Near-rings of Continuous Functions and Primeness

Geoff Booth

Nelson Mandela Metropolitan University Port Elizabeth, South Africa

July 1, 2016

Geoff Booth (NMMU)

Near-rings of Continuous Functions and Prime

July 1, 2016 1 / 15

Geoff Booth (NMMU)

∃ →

・ロト ・回 ・ ・ 回 ・ ・

Definition 1.1

A (right) near-ring is a triple $(N, +, \cdot)$ where

- (N, +) is a (not necessarily Abelian) group;
- **2** (N, \cdot) is a semigroup;
- ◎ (x+y)z = xz + yz for all $x, y, z \in N$. If x0 = 0 for all $x \in N$, N is said to be zero-symmetric.

Definition 1.1

A (right) near-ring is a triple $(N, +, \cdot)$ where

- (N, +) is a (not necessarily Abelian) group;
- **2** (N, \cdot) is a semigroup;

③
$$(x+y)z = xz + yz$$
 for all x, y, z ∈ N.
If $x0 = 0$ for all $x \in N$, N is said to be zero-symmetric.

In this talk, all near-rings will only be zero-symmetric when explicitly so stated.

Definition 1.1

A (right) near-ring is a triple $(N, +, \cdot)$ where

- (N, +) is a (not necessarily Abelian) group;
- **2** (N, \cdot) is a semigroup;

(x + y)z = xz + yz for all x, y, z
$$\in$$
 N.
If x0 = 0 for all $x \in N$, N is said to be zero-symmetric.

In this talk, all near-rings will only be zero-symmetric when explicitly so stated.

Definitions 1.2

A normal subgroup I of (N, +) is called a left ideal of N if $r(x + s) - rs \in I$ for all $r, s \in N$ and $x \in I$. If I is a left ideal of N and $IN \subseteq I$, then I is called a (two-sided) ideal of N.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition 1.1

A (right) near-ring is a triple $(N, +, \cdot)$ where

- (N, +) is a (not necessarily Abelian) group;
- **2** (N, \cdot) is a semigroup;

(x + y)z = xz + yz for all x, y, z
$$\in$$
 N.
If x0 = 0 for all $x \in N$, N is said to be zero-symmetric.

In this talk, all near-rings will only be zero-symmetric when explicitly so stated.

Definitions 1.2

A normal subgroup I of (N, +) is called a left ideal of N if $r(x + s) - rs \in I$ for all $r, s \in N$ and $x \in I$. If I is a left ideal of N and $IN \subseteq I$, then I is called a (two-sided) ideal of N.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃ →

・ロト ・回 ・ ・ 回 ・ ・

Geoff Booth (NMMU)

Let (G, +) be a (not necessarily Abelian) group, and let M(G) denote the set of all self-maps of G. Then M(G) is a near-ring with respect to pointwise addition and composition of maps.

Let (G, +) be a (not necessarily Abelian) group, and let M(G) denote the set of all self-maps of G. Then M(G) is a near-ring with respect to pointwise addition and composition of maps.

The set $M_0(G) := \{a \in M(G) : a(0) = 0\}$ is a zero-symmetric subnear-ring of M(G).

Let (G, +) be a (not necessarily Abelian) group, and let M(G) denote the set of all self-maps of G. Then M(G) is a near-ring with respect to pointwise addition and composition of maps.

The set $M_0(G) := \{a \in M(G) : a(0) = 0\}$ is a zero-symmetric subnear-ring of M(G).

M(G) and $M_0(G)$ provide prototypes for all near-rings (resp. all zero-symmetric near-rings) in that every near-ring (resp. zero-symmetric near-ring) is isomorphic to a subnear-ring of M(G) (resp. $M_0(G)$).

・ 同 ト ・ ヨ ト ・ ヨ ト

Let (G, +) be a (not necessarily Abelian) group, and let M(G) denote the set of all self-maps of G. Then M(G) is a near-ring with respect to pointwise addition and composition of maps.

The set $M_0(G) := \{a \in M(G) : a(0) = 0\}$ is a zero-symmetric subnear-ring of M(G).

M(G) and $M_0(G)$ provide prototypes for all near-rings (resp. all zero-symmetric near-rings) in that every near-ring (resp. zero-symmetric near-ring) is isomorphic to a subnear-ring of M(G) (resp. $M_0(G)$).

・ 同 ト ・ ヨ ト ・ ヨ ト

э.

・ロト ・回 ・ ・ 回 ・ ・

Geoff Booth (NMMU)

Geoff Booth (NMMU)

Theorem 1.3

Let (G, +) be a group. Then

A (10) F (10) F (10)

Geoff Booth (NMMU)

Theorem 1.3

Let (G, +) be a group. Then

• $M_0(G)$ is a simple near-ring;

Geoff Booth (NMMU)

Theorem 1.3

Let (G, +) be a group. Then

- $M_0(G)$ is a simple near-ring;
- If $|G| \neq 2$, then M(G) is a simple near-ring.

< ∃ > <

Geoff Booth (NMMU)

Theorem 1.3

Let (G, +) be a group. Then

- $M_0(G)$ is a simple near-ring;
- If $|G| \neq 2$, then M(G) is a simple near-ring.

< ∃ > <

Theorem 1.3

Let (G, +) be a group. Then

- $M_0(G)$ is a simple near-ring;
- If $|G| \neq 2$, then M(G) is a simple near-ring.

The classical concept of primeness for rings has been extended to near-rings in various ways. We conclude this section with some definitions.

Theorem 1.3

Let (G, +) be a group. Then

- $M_0(G)$ is a simple near-ring;
- If $|G| \neq 2$, then M(G) is a simple near-ring.

The classical concept of primeness for rings has been extended to near-rings in various ways. We conclude this section with some definitions.

Definition 1.4

Theorem 1.3

Let (G, +) be a group. Then

- $M_0(G)$ is a simple near-ring;
- If $|G| \neq 2$, then M(G) is a simple near-ring.

The classical concept of primeness for rings has been extended to near-rings in various ways. We conclude this section with some definitions.

Definition 1.4

A near-ring N is

• 0-prime if A, B ideals of N, AB = 0 implies A = 0 or B = 0;

Theorem 1.3

Let (G, +) be a group. Then

- $M_0(G)$ is a simple near-ring;
- If $|G| \neq 2$, then M(G) is a simple near-ring.

The classical concept of primeness for rings has been extended to near-rings in various ways. We conclude this section with some definitions.

Definition 1.4

- 0-prime if A, B ideals of N, AB = 0 implies A = 0 or B = 0;
- 3-prime if *a*, *b* ∈ *N*, *aNb* = 0 implies *a* = 0 or *b* = 0 (Groenewald, 1991);

Theorem 1.3

Let (G, +) be a group. Then

- $M_0(G)$ is a simple near-ring;
- If $|G| \neq 2$, then M(G) is a simple near-ring.

The classical concept of primeness for rings has been extended to near-rings in various ways. We conclude this section with some definitions.

Definition 1.4

- 0-prime if A, B ideals of N, AB = 0 implies A = 0 or B = 0;
- 3-prime if *a*, *b* ∈ *N*, *aNb* = 0 implies *a* = 0 or *b* = 0 (Groenewald, 1991);
- equiprime (e-prime) if $a, x, y \in N$, anx any for all $n \in N$ implies a = 0 or x = y (Booth, Groenewald and Veldsman, 1991).

Theorem 1.3

Let (G, +) be a group. Then

- $M_0(G)$ is a simple near-ring;
- If $|G| \neq 2$, then M(G) is a simple near-ring.

The classical concept of primeness for rings has been extended to near-rings in various ways. We conclude this section with some definitions.

Definition 1.4

- 0-prime if A, B ideals of N, AB = 0 implies A = 0 or B = 0;
- 3-prime if *a*, *b* ∈ *N*, *aNb* = 0 implies *a* = 0 or *b* = 0 (Groenewald, 1991);
- equiprime (e-prime) if $a, x, y \in N$, anx any for all $n \in N$ implies a = 0 or x = y (Booth, Groenewald and Veldsman, 1991).

Theorem 1.3

Let (G, +) be a group. Then

- $M_0(G)$ is a simple near-ring;
- If $|G| \neq 2$, then M(G) is a simple near-ring.

The classical concept of primeness for rings has been extended to near-rings in various ways. We conclude this section with some definitions.

Definition 1.4

- 0-prime if A, B ideals of N, AB = 0 implies A = 0 or B = 0;
- 3-prime if *a*, *b* ∈ *N*, *aNb* = 0 implies *a* = 0 or *b* = 0 (Groenewald, 1991);
- equiprime (e-prime) if $a, x, y \in N$, anx any for all $n \in N$ implies a = 0 or x = y (Booth, Groenewald and Veldsman, 1991).

Geoff Booth (NMMU)

Since the 1970's, near-rings of self-maps of topological groups have been studied.

Since the 1970's, near-rings of self-maps of topological groups have been studied. In what follows, G is an additive T_0 (and hence completely regular) topological group.

Geoff Booth (NMMU)

Since the 1970's, near-rings of self-maps of topological groups have been studied. In what follows, G is an additive T_0 (and hence completely regular) topological group.

Let

$$\begin{array}{rcl} \mathcal{N}(G) & : & = \{a: G \rightarrow G \mid a \text{ is continuous}\} \text{ and} \\ \mathcal{N}_0(G) & : & = \{a \in \mathcal{N}(G) \mid a(0) = 0\}. \end{array}$$

Since the 1970's, near-rings of self-maps of topological groups have been studied. In what follows, G is an additive T_0 (and hence completely regular) topological group.

Let

$$\begin{split} \mathcal{N}(G) &:= \{a: G \rightarrow G \mid a \text{ is continuous}\} \text{ and} \\ \mathcal{N}_0(G) &:= \{a \in \mathcal{N}(G) \mid a(0) = 0\}. \end{split}$$

It is clear that N(G) and $N_0(G)$ are a near-ring and a zero-symmetric near-ring, respectively.

Since the 1970's, near-rings of self-maps of topological groups have been studied. In what follows, G is an additive T_0 (and hence completely regular) topological group.

Let

$$\begin{split} &\mathcal{N}(G) \quad : \quad = \{a:G \rightarrow G \mid a \text{ is continuous}\} \text{ and} \\ &\mathcal{N}_0(G) \quad : \quad = \{a \in \mathcal{N}(G) \mid a(0) = 0\}. \end{split}$$

It is clear that N(G) and $N_0(G)$ are a near-ring and a zero-symmetric near-ring, respectively. Moreover, if the topology on G is discrete, then N(G) = M(G) and $N_0(G) = M_0(G)$.

Since the 1970's, near-rings of self-maps of topological groups have been studied. In what follows, G is an additive T_0 (and hence completely regular) topological group.

Let

$$\begin{split} N(G) &:= \{a: G \rightarrow G \mid a \text{ is continuous}\} \text{ and} \\ N_0(G) &:= \{a \in N(G) \mid a(0) = 0\}. \end{split}$$

It is clear that N(G) and $N_0(G)$ are a near-ring and a zero-symmetric near-ring, respectively. Moreover, if the topology on G is discrete, then N(G) = M(G) and $N_0(G) = M_0(G)$. The question arises: To what extent are the properties of N(G) and $N_0(G)$ similar to those of M(G) and $M_0(G)$, respectively? Since the 1970's, near-rings of self-maps of topological groups have been studied. In what follows, G is an additive T_0 (and hence completely regular) topological group.

Let

$$\begin{array}{rcl} N(G) & : & = \{a: G \rightarrow G \mid a \text{ is continuous}\} \text{ and} \\ N_0(G) & : & = \{a \in N(G) \mid a(0) = 0\}. \end{array}$$

It is clear that N(G) and $N_0(G)$ are a near-ring and a zero-symmetric near-ring, respectively. Moreover, if the topology on G is discrete, then N(G) = M(G) and $N_0(G) = M_0(G)$.

The question arises: To what extent are the properties of N(G) and $N_0(G)$ similar to those of M(G) and $M_0(G)$, respectively? As we shall see, there are many striking differences.

Since the 1970's, near-rings of self-maps of topological groups have been studied. In what follows, G is an additive T_0 (and hence completely regular) topological group.

Let

$$\begin{array}{rcl} N(G) & : & = \{a: G \rightarrow G \mid a \text{ is continuous}\} \text{ and} \\ N_0(G) & : & = \{a \in N(G) \mid a(0) = 0\}. \end{array}$$

It is clear that N(G) and $N_0(G)$ are a near-ring and a zero-symmetric near-ring, respectively. Moreover, if the topology on G is discrete, then N(G) = M(G) and $N_0(G) = M_0(G)$.

The question arises: To what extent are the properties of N(G) and $N_0(G)$ similar to those of M(G) and $M_0(G)$, respectively? As we shall see, there are many striking differences.

Geoff Booth (NMMU)

We have seen that $M_0(G)$ is simple for any group G. This is not the case for $N_0(G)$.

We have seen that $M_0(G)$ is simple for any group G. This is not the case for $N_0(G)$.

Example 2.1

Let (G, +) be a topological group. Then define $P_G := \{a \in N_0(G) :$ there exists a neighbourhood U of 0 such that $a(U) = 0\}$. Then $P_G \lhd N_0(G)$. There are many examples where the ideal P_G is non-trivial, for example, $G = \mathbb{R}$. We have seen that $M_0(G)$ is simple for any group G. This is not the case for $N_0(G)$.

Example 2.1

Let (G, +) be a topological group. Then define $P_G := \{a \in N_0(G) :$ there exists a neighbourhood U of 0 such that $a(U) = 0\}$. Then $P_G \lhd N_0(G)$. There are many examples where the ideal P_G is non-trivial, for example, $G = \mathbb{R}$.

As we shall see, the instances where $N_0(G)$ is simple seem to be the exception rather than the rule.

2. Near-rings of Continuous Functions

Geoff Booth (NMMU)

2. Near-rings of Continuous Functions

Definition 2.2

Let (G, +) be a topological group. Suppose that for every proper closed subset F of $G, x \in G \setminus F$ and $0 \neq y \in G$, there exists a continuous function $f : G \to G$ such that f(F) = 0 and f(x) = y Then G is called an S^* -group.

Definition 2.2

Let (G, +) be a topological group. Suppose that for every proper closed subset F of $G, x \in G \setminus F$ and $0 \neq y \in G$, there exists a continuous function $f : G \to G$ such that f(F) = 0 and f(x) = y Then G is called an S^* -group.

We remark that the class of S^* -groups includes the arcwise connected groups, as well as the 0-dimensional ones. A topological space X is 0-dimensional if it has a basis consisting of clopen sets.

Definition 2.2

Let (G, +) be a topological group. Suppose that for every proper closed subset F of $G, x \in G \setminus F$ and $0 \neq y \in G$, there exists a continuous function $f : G \to G$ such that f(F) = 0 and f(x) = y Then G is called an S^* -group.

We remark that the class of S^* -groups includes the arcwise connected groups, as well as the 0-dimensional ones. A topological space X is 0-dimensional if it has a basis consisting of clopen sets.

Theorem 2.3

Let (G, +) be an S^* -group or be disconnected. Then $N_0(G)$ is simple if and only if the topology on G is discrete (Magill, 1967).

・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition 2.2

Let (G, +) be a topological group. Suppose that for every proper closed subset F of $G, x \in G \setminus F$ and $0 \neq y \in G$, there exists a continuous function $f : G \to G$ such that f(F) = 0 and f(x) = y Then G is called an S^* -group.

We remark that the class of S^* -groups includes the arcwise connected groups, as well as the 0-dimensional ones. A topological space X is 0-dimensional if it has a basis consisting of clopen sets.

Theorem 2.3

Let (G, +) be an S^* -group or be disconnected. Then $N_0(G)$ is simple if and only if the topology on G is discrete (Magill, 1967).

It seems easier to find cases where N(G) is simple, as the next result shows.

イロト イポト イヨト イヨト

2. Near-rings of Continuous Functions

Geoff Booth (NMMU)

Theorem 2.4

Geoff Booth (NMMU)

Let (G, +) be the additive group of a topological division ring, such that |G| > 2. Then N(G) is simple (Hofer, 1979).

Theorem 2.4

Geoff Booth (NMMU)

Let (G, +) be the additive group of a topological division ring, such that |G| > 2. Then N(G) is simple (Hofer, 1979).

Geoff Booth (NMMU)

<ロ> (日) (日) (日) (日) (日)

It is easily seen that $M_0(G)$ is equiprime for any group G. This is not the case for $N_0(G)$, as the following example shows.

It is easily seen that $M_0(G)$ is equiprime for any group G. This is not the case for $N_0(G)$, as the following example shows.

Example 3.1

Let $G := \mathbb{R} \times \mathbb{Z}_2$, where G has the product topology with respect to the usual and discrete topologies on \mathbb{R} and \mathbb{Z}_2 , respectively. Let $I := \{a \in N_0(G) : a(\mathbb{R} \times 0) = 0\}$ and $J := \{a \in N_0(G) : a(G) \subseteq \mathbb{R} \times 0\}$. Then I and J are ideals of $N_0(G)$ and $I \cap J \neq 0$. However, $(I \cap J)^2 = 0$, so $N_0(G)$ is not 0-prime and hence not equiprime.

It is easily seen that $M_0(G)$ is equiprime for any group G. This is not the case for $N_0(G)$, as the following example shows.

Example 3.1

Let $G := \mathbb{R} \times \mathbb{Z}_2$, where G has the product topology with respect to the usual and discrete topologies on \mathbb{R} and \mathbb{Z}_2 , respectively. Let $I := \{a \in N_0(G) : a(\mathbb{R} \times 0) = 0\}$ and $J := \{a \in N_0(G) : a(G) \subseteq \mathbb{R} \times 0\}$. Then I and J are ideals of $N_0(G)$ and $I \cap J \neq 0$. However, $(I \cap J)^2 = 0$, so $N_0(G)$ is not 0-prime and hence not equiprime.

Nevertheless, $N_0(G)$ is equiprime in many cases.

It is easily seen that $M_0(G)$ is equiprime for any group G. This is not the case for $N_0(G)$, as the following example shows.

Example 3.1

Let $G := \mathbb{R} \times \mathbb{Z}_2$, where G has the product topology with respect to the usual and discrete topologies on \mathbb{R} and \mathbb{Z}_2 , respectively. Let $I := \{a \in N_0(G) : a(\mathbb{R} \times 0) = 0\}$ and $J := \{a \in N_0(G) : a(G) \subseteq \mathbb{R} \times 0\}$. Then I and J are ideals of $N_0(G)$ and $I \cap J \neq 0$. However, $(I \cap J)^2 = 0$, so $N_0(G)$ is not 0-prime and hence not equiprime.

Nevertheless, $N_0(G)$ is equiprime in many cases.

Theorem 3.2

Let G be an S^{*}-group. Then $N_0(G)$ is equiprime.

イロト 不得下 イヨト イヨト

Geoff Booth (NMMU)

<ロ> (日) (日) (日) (日) (日)

The different notions of primeness discussed in this talk give rise to different prime radicals. If N is a near-ring and $\nu \in \{0, 3.e\}$, let

$$\mathcal{P}_{\nu}(N) := \bigcap \{ P \lhd N \mid N/P \text{ is } \nu \text{-prime} \}$$

The different notions of primeness discussed in this talk give rise to different prime radicals. If N is a near-ring and $\nu \in \{0, 3.e\}$, let

$$\mathcal{P}_{\nu}(N) := \bigcap \{ P \lhd N \mid N/P \text{ is } \nu\text{-prime} \}.$$

Theorem 3.3

Let G be a disconnected topological group, with open components which each contain more than one element. Let H be the component of G which contains 0. Let $I := \{a \in N_0(G) : a(H) = 0\}$ and $J := \{a \in N_0(G) : a(G) \subseteq H\}$. Then $\mathcal{P}_0(N_0(G)) = \mathcal{P}_3(N_0(G)) = \mathcal{P}_e(N_0(G)) = I \cap J$. The different notions of primeness discussed in this talk give rise to different prime radicals. If N is a near-ring and $\nu \in \{0, 3.e\}$, let

$$\mathcal{P}_{\nu}(N) := \bigcap \{ P \lhd N \mid N/P \text{ is } \nu\text{-prime} \}.$$

Theorem 3.3

Let G be a disconnected topological group, with open components which each contain more than one element. Let H be the component of G which contains 0. Let $I := \{a \in N_0(G) : a(H) = 0\}$ and $J := \{a \in N_0(G) : a(G) \subseteq H\}$. Then $\mathcal{P}_0(N_0(G)) = \mathcal{P}_3(N_0(G)) = \mathcal{P}_e(N_0(G)) = I \cap J$.

Geoff Booth (NMMU)

< 🗇 🕨 < 🖃 🕨

Definition 3.4

A near-ring N is

Geoff Booth (NMMU)

< ∃ >

Definition 3.4

A near-ring N is

Geoff Booth (NMMU)

strongly prime if for all 0 ≠ a ∈ N, there exists a finite subset F of N such that x ∈ N, aFx = 0 implies x = 0;

Definition 3.4

A near-ring N is

- **1** strongly prime if for all $0 \neq a \in N$, there exists a finite subset F of N such that $x \in N$, aFx = 0 implies x = 0;
- 2 strongly equiprime if for all $0 \neq a \in N$, there exists a finite subset F of N such that $x, y \in N$, afx = afy for all $f \in F$ implies x = y.

Definition 3.4

A near-ring N is

- Strongly prime if for all 0 ≠ a ∈ N, there exists a finite subset F of N such that x ∈ N, aFx = 0 implies x = 0;
- Strongly equiprime if for all 0 ≠ a ∈ N, there exists a finite subset F of N such that x, y ∈ N, afx = afy for all f ∈ F implies x = y.
- If the finite subset F is independent of the choice of a in 1 or 2 above, then N is said to be uniformly strongly prime (resp. uniformly strongly equiprime).

11 / 15

Definition 3.4

A near-ring N is

- Strongly prime if for all 0 ≠ a ∈ N, there exists a finite subset F of N such that x ∈ N, aFx = 0 implies x = 0;
- Strongly equiprime if for all 0 ≠ a ∈ N, there exists a finite subset F of N such that x, y ∈ N, afx = afy for all f ∈ F implies x = y.
- If the finite subset F is independent of the choice of a in 1 or 2 above, then N is said to be uniformly strongly prime (resp. uniformly strongly equiprime).

11 / 15

Definition 3.4

A near-ring N is

- strongly prime if for all 0 ≠ a ∈ N, there exists a finite subset F of N such that x ∈ N, aFx = 0 implies x = 0;
- Strongly equiprime if for all 0 ≠ a ∈ N, there exists a finite subset F of N such that x, y ∈ N, afx = afy for all f ∈ F implies x = y.
- If the finite subset F is independent of the choice of a in 1 or 2 above, then N is said to be uniformly strongly prime (resp. uniformly strongly equiprime).

We remark that strongly equiprime \implies strongly prime \implies 3-prime and strongly equiprime \implies equiprime.

Definition 3.4

A near-ring N is

- Strongly prime if for all 0 ≠ a ∈ N, there exists a finite subset F of N such that x ∈ N, aFx = 0 implies x = 0;
- Strongly equiprime if for all 0 ≠ a ∈ N, there exists a finite subset F of N such that x, y ∈ N, afx = afy for all f ∈ F implies x = y.
- If the finite subset F is independent of the choice of a in 1 or 2 above, then N is said to be uniformly strongly prime (resp. uniformly strongly equiprime).

We remark that strongly equiprime \implies strongly prime \implies 3-prime and strongly equiprime \implies equiprime.

Theorem 3.5

Let G be an arcwise connected topological group with more than one element. Then $N_0(G)$ is not strongly prime (Booth and Hall, 2004).

Geoff Booth (NMMU)

Geoff Booth (NMMU)

< 🗇 🕨 < 🖃 🕨

Geoff Booth (NMMU)

Let G be a 0-dimensional topological group. Then

($N_0(G)$ is strongly prime if and only if the topology on G is discrete;

- **()** $N_0(G)$ is strongly prime if and only if the topology on G is discrete;
- **2** $N_0(G)$ is strongly equiprime if and only if G is finite.

- **()** $N_0(G)$ is strongly prime if and only if the topology on G is discrete;
- **2** $N_0(G)$ is strongly equiprime if and only if G is finite.

- $N_0(G)$ is strongly prime if and only if the topology on G is discrete;
- N₀(G) is strongly equiprime if and only if G is finite. (Booth and Hall, 2004)

Let G be a 0-dimensional topological group. Then

- $N_0(G)$ is strongly prime if and only if the topology on G is discrete;
- N₀(G) is strongly equiprime if and only if G is finite. (Booth and Hall, 2004)

An ideal I of a near-ring N is strongly prime (resp. uniformly strongly prime) if the factor near-ring N/I is strongly prime, (resp. uniformly strongly prime).

Let G be a 0-dimensional topological group. Then

• $N_0(G)$ is strongly prime if and only if the topology on G is discrete;

 N₀(G) is strongly equiprime if and only if G is finite. (Booth and Hall, 2004)

An ideal *I* of a near-ring *N* is strongly prime (resp. uniformly strongly prime) if the factor near-ring N/I is strongly prime, (resp. uniformly strongly prime). The strongly prime radical $\mathcal{P}_s(N)$ (resp. uniformly strongly prime radical $\mathcal{P}_u(N)$) is the intersection of the strongly prime (resp. uniformly strongly prime) ideals of *N*.

< 回 ト < 三 ト < 三 ト

12 / 15

Let G be a 0-dimensional topological group. Then

• $N_0(G)$ is strongly prime if and only if the topology on G is discrete;

 N₀(G) is strongly equiprime if and only if G is finite. (Booth and Hall, 2004)

An ideal *I* of a near-ring *N* is strongly prime (resp. uniformly strongly prime) if the factor near-ring N/I is strongly prime, (resp. uniformly strongly prime). The strongly prime radical $\mathcal{P}_s(N)$ (resp. uniformly strongly prime radical $\mathcal{P}_u(N)$) is the intersection of the strongly prime (resp. uniformly strongly prime) ideals of *N*.

< 回 ト < 三 ト < 三 ト

12 / 15

Geoff Booth (NMMU)

< 🗇 🕨 < 🖃 🕨

Geoff Booth (NMMU)

In what follows, \mathbb{R}^n $(n \in \mathbb{N})$ will be endowed with the usual (product) topology.

In what follows, \mathbb{R}^n $(n \in \mathbb{N})$ will be endowed with the usual (product) topology.

Theorem 4.2

 $P_{\mathbb{R}^n} = \{a \in N_0(\mathbb{R}^n) : \text{there exists a neighbourhood } U \text{ of } 0 \text{ such that} a(U) = 0\}$ is a uniformly strongly prime ideal of $N_0(\mathbb{R}^n)$ which contains every strongly prime ideal (Booth, 2010).

In what follows, \mathbb{R}^n $(n \in \mathbb{N})$ will be endowed with the usual (product) topology.

Theorem 4.2

 $P_{\mathbb{R}^n} = \{a \in N_0(\mathbb{R}^n) : \text{there exists a neighbourhood } U \text{ of } 0 \text{ such that} a(U) = 0\}$ is a uniformly strongly prime ideal of $N_0(\mathbb{R}^n)$ which contains every strongly prime ideal (Booth, 2010).

We remark that, for $n \ge 2$, this result makes use of the Peano space-filling curves.

In what follows, \mathbb{R}^n $(n \in \mathbb{N})$ will be endowed with the usual (product) topology.

Theorem 4.2

 $P_{\mathbb{R}^n} = \{a \in N_0(\mathbb{R}^n) : \text{there exists a neighbourhood } U \text{ of } 0 \text{ such that} a(U) = 0\}$ is a uniformly strongly prime ideal of $N_0(\mathbb{R}^n)$ which contains every strongly prime ideal (Booth, 2010).

We remark that, for $n \ge 2$, this result makes use of the Peano space-filling curves.

Corollary 4.3

$$\mathcal{P}_{s}(N_{0}(\mathbb{R}^{n})) = \mathcal{P}_{u}(N_{0}(\mathbb{R}^{n})) = P_{\mathbb{R}^{n}}.$$

→ ∃ →

Geoff Booth (NMMU)

< 🗇 🕨 < 🖃 🕨

Now we investigate strongly prime ideals in $N_0(\mathbb{R}^{\omega})$, where ω is the first transfinite cardinal, and \mathbb{R}^{ω} has the usual (Tychonoff) product topology.

Now we investigate strongly prime ideals in $N_0(\mathbb{R}^{\omega})$, where ω is the first transfinite cardinal, and \mathbb{R}^{ω} has the usual (Tychonoff) product topology. Recall that \mathbb{R}^{ω} metrizable, with metric *d* defined by

$$d(x,y) := \sum_{i=1}^{\infty} rac{|x_i - y_i|}{2^i (1 + |x_i - y_i|)}$$
, where $x := (x_i)_{i \in \mathbb{N}}$ and $y := (y_i)_{i \in \mathbb{N}}$.

Now we investigate strongly prime ideals in $N_0(\mathbb{R}^{\omega})$, where ω is the first transfinite cardinal, and \mathbb{R}^{ω} has the usual (Tychonoff) product topology. Recall that \mathbb{R}^{ω} metrizable, with metric *d* defined by

$$d(x,y) := \sum_{i=1}^{\infty} rac{|x_i - y_i|}{2^i (1 + |x_i - y_i|)}$$
, where $x := (x_i)_{i \in \mathbb{N}}$ and $y := (y_i)_{i \in \mathbb{N}}$.

Theorem 4.4

 $P_{\mathbb{R}^{\omega}}$ is a strongly prime ideal of $N_0(\mathbb{R}^{\omega})$, and is contained in every strongly prime ideal of $N_0(\mathbb{R}^{\omega})$.

July 1, 2016

14 / 15

Now we investigate strongly prime ideals in $N_0(\mathbb{R}^{\omega})$, where ω is the first transfinite cardinal, and \mathbb{R}^{ω} has the usual (Tychonoff) product topology. Recall that \mathbb{R}^{ω} metrizable, with metric *d* defined by

$$d(x,y) := \sum_{i=1}^{\infty} rac{|x_i - y_i|}{2^i (1 + |x_i - y_i|)}$$
, where $x := (x_i)_{i \in \mathbb{N}}$ and $y := (y_i)_{i \in \mathbb{N}}$.

Theorem 4.4

 $P_{\mathbb{R}^{\omega}}$ is a strongly prime ideal of $N_0(\mathbb{R}^{\omega})$, and is contained in every strongly prime ideal of $N_0(\mathbb{R}^{\omega})$.

We remark that $P_{\mathbb{R}^{\omega}}$ is not uniformly strongly prime in this case.

Now we investigate strongly prime ideals in $N_0(\mathbb{R}^{\omega})$, where ω is the first transfinite cardinal, and \mathbb{R}^{ω} has the usual (Tychonoff) product topology. Recall that \mathbb{R}^{ω} metrizable, with metric *d* defined by

$$d(x,y) := \sum_{i=1}^{\infty} rac{|x_i - y_i|}{2^i (1 + |x_i - y_i|)}$$
, where $x := (x_i)_{i \in \mathbb{N}}$ and $y := (y_i)_{i \in \mathbb{N}}$.

Theorem 4.4

 $P_{\mathbb{R}^{\omega}}$ is a strongly prime ideal of $N_0(\mathbb{R}^{\omega})$, and is contained in every strongly prime ideal of $N_0(\mathbb{R}^{\omega})$.

We remark that $P_{\mathbb{R}^{\omega}}$ is not uniformly strongly prime in this case.

Corollary 4.5

$$\mathcal{P}_{s}(N_{0}(\mathbb{R}^{\omega})) = P_{\mathbb{R}^{\omega}}.$$

Now we investigate strongly prime ideals in $N_0(\mathbb{R}^{\omega})$, where ω is the first transfinite cardinal, and \mathbb{R}^{ω} has the usual (Tychonoff) product topology. Recall that \mathbb{R}^{ω} metrizable, with metric *d* defined by

$$d(x,y) := \sum_{i=1}^{\infty} rac{|x_i - y_i|}{2^i (1 + |x_i - y_i|)}$$
, where $x := (x_i)_{i \in \mathbb{N}}$ and $y := (y_i)_{i \in \mathbb{N}}$.

Theorem 4.4

 $P_{\mathbb{R}^{\omega}}$ is a strongly prime ideal of $N_0(\mathbb{R}^{\omega})$, and is contained in every strongly prime ideal of $N_0(\mathbb{R}^{\omega})$.

We remark that $P_{\mathbb{R}^{\omega}}$ is not uniformly strongly prime in this case.

Corollary 4.5

 $\mathcal{P}_{s}(N_{0}(\mathbb{R}^{\omega})) = P_{\mathbb{R}^{\omega}}.$

At this stage, we have not been able to characterise $\mathcal{P}_u(N_0(\mathbb{R}^\omega))$.

Geoff Booth (NMMU)

Now we investigate strongly prime ideals in $N_0(\mathbb{R}^{\omega})$, where ω is the first transfinite cardinal, and \mathbb{R}^{ω} has the usual (Tychonoff) product topology. Recall that \mathbb{R}^{ω} metrizable, with metric *d* defined by

$$d(x,y) := \sum_{i=1}^{\infty} rac{|x_i - y_i|}{2^i (1 + |x_i - y_i|)}$$
, where $x := (x_i)_{i \in \mathbb{N}}$ and $y := (y_i)_{i \in \mathbb{N}}$.

Theorem 4.4

 $P_{\mathbb{R}^{\omega}}$ is a strongly prime ideal of $N_0(\mathbb{R}^{\omega})$, and is contained in every strongly prime ideal of $N_0(\mathbb{R}^{\omega})$.

We remark that $P_{\mathbb{R}^{\omega}}$ is not uniformly strongly prime in this case.

Corollary 4.5

 $\mathcal{P}_{s}(N_{0}(\mathbb{R}^{\omega})) = P_{\mathbb{R}^{\omega}}.$

At this stage, we have not been able to characterise $\mathcal{P}_u(N_0(\mathbb{R}^\omega))$.

Geoff Booth (NMMU)

Thank you! Dĕkuji!

< 🗗 ▶