V = U \cup V$,

イロト 不得 とくほと くほとう

∃ 9900

Proposition

For all non-empty open sets $U, V \subseteq X$, (a) $U \subseteq int(c|U) \subseteq int(c|U) = \widehat{U} \subseteq c|U$, (b) $\widehat{U \cap V} = \widehat{U} \cap \widehat{V}$ and $\widehat{U \cup V} = \widehat{U} \cup \widehat{V}$, (c) $X \setminus \widehat{U} = \widehat{X \setminus c|U}$.

Nathan Carlson A Cardinality Bound for Hausdorff Spaces

ヘロト ヘアト ヘビト ヘビト

3

Theorem

A space X is H-closed if and only if for every open cover \mathcal{V} of X there exists $\mathcal{W} \in [\mathcal{V}]^{<\omega}$ such that $X = \bigcup_{W \in \mathcal{W}} \widehat{W}$.

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Theorem

A space X is H-closed if and only if for every open cover \mathcal{V} of X there exists $\mathcal{W} \in [\mathcal{V}]^{<\omega}$ such that $X = \bigcup_{W \in \mathcal{W}} \widehat{W}$.

• This is a formally stronger characterization of H-closed than the standard definition.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Theorem

A space X is H-closed if and only if for every open cover \mathcal{V} of X there exists $\mathcal{W} \in [\mathcal{V}]^{<\omega}$ such that $X = \bigcup_{W \in \mathcal{W}} \widehat{W}$.

- This is a formally stronger characterization of H-closed than the standard definition.
- The proof relies on the interaction between finiteness in the definition of H-closed and the f.i.p. property of a filter.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Definition

For a space *X*, define the cardinal invariant $\widehat{L}(X)$ is the least infinite cardinal κ such that for every open cover \mathcal{V} of *X* there exists $\mathcal{W} \in [\mathcal{V}]^{\leq \kappa}$ such that $X = \bigcup_{W \in \mathcal{W}} \widehat{W}$.

By the previous Theorem, we see that the property " $\widehat{\mathcal{L}}(X) = \aleph_0$ " generalizes both H-closed and Lindelöf.

イロト イポト イヨト イヨト

The operator c

Definition

For a space X and $A \subseteq X$, define

$$c(\mathcal{A}) = \{x \in X : \widehat{U} \cap \mathcal{A}
eq arnothing$$
 for all $x \in U \in au(X)\}.$

A is c-closed if A = c(A).

Compare with:

an

$$cl(A) = \{x \in X : U \cap A \neq \emptyset \text{ for all } x \in U \in \tau(X)\}$$
$$cl_{\theta}(A) = \{x \in X : clU \cap A \neq \emptyset \text{ for all } x \in U \in \tau(X)\},$$
$$d \text{ recall } U \subseteq \widehat{U} \subseteq clU.$$

イロト 不得 とくほ とくほとう

3

Proposition

Let X be a space, and $A, B \subseteq X$.

ヘロト 人間 とくほとくほとう

₹ 990

Proposition

Let X be a space, and A, $B \subseteq X$. (a) $A \subseteq c(A)$.

ヘロト 人間 とくほとくほとう

₹ 990
Proposition

Let X be a space, and A, $B \subseteq X$. (a) $A \subseteq c(A)$. (b) if $A \subseteq B$ then $c(A) \subseteq c(B)$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

₹ 990

Proposition

Let X be a space, and A, $B \subseteq X$. (a) $A \subseteq c(A)$. (b) if $A \subseteq B$ then $c(A) \subseteq c(B)$. (c) $c|A \subseteq c(A) \subseteq cl_{\theta}(A)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Proposition

Let X be a space, and $A, B \subseteq X$.

(a) $A \subseteq c(A)$.

- (b) if $A \subseteq B$ then $c(A) \subseteq c(B)$.
- (c) $c|A \subseteq c(A) \subseteq c|_{\theta}(A)$.
- (d) if U is open, then $c|U = c(U) \subseteq c(\widehat{U})$.

ヘロン 人間 とくほ とくほ とう

E DQC

Proposition

Let X be a space, and $A, B \subseteq X$.

(a) $A \subseteq c(A)$.

- (b) if $A \subseteq B$ then $c(A) \subseteq c(B)$.
- (c) $c|A \subseteq c(A) \subseteq c|_{\theta}(A)$.
- (d) if U is open, then $c|U = c(U) \subseteq c(\widehat{U})$.
- (e) if X is regular then $c|A = c(A) = cl_{\theta}(A)$.

イロト イポト イヨト イヨト

= 990

Proposition

Let X be a space, and $A, B \subseteq X$.

(a) $A \subseteq c(A)$.

- (b) if $A \subseteq B$ then $c(A) \subseteq c(B)$.
- (c) $c|A \subseteq c(A) \subseteq c|_{\theta}(A)$.
- (d) if U is open, then $c|U = c(U) \subseteq c(\widehat{U})$.
- (e) if X is regular then $c|A = c(A) = cl_{\theta}(A)$.
- (f) If A is c-closed then A is closed.

ヘロン 人間 とくほ とくほ とう

э.

Proposition

Let X be a space, and $A, B \subseteq X$.

(a) $A \subseteq c(A)$.

- (b) if $A \subseteq B$ then $c(A) \subseteq c(B)$.
- (c) $c|A \subseteq c(A) \subseteq c|_{\theta}(A)$.
- (d) if U is open, then $c|U = c(U) \subseteq c(\widehat{U})$.
- (e) if X is regular then $c|A = c(A) = cl_{\theta}(A)$.
- (f) If A is c-closed then A is closed.
- (g) c(A) is a closed subset of X.

ヘロン 人間 とくほ とくほ とう

= 990

Proposition

Let X be a space, and $A, B \subseteq X$.

(a) $A \subseteq c(A)$.

- (b) if $A \subseteq B$ then $c(A) \subseteq c(B)$.
- (c) $c|A \subseteq c(A) \subseteq c|_{\theta}(A)$.
- (d) if U is open, then $c|U = c(U) \subseteq c(\widehat{U})$.
- (e) if X is regular then $c|A = c(A) = cl_{\theta}(A)$.
- (f) If A is c-closed then A is closed.
- (g) c(A) is a closed subset of X.
- (h) If X is H-closed then c(A) is an H-set.

ヘロト ヘアト ヘビト ヘビト

э.

Proposition

If X is a space and a C is a c-closed subset of X, then $\widehat{L}(C, X) \leq \widehat{L}(X)$.

I.e., the invariant $\widehat{L}(X)$ is hereditary on *c*-closed subsets of *X*.

・ロト ・ ア・ ・ ヨト ・ ヨト

æ

 \widehat{U} , the operator *c*, and the invariants $\widehat{L}(X)$, aL'(X) and $t_c(X)$ A closing-off argument

Example $(cl(A) \neq c(A) \neq cl_{\theta}(A))$

Example $(cl(A) \neq c(A) \neq cl_{\theta}(A))$

• We use Urysohn's space $\mathbb U$ defined in 1925, where $\mathbb U=(\mathbb N\times\mathbb Z)\cup\{\pm\infty\}.$

Example $(cl(A) \neq c(A) \neq cl_{\theta}(A))$

- We use Urysohn's space \mathbb{U} defined in 1925, where $\mathbb{U} = (\mathbb{N} \times \mathbb{Z}) \cup \{\pm \infty\}.$
- A subset $U \subseteq \mathbb{U}$ is defined to be open

Example $(cl(A) \neq c(A) \neq cl_{\theta}(A))$

- We use Urysohn's space \mathbb{U} defined in 1925, where $\mathbb{U} = (\mathbb{N} \times \mathbb{Z}) \cup \{\pm \infty\}.$
- A subset $U \subseteq \mathbb{U}$ is defined to be open
 - **(**) if $+\infty \in U$ there exists $k \in \mathbb{N}$ such that

 $R_k = \{(n,m) : n \ge k, m \in \mathbb{N}\} \subseteq U,$

Example $(cl(A) \neq c(A) \neq cl_{ heta}(A))$

- We use Urysohn's space \mathbb{U} defined in 1925, where $\mathbb{U} = (\mathbb{N} \times \mathbb{Z}) \cup \{\pm \infty\}.$
- A subset $U \subseteq \mathbb{U}$ is defined to be open
 - if $+\infty \in U$ there exists $k \in \mathbb{N}$ such that

 $R_k = \{(n,m) : n \ge k, m \in \mathbb{N}\} \subseteq U,$

2 if $-\infty \in U$ there exists $k \in \mathbb{N}$ such that

 S_k { $(n, -m) : n \ge k, m \in \mathbb{N}$ } $\subseteq U$,

Example $(cl(A) \neq c(A) \neq cl_{\theta}(A))$

- We use Urysohn's space \mathbb{U} defined in 1925, where $\mathbb{U} = (\mathbb{N} \times \mathbb{Z}) \cup \{\pm \infty\}.$
- A subset $U \subseteq \mathbb{U}$ is defined to be open
 - if $+\infty \in U$ there exists $k \in \mathbb{N}$ such that

 $R_k = \{(n,m) : n \ge k, m \in \mathbb{N}\} \subseteq U,$

2 if $-\infty \in U$ there exists $k \in \mathbb{N}$ such that

 $S_k\{(n,-m):n\geq k,m\in\mathbb{N}\}\subseteq U,$

③ if $(n, 0) \in U$ there exists *k* ∈ \mathbb{N} such that

 $\{(n,\pm m):m\geq k\}\subseteq U,$

Example $(cl(A) \neq c(A) \neq cl_{\theta}(A))$

- We use Urysohn's space \mathbb{U} defined in 1925, where $\mathbb{U} = (\mathbb{N} \times \mathbb{Z}) \cup \{\pm \infty\}.$
- A subset $U \subseteq \mathbb{U}$ is defined to be open
 - if $+\infty \in U$ there exists $k \in \mathbb{N}$ such that

 $R_k = \{(n,m) : n \ge k, m \in \mathbb{N}\} \subseteq U,$

2 if $-\infty \in U$ there exists $k \in \mathbb{N}$ such that

 $S_k\{(n,-m):n\geq k,m\in\mathbb{N}\}\subseteq U,$

③ if $(n, 0) \in U$ there exists *k* ∈ \mathbb{N} such that

 $\{(n,\pm m):m\geq k\}\subseteq U,$

• otherwise (n, m) is isolated.

 \widehat{U} , the operator *c*, and the invariants $\widehat{L}(X)$, aL'(X) and $t_c(X)$ A closing-off argument

Example (Con't)

Nathan Carlson A Cardinality Bound for Hausdorff Spaces

ヘロト 人間 とくほとくほとう

∃ 𝒫𝔄𝔅

Example (Con't)

 The space U is first countable, minimal Hausdorff (H-closed and semiregular) but is not compact as
 A = {(n,0) : n ∈ N} is an infinite, closed discrete subset.

→ Ξ → < Ξ →</p>

< < >> < <</>

э

Example (Con't)

- The space U is first countable, minimal Hausdorff (H-closed and semiregular) but is not compact as
 A = {(n,0) : n ∈ N} is an infinite, closed discrete subset.
- Let $k : E\mathbb{U} \to \mathbb{U}$ be the map from the absolute $E\mathbb{U}$ to \mathbb{U} .

イロト イポト イヨト イヨト

Example (Con't)

- The space U is first countable, minimal Hausdorff (H-closed and semiregular) but is not compact as
 A = {(n,0) : n ∈ N} is an infinite, closed discrete subset.
- Let $k : E\mathbb{U} \to \mathbb{U}$ be the map from the absolute $E\mathbb{U}$ to \mathbb{U} .

• Let
$$\mathcal{U} \in k^{\leftarrow}(\infty)$$
 and $\mathcal{V} \in k^{\leftarrow}(-\infty)$

イロト イポト イヨト イヨト

Example (Con't)

- The space U is first countable, minimal Hausdorff (H-closed and semiregular) but is not compact as
 A = {(n,0) : n ∈ N} is an infinite, closed discrete subset.
- Let $k : E\mathbb{U} \to \mathbb{U}$ be the map from the absolute $E\mathbb{U}$ to \mathbb{U} .
- Let $\mathcal{U} \in k^{\leftarrow}(\infty)$ and $\mathcal{V} \in k^{\leftarrow}(-\infty)$
- For $n \in \mathbb{N}$, let $\mathcal{U}_n \in k^{\leftarrow}((n, 0))$ be such that $\{n\} \times \mathbb{N} \in \mathcal{U}_n$; thus, $\mathcal{U}_n \to (n, 0)$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Example (Con't)

- The space U is first countable, minimal Hausdorff (H-closed and semiregular) but is not compact as
 A = {(n,0) : n ∈ N} is an infinite, closed discrete subset.
- Let $k : E\mathbb{U} \to \mathbb{U}$ be the map from the absolute $E\mathbb{U}$ to \mathbb{U} .
- Let $\mathcal{U} \in k^{\leftarrow}(\infty)$ and $\mathcal{V} \in k^{\leftarrow}(-\infty)$
- For $n \in \mathbb{N}$, let $\mathcal{U}_n \in k^{\leftarrow}((n, 0))$ be such that $\{n\} \times \mathbb{N} \in \mathcal{U}_n$; thus, $\mathcal{U}_n \to (n, 0)$.
- Define an open ultrafilter assignment $f : \mathbb{U} \to E\mathbb{U}$ by

ヘロト ヘ戸ト ヘヨト ヘヨト

Example (Con't)

- The space U is first countable, minimal Hausdorff (H-closed and semiregular) but is not compact as
 A = {(n,0) : n ∈ N} is an infinite, closed discrete subset.
- Let k : EU → U be the map from the absolute EU to U.
- Let $\mathcal{U} \in k^{\leftarrow}(\infty)$ and $\mathcal{V} \in k^{\leftarrow}(-\infty)$
- For $n \in \mathbb{N}$, let $\mathcal{U}_n \in k^{\leftarrow}((n, 0))$ be such that $\{n\} \times \mathbb{N} \in \mathcal{U}_n$; thus, $\mathcal{U}_n \to (n, 0)$.
- Define an open ultrafilter assignment $f : \mathbb{U} \to E\mathbb{U}$ by

くロト (過) (目) (日)

Example (Con't)

- The space U is first countable, minimal Hausdorff (H-closed and semiregular) but is not compact as
 A = {(n,0) : n ∈ N} is an infinite, closed discrete subset.
- Let k : EU → U be the map from the absolute EU to U.
- Let $\mathcal{U} \in k^{\leftarrow}(\infty)$ and $\mathcal{V} \in k^{\leftarrow}(-\infty)$
- For $n \in \mathbb{N}$, let $\mathcal{U}_n \in k^{\leftarrow}((n, 0))$ be such that $\{n\} \times \mathbb{N} \in \mathcal{U}_n$; thus, $\mathcal{U}_n \to (n, 0)$.
- Define an open ultrafilter assignment $f : \mathbb{U} \to E\mathbb{U}$ by

1
$$f(\infty) = \mathcal{U}, f(-\infty) = \mathcal{V},$$

2 $f((n, 0)) = \mathcal{U}_n$, and

ヘロト 人間 ト ヘヨト ヘヨト

Example (Con't)

- The space U is first countable, minimal Hausdorff (H-closed and semiregular) but is not compact as
 A = {(n,0) : n ∈ N} is an infinite, closed discrete subset.
- Let $k : E\mathbb{U} \to \mathbb{U}$ be the map from the absolute $E\mathbb{U}$ to \mathbb{U} .
- Let $\mathcal{U} \in k^{\leftarrow}(\infty)$ and $\mathcal{V} \in k^{\leftarrow}(-\infty)$
- For $n \in \mathbb{N}$, let $\mathcal{U}_n \in k^{\leftarrow}((n, 0))$ be such that $\{n\} \times \mathbb{N} \in \mathcal{U}_n$; thus, $\mathcal{U}_n \to (n, 0)$.
- Define an open ultrafilter assignment $f : \mathbb{U} \to E\mathbb{U}$ by

1
$$f(\infty) = \mathcal{U}, f(-\infty) = \mathcal{V},$$

2 $f((n,0)) = \mathcal{U}_n, \text{ and}$
3 $f(n,m) = \{U \in \tau(\mathbb{U}) : (n,m) \in U\}$ for $(n,m) \in \mathbb{N} \times \mathbb{Z} \setminus (\mathbb{N} \times \{0\})$

くロト (過) (目) (日)

 \widehat{U} , the operator *c*, and the invariants $\widehat{L}(X)$, aL'(X) and $t_c(X)$ A closing-off argument

Example (Con't)

• It is easily seen that $cl_{\mathbb{U}}(A) = A$ and $cl_{\theta}(A) = A \cup \{\pm \infty\}$. Thus $A \subseteq c(A) \subseteq A \cup \{\pm \infty\}$.

- It is easily seen that $cl_{\mathbb{U}}(A) = A$ and $cl_{\theta}(A) = A \cup \{\pm \infty\}$. Thus $A \subseteq c(A) \subseteq A \cup \{\pm \infty\}$.
- To see that ∞ ∈ c(A), for n ∈ N consider the basic open set R_n ∪ {∞} containing ∞.

- It is easily seen that $cl_{\mathbb{U}}(A) = A$ and $cl_{\theta}(A) = A \cup \{\pm \infty\}$. Thus $A \subseteq c(A) \subseteq A \cup \{\pm \infty\}$.
- To see that ∞ ∈ c(A), for n ∈ N consider the basic open set R_n ∪ {∞} containing ∞.
- Note $\{n\} \times \mathbb{N} \in \mathcal{U}_n = f(n, 0)$.

- It is easily seen that $cl_{\mathbb{U}}(A) = A$ and $cl_{\theta}(A) = A \cup \{\pm \infty\}$. Thus $A \subseteq c(A) \subseteq A \cup \{\pm \infty\}$.
- To see that ∞ ∈ c(A), for n ∈ N consider the basic open set R_n ∪ {∞} containing ∞.
- Note $\{n\} \times \mathbb{N} \in \mathcal{U}_n = f(n, 0)$.
- Since $\{n\} \times \mathbb{N} \subseteq R_n \cup \{\infty\}$, we have $R_n \cup \{\infty\} \in \mathcal{U}_n$

- It is easily seen that $cl_{\mathbb{U}}(A) = A$ and $cl_{\theta}(A) = A \cup \{\pm \infty\}$. Thus $A \subseteq c(A) \subseteq A \cup \{\pm \infty\}$.
- To see that ∞ ∈ c(A), for n ∈ N consider the basic open set R_n ∪ {∞} containing ∞.
- Note $\{n\} \times \mathbb{N} \in \mathcal{U}_n = f(n, 0)$.
- Since $\{n\} \times \mathbb{N} \subseteq R_n \cup \{\infty\}$, we have $R_n \cup \{\infty\} \in \mathfrak{U}_n$
- Thus $\widehat{R_n \cup \{\infty\}} \cap A \neq \emptyset$ and $\infty \in c(A)$.

- It is easily seen that $cl_{\mathbb{U}}(A) = A$ and $cl_{\theta}(A) = A \cup \{\pm \infty\}$. Thus $A \subseteq c(A) \subseteq A \cup \{\pm \infty\}$.
- To see that ∞ ∈ c(A), for n ∈ N consider the basic open set R_n ∪ {∞} containing ∞.
- Note $\{n\} \times \mathbb{N} \in \mathcal{U}_n = f(n, 0)$.
- Since $\{n\} \times \mathbb{N} \subseteq R_n \cup \{\infty\}$, we have $R_n \cup \{\infty\} \in \mathfrak{U}_n$
- Thus $\widehat{R_n \cup \{\infty\}} \cap A \neq \emptyset$ and $\infty \in c(A)$.
- As $S_n \cap (\{n\} \times \mathbb{N} = \emptyset$ for all $n \in \mathbb{N}$, we have $-\infty \notin c(A)$.

Example (Con't)

- It is easily seen that $cl_{\mathbb{U}}(A) = A$ and $cl_{\theta}(A) = A \cup \{\pm \infty\}$. Thus $A \subseteq c(A) \subseteq A \cup \{\pm \infty\}$.
- To see that ∞ ∈ c(A), for n ∈ N consider the basic open set R_n ∪ {∞} containing ∞.

• Note
$$\{n\} \times \mathbb{N} \in \mathcal{U}_n = f(n, 0)$$
.

- Since $\{n\} \times \mathbb{N} \subseteq R_n \cup \{\infty\}$, we have $R_n \cup \{\infty\} \in \mathcal{U}_n$
- Thus $\widehat{R_n \cup \{\infty\}} \cap A \neq \emptyset$ and $\infty \in c(A)$.
- As $S_n \cap (\{n\} \times \mathbb{N} = \emptyset$ for all $n \in \mathbb{N}$, we have $-\infty \notin c(A)$.
- Thus, $c(A) = A \cup \{\infty\}$ and

 $cl(A) \neq c(A) \neq cl_{\theta}(A).$

The invariants aL'(X) and $t_c(X)$

Recall:

Definition

For a space X, $aL_c(X)$ is defined as

 $aL_c(X) = \sup\{aL(C, X) : C \text{ is closed}\} + \aleph_0$

A new cardinal invariant:

イロト 不得 とくほ とくほとう

æ

The invariants aL'(X) and $t_c(X)$

Recall:

Definition

For a space X, $aL_c(X)$ is defined as

$$aL_c(X) = \sup\{aL(C, X) : C \text{ is closed}\} + \aleph_0$$

A new cardinal invariant:

Definition

For a space X, define aL'(X) as

$$aL'(X) = \sup\{aL(C, X) : C \text{ is } c\text{-closed}\} + \aleph_0$$

くロト (過) (目) (日)

ъ

Proposition

For a space X,

<ロト <回 > < 注 > < 注 > 、

Proposition

For a space X,

(a) $aL(X) \leq aL'(X) \leq aL_c(X) \leq L(X)$, and

Nathan Carlson A Cardinality Bound for Hausdorff Spaces

イロト 不得 とくほと くほとう

∃ 9900
Proposition

For a space X,

(a) $aL(X) \le aL'(X) \le aL_c(X) \le L(X)$, and (b) $aL'(X) \le \hat{L}(X) \le L(X)$.

ヘロト 人間 とくほとくほとう

Proposition

For a space X,

(a)
$$aL(X) \le aL'(X) \le aL_c(X) \le L(X)$$
, and
(b) $aL'(X) \le \hat{L}(X) \le L(X)$.

 aL'(X) ≤ L(X) follows from the fact that L(X) is hereditary on *c*-closed subsets.

イロン 不同 とくほう イヨン

Definition

For a space *X*, the *c*-*tightness* of X, $t_c(X)$, is defined as the least cardinal κ such that if $x \in c(A)$ for some $x \in X$ and $A \subseteq X$, then there exists $B \in [A]^{\leq \kappa}$ such that $x \in c(B)$.

・ロト ・ ア・ ・ ヨト ・ ヨト

Definition

For a space *X*, the *c*-*tightness* of X, $t_c(X)$, is defined as the least cardinal κ such that if $x \in c(A)$ for some $x \in X$ and $A \subseteq X$, then there exists $B \in [A]^{\leq \kappa}$ such that $x \in c(B)$.

Example

Note that $t(\kappa\omega) = \aleph_0$ and $t_c(\kappa\omega) = t(\beta\omega) = \mathfrak{c}$. This shows that $t(\kappa\omega)$ and $t_c(\kappa\omega)$ are not equal.

くロト (過) (目) (日)

Definition

For a space *X*, the *c*-*tightness* of X, $t_c(X)$, is defined as the least cardinal κ such that if $x \in c(A)$ for some $x \in X$ and $A \subseteq X$, then there exists $B \in [A]^{\leq \kappa}$ such that $x \in c(B)$.

Example

Note that $t(\kappa\omega) = \aleph_0$ and $t_c(\kappa\omega) = t(\beta\omega) = \mathfrak{c}$. This shows that $t(\kappa\omega)$ and $t_c(\kappa\omega)$ are not equal.

Proposition

For any space X,

Definition

For a space *X*, the *c*-*tightness* of X, $t_c(X)$, is defined as the least cardinal κ such that if $x \in c(A)$ for some $x \in X$ and $A \subseteq X$, then there exists $B \in [A]^{\leq \kappa}$ such that $x \in c(B)$.

Example

Note that $t(\kappa\omega) = \aleph_0$ and $t_c(\kappa\omega) = t(\beta\omega) = \mathfrak{c}$. This shows that $t(\kappa\omega)$ and $t_c(\kappa\omega)$ are not equal.

Proposition

For any space X,

•
$$t_c(X) \leq \chi(X)$$
, and

Definition

For a space *X*, the *c*-*tightness* of X, $t_c(X)$, is defined as the least cardinal κ such that if $x \in c(A)$ for some $x \in X$ and $A \subseteq X$, then there exists $B \in [A]^{\leq \kappa}$ such that $x \in c(B)$.

Example

Note that $t(\kappa\omega) = \aleph_0$ and $t_c(\kappa\omega) = t(\beta\omega) = \mathfrak{c}$. This shows that $t(\kappa\omega)$ and $t_c(\kappa\omega)$ are not equal.

Proposition

For any space X,

- $t_c(X) \leq \chi(X)$, and
- if X is regular then $t_c(X) = t(X)$.

Proposition

For any space X and for all $x \neq y \in X$ there exist open sets U and V such that $x \in U$, $y \in V$, and $\widehat{U} \cap \widehat{V} = \emptyset$.

The above is formally stronger than the usual definition of Hausdorff.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Proposition

For any space X and for all $x \neq y \in X$ there exist open sets U and V such that $x \in U$, $y \in V$, and $\widehat{U} \cap \widehat{V} = \emptyset$.

The above is formally stronger than the usual definition of Hausdorff.

Proposition

If X is a space and $\psi_c(X) \leq \kappa$, then for all $x \in X$ there exists a family \mathcal{V} of open sets such that $|\mathcal{V}| \leq \kappa$ and

$$\{x\} = \bigcap \mathcal{V} = \bigcap_{V \in \mathcal{V}} c/V = \bigcap_{V \in \mathcal{V}} c(\widehat{V}).$$

Proposition

If X is a space and $A \subseteq X$, then

$$|c(\mathcal{A})| \leq |\mathcal{A}|^{t_c(X)\psi_c(X)} \leq |\mathcal{A}|^{\chi(X)}$$

Compare the above with:

$$|c|A| \leq |A|^{t(X)\psi_c(X)} \leq |A|^{\chi(X)}.$$

イロト 不得 とくほと くほとう

∃ 900

 \widehat{U} , the operator *c*, and the invariants $\widehat{L}(X)$, aL'(X) and $t_c(X)$ A closing-off argument

Proof.

Doge

Proof.

Let κ = t_c(X)ψ_c(X). There exists a family V_x of open sets such that |V_x| ≤ κ and

$$\{x\} = \bigcap \mathcal{V}_x = \bigcap_{V \in \mathcal{V}_x} c/V = \bigcap_{V \in \mathcal{V}_x} c(\widehat{V}).$$

Proof.

Let κ = t_c(X)ψ_c(X). There exists a family V_x of open sets such that |V_x| ≤ κ and

$$\{x\} = \bigcap \mathcal{V}_x = \bigcap_{V \in \mathcal{V}_x} c | V = \bigcap_{V \in \mathcal{V}_x} c (\widehat{V}).$$

As t_c(X) ≤ κ, for all x ∈ c(A) there exists A(x) ∈ [A]^{≤κ} such that x ∈ c(A(x)).

Proof.

Let κ = t_c(X)ψ_c(X). There exists a family V_x of open sets such that |V_x| ≤ κ and

$$\{x\} = \bigcap \mathcal{V}_x = \bigcap_{V \in \mathcal{V}_x} c | V = \bigcap_{V \in \mathcal{V}_x} c (\widehat{V}).$$

- As t_c(X) ≤ κ, for all x ∈ c(A) there exists A(x) ∈ [A]^{≤κ} such that x ∈ c(A(x)).
- Define $\phi: c(A) \rightarrow \left[[A]^{\leq \kappa} \right]^{\leq \kappa}$ by

$$\phi(\mathbf{x}) = \{ \widehat{\mathbf{V}} \cap \mathbf{A}(\mathbf{x}) : \mathbf{V} \in \mathcal{V}_{\mathbf{x}} \}.$$

Observe that $\phi(x) \in [[A]^{\leq \kappa}]^{\leq \kappa}$.

 \widehat{U} , the operator *c*, and the invariants $\widehat{L}(X)$, aL'(X) and $t_c(X)$ A closing-off argument

Proof, con't.

<ロト <回 > < 注 > < 注 > 、

 $\begin{array}{c} & \text{Overview} \\ & \text{Background} \\ \hat{U}, \text{ the operator } c, \text{ and the invariants } \hat{L}(X), aL'(X) \text{ and } t_c(X) \\ & \text{A closing-off argument} \end{array}$

Proof, con't.

• Fix $x \in c(A)$. It is straightforward to show that $x \in c(\widehat{V} \cap A(x))$ for all $V \in \mathcal{V}_x$.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

ъ

Proof, con't.

• Fix $x \in c(A)$. It is straightforward to show that $x \in c(\widehat{V} \cap A(x))$ for all $V \in \mathcal{V}_x$.

Thus,

$$\{x\}\subseteq \bigcap_{V\in\mathcal{V}_x} c(\widehat{V}\cap A(x))\subseteq \bigcap_{V\in\mathcal{V}_x} c(\widehat{V})=\{x\}$$

and

$$\{x\} = \bigcap_{V \in \mathcal{V}_x} c(\widehat{V} \cap A(x)).$$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Proof, con't.

• Fix $x \in c(A)$. It is straightforward to show that $x \in c(\widehat{V} \cap A(x))$ for all $V \in \mathcal{V}_x$.

Thus,

$$\{x\}\subseteq \bigcap_{V\in\mathcal{V}_x} c(\widehat{V}\cap A(x))\subseteq \bigcap_{V\in\mathcal{V}_x} c(\widehat{V})=\{x\}$$

and

$$\{x\} = \bigcap_{V \in \mathcal{V}_x} c(\widehat{V} \cap A(x)).$$

• This shows ϕ is one-to-one and $|c(A)| \leq |A|^{\kappa}$.

ヘロト ヘ戸ト ヘヨト ヘヨト

ъ

Theorem (Hodel)

Let X be a set, κ be an infinite cardinal, $d : \mathfrak{P}(X) \to \mathfrak{P}(X)$ an operator on X, and for each $x \in X$ let $\{V(\alpha, x) : \alpha < \kappa\}$ be a collection of subsets of X. Assume the following:

ヘロア 人間 アメヨア 人口 ア

Theorem (Hodel)

Let X be a set, κ be an infinite cardinal, $d : \mathcal{P}(X) \to \mathcal{P}(X)$ an operator on X, and for each $x \in X$ let $\{V(\alpha, x) : \alpha < \kappa\}$ be a collection of subsets of X. Assume the following:

(T) (tightness condition) if $x \in d(H)$ then there exists $A \subseteq H$ with $|A| \le \kappa$ such that $x \in d(A)$;

ヘロア 人間 アメヨア 人口 ア

Theorem (Hodel)

Let X be a set, κ be an infinite cardinal, $d : \mathfrak{P}(X) \to \mathfrak{P}(X)$ an operator on X, and for each $x \in X$ let $\{V(\alpha, x) : \alpha < \kappa\}$ be a collection of subsets of X. Assume the following:

- (T) (tightness condition) if $x \in d(H)$ then there exists $A \subseteq H$ with $|A| \le \kappa$ such that $x \in d(A)$;
- (C) (cardinality condition) if $A \subseteq X$ with $|A| \le \kappa$, then $|d(A)| \le 2^{\kappa}$;

ヘロト 人間 ト ヘヨト ヘヨト

Theorem (Hodel)

Let X be a set, κ be an infinite cardinal, $d : \mathcal{P}(X) \to \mathcal{P}(X)$ an operator on X, and for each $x \in X$ let $\{V(\alpha, x) : \alpha < \kappa\}$ be a collection of subsets of X. Assume the following:

- (T) (tightness condition) if $x \in d(H)$ then there exists $A \subseteq H$ with $|A| \le \kappa$ such that $x \in d(A)$;
- (C) (cardinality condition) if $A \subseteq X$ with $|A| \le \kappa$, then $|d(A)| \le 2^{\kappa}$;

(C-S) (cover-separation condition) if H ≠ Ø, d(H) ⊆ H, and q ∉ H, then there exists A ⊆ H with |A| ≤ κ and a function f : A → κ such that H ⊆ ⋃_{x∈A} V(f(x), x) and q ∉ ⋃_{x∈A} V(f(x), x).
Then |X| < 2^κ.

くロト (過) (目) (日)

Using the operator c in place of the operator d in Hodel's theorem, we obtain:

Main Theorem (C., Porter, 2016)

If X is Hausdorff then

$$|X| \leq 2^{aL'(X)t_c(X)\psi_c(X)} \leq 2^{aL'(X)\chi(X)} \leq 2^{\widehat{\mathcal{L}}(X)\chi(X)}$$

Compare the above to the following:

くロト (過) (目) (日)

æ

Using the operator c in place of the operator d in Hodel's theorem, we obtain:

Main Theorem (C., Porter, 2016)

If X is Hausdorff then

$$|X| \leq 2^{aL'(X)t_c(X)\psi_c(X)} \leq 2^{aL'(X)\chi(X)} \leq 2^{\widehat{L}(X)\chi(X)}$$

Compare the above to the following:

Theorem (Bella,Cammaroto)

If X is Hausdorff then $|X| \leq 2^{aL_c(X)t(X)\psi_c(X)}$.

ヘロト 人間 ト ヘヨト ヘヨト

æ

As $aL'(X) \leq \widehat{L}(X)$ and $\widehat{L}(X) = \aleph_0$ for an H-closed space X, it follows that:

Corollary (Dow, Porter 1982)

If X is H-closed then $|X| \leq 2^{\psi_c(X)}$.

イロト 不得 とくほと くほとう

We can now identify a property \mathcal{P} of a Hausdorff space X that generalizes both the H-closed and Lindelöf properties such that $|X| \leq 2^{\chi(X)}$ for spaces with property \mathcal{P} :

 $\mathcal{P} =$ for every open cover \mathcal{V} of X there is $\mathcal{W} \in [\mathcal{V}]^{\leq \omega}$ such that $X = \bigcup_{W \in \mathcal{W}} \widehat{W}$

・ロット (雪) () () () ()

Questions

Question

Are $\widehat{L}(X)$ and aL'(X) independent of the choice of open ultrafilter assignment?

Given relationships between cardinality bounds for general Hausdorff spaces and bounds for homogeneous spaces, we can ask:

Questions

Question

Are $\widehat{L}(X)$ and aL'(X) independent of the choice of open ultrafilter assignment?

Given relationships between cardinality bounds for general Hausdorff spaces and bounds for homogeneous spaces, we can ask:

Question

If X is a homogeneous Hausdorff space, is

$$|X| \leq 2^{aL'(X)t_c(X)pct(X)}?$$

 \widehat{U} , the operator *c*, and the invariants $\widehat{L}(X)$, aL'(X) and $t_c(X)$ A closing-off argument

Thank you!

Nathan Carlson A Cardinality Bound for Hausdorff Spaces

ヘロト 人間 とくほとくほとう

> C., Jack Porter, On the Cardinality of Hausdorff and H-closed Spaces, pre-print.

イロト 不得 とくほと くほとう