Quotients of the shift map (for frogs)

Will Brian

Toposym 2016 Prague 29 July 2016

イロト イヨト イヨト イヨト

臣

A theorem or two Compliant sequences

Dynamical systems

A dynamical system is a compact Hausdorff space X and a continuous self-map $f : X \to X$.

イロト イポト イヨト イヨト

æ

A theorem or two Compliant sequences

Dynamical systems

A dynamical system is a compact Hausdorff space X and a continuous self-map $f : X \to X$.

The *shift map* $\sigma: \omega^* \to \omega^*$ is the self-homeomorphism of ω^* induced by the successor function on ω .

(D) (A) (A) (A)

A theorem or two Compliant sequences

Dynamical systems

A dynamical system is a compact Hausdorff space X and a continuous self-map $f : X \to X$.

The *shift map* $\sigma: \omega^* \to \omega^*$ is the self-homeomorphism of ω^* induced by the successor function on ω .

(X, f) is a *quotient* of (ω^*, σ) if there is a continuous surjection $Q: \omega^* \to X$ such that $f \circ Q = Q \circ \sigma$.

(D) (A) (A) (A)

A theorem or two Compliant sequences

A question and two partial answers

Question: Which dynamical systems are quotients of (ω^*, σ) ?

(日) (四) (日) (日) (日)

A theorem or two Compliant sequences

A question and two partial answers

Question: Which dynamical systems are quotients of (ω^*, σ) ?

A dynamical system (X, f) is *weakly incompressible* if there is no open $U \subseteq X$, with $\emptyset \neq U \neq X$, such that $f(\overline{U}) \subseteq U$.

(D) (A) (A) (A)

A theorem or two Compliant sequences

A question and two partial answers

Question: Which dynamical systems are quotients of (ω^*, σ) ?

A dynamical system (X, f) is *weakly incompressible* if there is no open $U \subseteq X$, with $\emptyset \neq U \neq X$, such that $f(\overline{U}) \subseteq U$.

Theorem

If w(X) < p, then (X, f) is a quotient of (ω^*, σ) if and only if it is weakly incompressible.

Theorem

If $w(X) \leq \aleph_1$, then (X, f) is a quotient of (ω^*, σ) if and only if it is weakly incompressible.

イロト イポト イヨト イヨト

A theorem or two Compliant sequences

Extending maps from ω^* to $\beta\omega$

For compact X, every map $\omega \to X$ induces a continuous function $\omega^* \to X$.

A theorem or two Compliant sequences

Extending maps from ω^* to $\beta\omega$

For compact X, every map $\omega \to X$ induces a continuous function $\omega^* \to X$. Given a continuous map $Q : \omega^* \to X$, let us say that Q is *induced* if it arises in this way.

(D) (A) (A) (A)

A theorem or two Compliant sequences

Extending maps from ω^* to $\beta\omega$

For compact X, every map $\omega \to X$ induces a continuous function $\omega^* \to X$. Given a continuous map $Q : \omega^* \to X$, let us say that Q is *induced* if it arises in this way.

 For some spaces X, every continuous function ω^{*} → X is induced (e.g., metric spaces).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Extending maps from ω^* to $\beta\omega$

For compact X, every map $\omega \to X$ induces a continuous function $\omega^* \to X$. Given a continuous map $Q : \omega^* \to X$, let us say that Q is *induced* if it arises in this way.

- For some spaces X, every continuous function ω^{*} → X is induced (e.g., metric spaces).
- For other spaces this is not the case (e.g., the long line)

(日) (四) (日) (日) (日)

Extending maps from ω^* to $\beta\omega$

For compact X, every map $\omega \to X$ induces a continuous function $\omega^* \to X$. Given a continuous map $Q : \omega^* \to X$, let us say that Q is *induced* if it arises in this way.

- For some spaces X, every continuous function ω^{*} → X is induced (e.g., metric spaces).
- For other spaces this is not the case (e.g., the long line), but even for these spaces, we can come close:

Lemma (Tietze)

Suppose $X \subseteq [0,1]^{\kappa}$. Then every continuous map $\omega^* \to X$ is induced by a function $\omega \to [0,1]^{\kappa}$.

・ロト ・聞 ト ・ ヨト ・ ヨトー

A theorem or two Compliant sequences

Eventual compliance

Let X be a closed subset of $[0,1]^{\kappa}$ and $f: X \to X$ continuous.

イロン イヨン イヨン イヨン

臣

A theorem or two Compliant sequences

Eventual compliance

Let X be a closed subset of $[0,1]^{\kappa}$ and $f: X \to X$ continuous.

A sequence $\langle x_n : n < \omega \rangle$ of points in X is *eventually compliant* with an open cover \mathcal{U} of X provided

- each member of \mathcal{U} that meets X contains a point of the sequence
- for all but finitely many *n*, there are $U, V \in \mathcal{U}$ such that $x_n \in U, x_{n+1} \in V$, and $f(U \cap X) \cap V \neq \emptyset$.

(日) (四) (日) (日) (日)

A theorem or two Compliant sequences

Eventual compliance

Let X be a closed subset of $[0,1]^{\kappa}$ and $f: X \to X$ continuous.

A sequence $\langle x_n : n < \omega \rangle$ of points in X is *eventually compliant* with an open cover \mathcal{U} of X provided

- each member of \mathcal{U} that meets X contains a point of the sequence
- for all but finitely many *n*, there are $U, V \in \mathcal{U}$ such that $x_n \in U, x_{n+1} \in V$, and $f(U \cap X) \cap V \neq \emptyset$.

A theorem or two Compliant sequences

Which sequences induce quotient mappings?

Lemma

Let X be a closed subset of $[0,1]^{\kappa}$ and $f: X \to X$ continuous.

 A sequence ⟨x_n : n < ω⟩ of points in [0,1]^κ induces a quotient mapping from (ω*, σ) to (X, f) if and only if it is eventually compliant with every open cover.

A theorem or two Compliant sequences

Which sequences induce quotient mappings?

Lemma

Let X be a closed subset of $[0,1]^{\kappa}$ and $f: X \to X$ continuous.

- A sequence ⟨x_n : n < ω⟩ of points in [0, 1]^κ induces a quotient mapping from (ω*, σ) to (X, f) if and only if it is eventually compliant with every open cover.
- Conversely, every quotient mapping from (ω*, σ) to (X, f) arises in this way.

If a sequence of points is eventually compliant with every open cover, we will say it is *eventually compliant*.

イロト イポト イヨト イヨト

A theorem or two Compliant sequences

Two examples

・ロト ・回ト ・ヨト ・ヨト

æ

A theorem or two Compliant sequences

Two examples

Example 2: X is disconnected and f = id

A sensible idea that doesn't work An idea that does work

A proof via $MA(\sigma$ -centered): first attempt

Theorem

If w(X) < p, then (X, f) is a quotient of (ω^*, σ) if and only if it is weakly incompressible.

イロト イポト イヨト イヨト

A proof via $MA(\sigma$ -centered): first attempt

Theorem

If w(X) < p, then (X, f) is a quotient of (ω^*, σ) if and only if it is weakly incompressible.

Assume X is a closed subset of [0, 1]^κ, where κ = w(X). We want to build a sequence of points in [0, 1]^κ that is eventually compliant with every open cover.

A proof via $MA(\sigma$ -centered): first attempt

Theorem

If w(X) < p, then (X, f) is a quotient of (ω^*, σ) if and only if it is weakly incompressible.

- Assume X is a closed subset of [0,1]^κ, where κ = w(X). We want to build a sequence of points in [0,1]^κ that is eventually compliant with every open cover.
- By Bell's Theorem, κ κ</sub>(σ-centered), so it suffices to come up with a σ-centered forcing that builds the desired sequence.

A proof via $MA(\sigma$ -centered): first attempt

Theorem

If w(X) < p, then (X, f) is a quotient of (ω^*, σ) if and only if it is weakly incompressible.

- Assume X is a closed subset of [0, 1]^κ, where κ = w(X). We want to build a sequence of points in [0, 1]^κ that is eventually compliant with every open cover.
- By Bell's Theorem, κ κ</sub>(σ-centered), so it suffices to come up with a σ-centered forcing that builds the desired sequence.
- Idea: Let D be a countable dense subset of [0, 1]^κ. A forcing condition has the form (s, F), where s is a finite sequence of points in D and F is a finite collection of open covers.

・ロト ・四ト ・ヨト ・ヨト

A sensible idea that doesn't work An idea that does work

A proof via $MA(\sigma$ -centered): first attempt

Intuitively, s is a finite approximation to the sequence we're trying to build, and F represents a promise that as we extend s, we will do so in a way that is compliant with each member of F.

(D) (A) (A) (A)

A proof via $MA(\sigma$ -centered): first attempt

- Intuitively, *s* is a finite approximation to the sequence we're trying to build, and \mathcal{F} represents a promise that as we extend *s*, we will do so in a way that is compliant with each member of \mathcal{F} .
- Formally, (s', F') is stronger than (s, F) whenever F' ⊇ F, and s' extends s in a way that is compliant with each member of F.

(D) (A) (A) (A)

A proof via $MA(\sigma$ -centered): first attempt

- Intuitively, s is a finite approximation to the sequence we're trying to build, and F represents a promise that as we extend s, we will do so in a way that is compliant with each member of F.
- Formally, (s', F') is stronger than (s, F) whenever F' ⊇ F, and s' extends s in a way that is compliant with each member of F.
- We would like to use MA_κ(σ-centered) to get a sufficiently generic filter G of forcing conditions, and prove that U{s: (s, F) ∈ G} is an eventually compliant sequence.

Lost in space

A sensible idea that doesn't work An idea that does work

But this idea doesn't work!

イロン イヨン イヨン イヨン

æ

Lost in space

A sensible idea that doesn't work An idea that does work

But this idea doesn't work!

A condition where the extensions of *s* are restricted

イロト イヨト イヨト イ

∃ ⊳

Lost in space

A sensible idea that doesn't work An idea that does work

But this idea doesn't work!

イロト イヨト イヨト イ

-

A sensible idea that doesn't work An idea that does work

The fix: a safety point

Fix $x \in X$, and without loss of generality assume $x \in D$.

Will Brian Quotients of the shift map

• • • • • • • • • • • •

∃ >

A sensible idea that doesn't work An idea that does work

The fix: a safety point

Fix $x \in X$, and without loss of generality assume $x \in D$. Using x as a "safety point," we can keep our sequence from getting lost:

A sensible idea that doesn't work An idea that does work

The fix: a safety point

Fix $x \in X$, and without loss of generality assume $x \in D$. Using x as a "safety point," we can keep our sequence from getting lost:

- A forcing condition is a pair (s, \mathcal{F}) , where s is a finite sequence of points in D, \mathcal{F} is a finite collection of open covers, and the last point in s is x.
- (s', F') is stronger than (s, F) whenever F' ⊇ F and s' extends s in a way that is compliant with every member of F.

A sensible idea that doesn't work An idea that does work

The fix: a safety point

Fix $x \in X$, and without loss of generality assume $x \in D$. Using x as a "safety point," we can keep our sequence from getting lost:

- A forcing condition is a pair (s, \mathcal{F}) , where s is a finite sequence of points in D, \mathcal{F} is a finite collection of open covers, and the last point in s is x.
- (s', F') is stronger than (s, F) whenever F' ⊇ F and s' extends s in a way that is compliant with every member of F.

This notion of forcing is σ -centered, and the generic object is a sequence of points in $[0, 1]^{\kappa}$ that is eventually compliant with every open cover.

(D) (A) (A) (A) (A)

The idea: inverse limits and liftings The problem: this doesn't always work The solution: elementary submodels

An inverse limit of length ω_1

Lemma

Suppose $X \subseteq [0,1]^{\omega_1}$ and $f : X \to X$ is continuous. There is a closed unbounded set of ordinals $\alpha < \omega_1$ such that for all $x, y \in X$, if $\operatorname{prj}_{[0,1]^{\alpha}}(x) = \operatorname{prj}_{[0,1]^{\alpha}}(y)$ then $\operatorname{prj}_{[0,1]^{\alpha}}(f(x)) = \operatorname{prj}_{[0,1]^{\alpha}}(f(y))$.

In other words, we may find a closed unbounded set of countable ordinals α such that projecting (X, f) onto the first α coordinates of $[0, 1]^{\omega_1}$ yields a quotient mapping.

(D) (A) (A) (A)

The idea: inverse limits and liftings The problem: this doesn't always work The solution: elementary submodels

An inverse limit of length ω_1

Lemma

Suppose $X \subseteq [0,1]^{\omega_1}$ and $f: X \to X$ is continuous. There is a closed unbounded set of ordinals $\alpha < \omega_1$ such that for all $x, y \in X$, if $\operatorname{prj}_{[0,1]^{\alpha}}(x) = \operatorname{prj}_{[0,1]^{\alpha}}(y)$ then $\operatorname{prj}_{[0,1]^{\alpha}}(f(x)) = \operatorname{prj}_{[0,1]^{\alpha}}(f(y))$.

In other words, we may find a closed unbounded set of countable ordinals α such that projecting (X, f) onto the first α coordinates of $[0, 1]^{\omega_1}$ yields a quotient mapping.

Corollary

If (X, f) is a weakly incompressible dynamical system of weight \aleph_1 , then it is an ω_1 -length inverse limit of metrizable dynamical systems:

 $(X_0, f_0) \leftarrow (X_1, f_1) \leftarrow (X_2, f_2) \leftarrow \cdots \leftarrow (X_\alpha, f_\alpha) \leftarrow \dots (X, f).$

The idea: inverse limits and liftings The problem: this doesn't always work The solution: elementary submodels

A proof strategy that, once again, almost works

• Suppose $(X, f) = \varprojlim_{\alpha < \omega_1} (X_\alpha, f_\alpha)$, where each (X_α, f_α) is a metrizable (and weakly incompressible) dynamical system.

The idea: inverse limits and liftings The problem: this doesn't always work The solution: elementary submodels

A proof strategy that, once again, almost works

- Suppose $(X, f) = \varprojlim_{\alpha < \omega_1} (X_\alpha, f_\alpha)$, where each (X_α, f_α) is a metrizable (and weakly incompressible) dynamical system.
- **2** By Bowen's theorem, there is an eventually compliant sequence in (X_0, f_0) .

(D) (A) (A) (A)

The idea: inverse limits and liftings The problem: this doesn't always work The solution: elementary submodels

A proof strategy that, once again, almost works

- Suppose $(X, f) = \varprojlim_{\alpha < \omega_1} (X_\alpha, f_\alpha)$, where each (X_α, f_α) is a metrizable (and weakly incompressible) dynamical system.
- **2** By Bowen's theorem, there is an eventually compliant sequence in (X_0, f_0) .
- We can try to lift this sequence through the inverse limit system: for every α, we get an eventually compliant sequence (x_n^α : n < ω) of points in (X_α, f_α), and any two of these sequences agree on coordinates where both are defined.

The idea: inverse limits and liftings The problem: this doesn't always work The solution: elementary submodels

A proof strategy that, once again, almost works

- Suppose $(X, f) = \varprojlim_{\alpha < \omega_1} (X_\alpha, f_\alpha)$, where each (X_α, f_α) is a metrizable (and weakly incompressible) dynamical system.
- **2** By Bowen's theorem, there is an eventually compliant sequence in (X_0, f_0) .
- We can try to lift this sequence through the inverse limit system: for every α, we get an eventually compliant sequence (x_n^α : n < ω) of points in (X_α, f_α), and any two of these sequences agree on coordinates where both are defined.
- These sequences diagonalize to give us a sequence of points in [0,1]^{ℵ1}, and this sequence will be eventually compliant with (X, f).

・ロン ・四と ・ヨン・

The idea: inverse limits and liftings The problem: this doesn't always work The solution: elementary submodels

A proof strategy that, once again, almost works

 This proof strategy is reminiscent of one of the proofs of Parovičenko's theorem (Błaszczyk and Szymański, 1980).

(D) (A) (A)

The idea: inverse limits and liftings The problem: this doesn't always work The solution: elementary submodels

A proof strategy that, once again, almost works

- This proof strategy is reminiscent of one of the proofs of Parovičenko's theorem (Błaszczyk and Szymański, 1980).
- But in order to accomplish step 3 of this strategy, we would need some variant of the following proposition:

Wishful thinking

Suppose $\pi_{0,1}$ is a quotient mapping from (X_1, f_1) to (X_0, f_0) , and that $\langle x_n^0 : n < \omega \rangle$ is an eventually compliant sequence in (X_0, f_0) . Then there is an eventually compliant sequence $\langle x_n^0 : n < \omega \rangle$ in (X_1, f_1) such that $\pi_{0,1}(x_n^1) = x_n^0$ for all n.

and this simply isn't true.

・ロン ・四と ・ヨン ・ヨン

The idea: inverse limits and liftings The problem: this doesn't always work The solution: elementary submodels

Eventually compliant sequences do not always lift through projection mappings

æ

The idea: inverse limits and liftings The problem: this doesn't always work The solution: elementary submodels

Eventually compliant sequences do not always lift through projection mappings

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣

The idea: inverse limits and liftings The problem: this doesn't always work The solution: elementary submodels

Eventually compliant sequences do not always lift through projection mappings

(D) (A) (A)

The idea: inverse limits and liftings The problem: this doesn't always work The solution: elementary submodels

Eventually compliant sequences do not always lift through projection mappings

The idea: inverse limits and liftings The problem: this doesn't always work The solution: elementary submodels

Eventually compliant sequences do not always lift through projection mappings

The idea: inverse limits and liftings The problem: this doesn't always work The solution: elementary submodels

Eventually compliant sequences do not always lift through projection mappings

(D) (A) (A)

The idea: inverse limits and liftings The problem: this doesn't always work The solution: elementary submodels

Eventually compliant sequences do not always lift through projection mappings

The idea: inverse limits and liftings The problem: this doesn't always work The solution: elementary submodels

Eventually compliant sequences do not always lift through projection mappings

イロト イヨト イヨト イヨト

The idea: inverse limits and liftings The problem: this doesn't always work The solution: elementary submodels

Eventually compliant sequences do not always lift through projection mappings

イロト イヨト イヨト イヨト

The idea: inverse limits and liftings The problem: this doesn't always work The solution: elementary submodels

Eventually compliant sequences do not always lift through projection mappings

イロト イヨト イヨト イヨト

The idea: inverse limits and liftings The problem: this doesn't always work The solution: elementary submodels

A better kind of inverse limit

• To get around this problem, we replace topological inverse limits with the set-theoretic version: a continuous chain of elementary submodels.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

The idea: inverse limits and liftings The problem: this doesn't always work The solution: elementary submodels

A better kind of inverse limit

- To get around this problem, we replace topological inverse limits with the set-theoretic version: a continuous chain of elementary submodels.
- If a projection mapping (X_{α+1}, f_{α+1}) → (X_α, f_α) is induced by an elementary embedding, then any eventually compliant sequence in (X_α, f_α) can be lifted to (X_{α+1}, f_{α+1}).

The idea: inverse limits and liftings The problem: this doesn't always work The solution: elementary submodels

A better kind of inverse limit

- To get around this problem, we replace topological inverse limits with the set-theoretic version: a continuous chain of elementary submodels.
- If a projection mapping (X_{α+1}, f_{α+1}) → (X_α, f_α) is induced by an elementary embedding, then any eventually compliant sequence in (X_α, f_α) can be lifted to (X_{α+1}, f_{α+1}).
- This technique was pioneered by Dow and Hart to prove that every compact connected space of weight ℵ₁ is a continuous image of the Čech-Stone remainder of [0,∞).

(D) (A) (A)

 $\begin{array}{c} \mbox{Getting started} \\ \mbox{A proof by forcing: } w(X)$

The idea: inverse limits and liftings The problem: this doesn't always work The solution: elementary submodels

Three questions

Corollary

Assuming CH,
$$(\omega^*, \sigma^{-1})$$
 is a quotient of (ω^*, σ) .

Question

Can this be improved to an isomorphism?

イロト イヨト イヨト イヨト

臣

 $\begin{array}{c} \mbox{Getting started} \\ \mbox{A proof by forcing: } w(X)$

The idea: inverse limits and liftings The problem: this doesn't always work The solution: elementary submodels

Three questions

Corollary

Assuming CH,
$$(\omega^*,\sigma^{-1})$$
 is a quotient of (ω^*,σ) .

Question

Can this be improved to an isomorphism?

Theorem (Przymusiński, 1982)

Every perfectly normal compact space is a continuous image of ω^* .

Question

Suppose X is a perfectly normal compact space. Is it true that (X, f) is an abstract omega-limit set if and only if it is weakly incompressible?

 $\begin{array}{c} \mbox{Getting started} \\ \mbox{A proof by forcing: } w(X) < \mathfrak{p} \\ \mbox{A model-theoretic proof: } w(X) = \aleph_{\mathbf{1}} \end{array}$

The end

Thank you for listening

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣