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1. Preliminaries

Definition 1.1
A (right) near-ring is a triple (N,+, ·) where

1 (N,+) is a (not necessarily Abelian) group;
2 (N, ·) is a semigroup;
3 (x + y)z = xz + yz for all x , y , z ∈ N.
If x0 = 0 for all x ∈ N, N is said to be zero-symmetric.

In this talk, all near-rings will only be zero-symmetric when explicitly so
stated.

Definitions 1.2
A normal subgroup I of (N,+) is called a left ideal of N if
r(x + s)− rs ∈ I for all r , s ∈ N and x ∈ I .
If I is a left ideal of N and IN ⊆ I , then I is called a (two-sided) ideal of N.
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1. Preliminaries

Homomorphisms, monomorphisms, epimorphisms and isomorphisms are
defined as for rings.

Let (G ,+) be a (not necessarily Abelian) group, and let M(G ) denote the
set of all self-maps of G . Then M(G ) is a near-ring with respect to
pointwise addition and composition of maps.

The set M0(G ) := {a ∈ M(G ) : a(0) = 0} is a zero-symmetric
subnear-ring of M(G ).

M(G ) and M0(G ) provide prototypes for all near-rings (resp. all
zero-symmetric near-rings) in that every near-ring (resp. zero-symmetric
near-ring) is isomorphic to a subnear-ring of M(G ) (resp. M0(G )) .
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1. Preliminaries

Theorem 1.3
Let (G ,+) be a group. Then

M0(G ) is a simple near-ring;

If |G | 6= 2, then M(G ) is a simple near-ring.

The classical concept of primeness for rings has been extended to
near-rings in various ways. We conclude this section with some definitions.

Definition 1.4
A near-ring N is

0-prime if A,B ideals of N, AB = 0 implies A = 0 or B = 0;

3-prime if a, b ∈ N, aNb = 0 implies a = 0 or b = 0 (Groenewald,
1991);

equiprime (e-prime) if a, x , y ∈ N, anx − any for all n ∈ N implies
a = 0 or x = y (Booth, Groenewald and Veldsman, 1991).

We remark that an equiprime near-ring is necessarily zero-symmetric.
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2. Near-rings of Continuous Functions

Since the 1970’s, near-rings of self-maps of topological groups have been
studied.In what follows, G is an additive T0 (and hence completely
regular) topological group.
Let

N(G ) : = {a : G → G | a is continuous} and
N0(G ) : = {a ∈ N(G ) | a(0) = 0}.

It is clear that N(G ) and N0(G ) are a near-ring and a zero-symmetric
near-ring, respectively.Moreover, if the topology on G is discrete, then
N(G ) = M(G ) and N0(G ) = M0(G ).
The question arises: To what extent are the properties of N(G ) and
N0(G ) similar to those of M(G ) and M0(G ), respectively? As we shall
see, there are many striking differences.
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2. Near-rings of Continuous Functions

We have seen that M0(G ) is simple for any group G . This is not the case
for N0(G ).

Example 2.1

Let (G ,+) be a topological group. Then define PG := {a ∈ N0(G ) :
there exists a neighbourhood U of 0 such that a(U) = 0}. Then
PG �N0(G ). There are many examples where the ideal PG is non-trivial,
for example, G = R.

As we shall see, the instances where N0(G ) is simple seem to be the
exception rather than the rule.
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2. Near-rings of Continuous Functions

Definition 2.2
Let (G ,+) be a topological group. Suppose that for every proper closed
subset F of G , x ∈ G\F and 0 6= y ∈ G , there exists a continuous
function f : G → G such that f (F ) = 0 and f (x) = y Then G is called
an S∗-group.

We remark that the class of S∗-groups includes the arcwise connected
groups, as well as the 0-dimensional ones. A topological space X is
0-dimensional if it has a basis consisting of clopen sets.

Theorem 2.3
Let (G ,+) be an S∗-group or be disconnected. Then N0(G ) is simple if
and only if the topology on G is discrete (Magill, 1967).

It seems easier to find cases where N(G ) is simple, as the next result
shows.
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2. Near-rings of Continuous Functions

Theorem 2.4
Let (G ,+) be the additive group of a topological division ring, such that
|G | > 2. Then N(G ) is simple (Hofer, 1979).
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3. Primeness

It is easily seen that M0(G ) is equiprime for any group G . This is not the
case for N0(G ), as the following example shows.

Example 3.1
Let G := R×Z2, where G has the product topology with respect to the
usual and discrete topologies on R and Z2, respectively. Let
I := {a ∈ N0(G ) : a(R× 0) = 0} and
J := {a ∈ N0(G ) : a(G ) ⊆ R× 0}. Then I and J are ideals of N0(G )
and I ∩ J 6= 0. However, (I ∩ J)2 = 0, so N0(G ) is not 0-prime and
hence not equiprime.

Nevertheless, N0(G ) is equiprime in many cases.

Theorem 3.2
Let G be an S∗-group. Then N0(G ) is equiprime.
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3. Primeness

The different notions of primeness discussed in this talk give rise to
different prime radicals. If N is a near-ring and ν ∈ {0, 3.e}, let

Pν(N) :=
⋂
{P C N | N/P is ν-prime}.

Theorem 3.3
Let G be a disconnected topological group, with open components which
each contain more than one element. Let H be the component of G
which contains 0. Let I := {a ∈ N0(G ) : a(H) = 0} and
J := {a ∈ N0(G ) : a(G ) ⊆ H}. Then
P0(N0(G )) = P3(N0(G )) = Pe (N0(G )) = I ∩ J.
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4. Strongly Prime Near-rings

Definition 3.4
A near-ring N is

1 strongly prime if for all 0 6= a ∈ N, there exists a finite subset F of N
such that x ∈ N, aFx = 0 implies x = 0;

2 strongly equiprime if for all 0 6= a ∈ N, there exists a finite subset F
of N such that x , y ∈ N, afx = afy for all f ∈ F implies x = y .

3 If the finite subset F is independent of the choice of a in 1 or 2
above, then N is said to be uniformly strongly prime (resp. uniformly
strongly equiprime).

We remark that strongly equiprime =⇒ strongly prime =⇒ 3-prime and
strongly equiprime =⇒ equiprime.

Theorem 3.5
Let G be an arcwise connected topological group with more than one
element. Then N0(G ) is not strongly prime (Booth and Hall, 2004).

Geoff Booth (NMMU) Near-rings of Continuous Functions and Primeness July 1, 2016 11 / 15



4. Strongly Prime Near-rings

Definition 3.4
A near-ring N is

1 strongly prime if for all 0 6= a ∈ N, there exists a finite subset F of N
such that x ∈ N, aFx = 0 implies x = 0;

2 strongly equiprime if for all 0 6= a ∈ N, there exists a finite subset F
of N such that x , y ∈ N, afx = afy for all f ∈ F implies x = y .

3 If the finite subset F is independent of the choice of a in 1 or 2
above, then N is said to be uniformly strongly prime (resp. uniformly
strongly equiprime).

We remark that strongly equiprime =⇒ strongly prime =⇒ 3-prime and
strongly equiprime =⇒ equiprime.

Theorem 3.5
Let G be an arcwise connected topological group with more than one
element. Then N0(G ) is not strongly prime (Booth and Hall, 2004).

Geoff Booth (NMMU) Near-rings of Continuous Functions and Primeness July 1, 2016 11 / 15



4. Strongly Prime Near-rings

Definition 3.4
A near-ring N is

1 strongly prime if for all 0 6= a ∈ N, there exists a finite subset F of N
such that x ∈ N, aFx = 0 implies x = 0;

2 strongly equiprime if for all 0 6= a ∈ N, there exists a finite subset F
of N such that x , y ∈ N, afx = afy for all f ∈ F implies x = y .

3 If the finite subset F is independent of the choice of a in 1 or 2
above, then N is said to be uniformly strongly prime (resp. uniformly
strongly equiprime).

We remark that strongly equiprime =⇒ strongly prime =⇒ 3-prime and
strongly equiprime =⇒ equiprime.

Theorem 3.5
Let G be an arcwise connected topological group with more than one
element. Then N0(G ) is not strongly prime (Booth and Hall, 2004).

Geoff Booth (NMMU) Near-rings of Continuous Functions and Primeness July 1, 2016 11 / 15



4. Strongly Prime Near-rings

Definition 3.4
A near-ring N is

1 strongly prime if for all 0 6= a ∈ N, there exists a finite subset F of N
such that x ∈ N, aFx = 0 implies x = 0;

2 strongly equiprime if for all 0 6= a ∈ N, there exists a finite subset F
of N such that x , y ∈ N, afx = afy for all f ∈ F implies x = y .

3 If the finite subset F is independent of the choice of a in 1 or 2
above, then N is said to be uniformly strongly prime (resp. uniformly
strongly equiprime).

We remark that strongly equiprime =⇒ strongly prime =⇒ 3-prime and
strongly equiprime =⇒ equiprime.

Theorem 3.5
Let G be an arcwise connected topological group with more than one
element. Then N0(G ) is not strongly prime (Booth and Hall, 2004).

Geoff Booth (NMMU) Near-rings of Continuous Functions and Primeness July 1, 2016 11 / 15



4. Strongly Prime Near-rings

Definition 3.4
A near-ring N is

1 strongly prime if for all 0 6= a ∈ N, there exists a finite subset F of N
such that x ∈ N, aFx = 0 implies x = 0;

2 strongly equiprime if for all 0 6= a ∈ N, there exists a finite subset F
of N such that x , y ∈ N, afx = afy for all f ∈ F implies x = y .

3 If the finite subset F is independent of the choice of a in 1 or 2
above, then N is said to be uniformly strongly prime (resp. uniformly
strongly equiprime).

We remark that strongly equiprime =⇒ strongly prime =⇒ 3-prime and
strongly equiprime =⇒ equiprime.

Theorem 3.5
Let G be an arcwise connected topological group with more than one
element. Then N0(G ) is not strongly prime (Booth and Hall, 2004).

Geoff Booth (NMMU) Near-rings of Continuous Functions and Primeness July 1, 2016 11 / 15



4. Strongly Prime Near-rings

Definition 3.4
A near-ring N is

1 strongly prime if for all 0 6= a ∈ N, there exists a finite subset F of N
such that x ∈ N, aFx = 0 implies x = 0;

2 strongly equiprime if for all 0 6= a ∈ N, there exists a finite subset F
of N such that x , y ∈ N, afx = afy for all f ∈ F implies x = y .

3 If the finite subset F is independent of the choice of a in 1 or 2
above, then N is said to be uniformly strongly prime (resp. uniformly
strongly equiprime).

We remark that strongly equiprime =⇒ strongly prime =⇒ 3-prime and
strongly equiprime =⇒ equiprime.

Theorem 3.5
Let G be an arcwise connected topological group with more than one
element. Then N0(G ) is not strongly prime (Booth and Hall, 2004).

Geoff Booth (NMMU) Near-rings of Continuous Functions and Primeness July 1, 2016 11 / 15



4. Strongly Prime Near-rings

Definition 3.4
A near-ring N is

1 strongly prime if for all 0 6= a ∈ N, there exists a finite subset F of N
such that x ∈ N, aFx = 0 implies x = 0;

2 strongly equiprime if for all 0 6= a ∈ N, there exists a finite subset F
of N such that x , y ∈ N, afx = afy for all f ∈ F implies x = y .

3 If the finite subset F is independent of the choice of a in 1 or 2
above, then N is said to be uniformly strongly prime (resp. uniformly
strongly equiprime).

We remark that strongly equiprime =⇒ strongly prime =⇒ 3-prime and
strongly equiprime =⇒ equiprime.

Theorem 3.5
Let G be an arcwise connected topological group with more than one
element. Then N0(G ) is not strongly prime (Booth and Hall, 2004).

Geoff Booth (NMMU) Near-rings of Continuous Functions and Primeness July 1, 2016 11 / 15



4. Strongly Prime Near-rings

Definition 3.4
A near-ring N is

1 strongly prime if for all 0 6= a ∈ N, there exists a finite subset F of N
such that x ∈ N, aFx = 0 implies x = 0;

2 strongly equiprime if for all 0 6= a ∈ N, there exists a finite subset F
of N such that x , y ∈ N, afx = afy for all f ∈ F implies x = y .

3 If the finite subset F is independent of the choice of a in 1 or 2
above, then N is said to be uniformly strongly prime (resp. uniformly
strongly equiprime).

We remark that strongly equiprime =⇒ strongly prime =⇒ 3-prime and
strongly equiprime =⇒ equiprime.

Theorem 3.5
Let G be an arcwise connected topological group with more than one
element. Then N0(G ) is not strongly prime (Booth and Hall, 2004).

Geoff Booth (NMMU) Near-rings of Continuous Functions and Primeness July 1, 2016 11 / 15



4. Strongly Prime Near-rings

Theorem 4.1
Let G be a 0-dimensional topological group. Then

1 N0(G ) is strongly prime if and only if the topology on G is discrete;
2 N0(G ) is strongly equiprime if and only if G is finite.
(Booth and Hall, 2004)

An ideal I of a near-ring N is strongly prime (resp. uniformly strongly
prime) if the factor near-ring N/I is strongly prime, (resp. uniformly
strongly prime). The strongly prime radical Ps (N) (resp. uniformly
strongly prime radical Pu(N)) is the intersection of the strongly prime
(resp. uniformly strongly prime) ideals of N.
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4. Strongly Prime Near-rings

In what follows, Rn (n ∈N) will be endowed with the usual (product)
topology.

Theorem 4.2
PRn = {a ∈ N0(Rn) : there exists a neighbourhood U of 0 such that
a(U) = 0} is a uniformly strongly prime ideal of N0(Rn) which contains
every strongly prime ideal (Booth, 2010).

We remark that, for n ≥ 2, this result makes use of the Peano space-filling
curves.

Corollary 4.3

Ps (N0(Rn)) = Pu(N0(Rn)) = PRn .
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4. Strongly Prime Near-rings

Now we investigate strongly prime ideals in N0(Rω), where ω is the first
transfinite cardinal, and Rω has the usual (Tychonoff) product topology.
Recall that Rω metrizable, with metric d defined by

d(x , y) :=
∞
∑
i=1

|xi−yi |
2i (1+|xi−yi |) , where x := (xi )i∈N and y := (yi )i∈N.

Theorem 4.4
PRω is a strongly prime ideal of N0(Rω), and is contained in every
strongly prime ideal of N0(Rω).

We remark that PRω is not uniformly strongly prime in this case.

Corollary 4.5

Ps (N0(Rω)) = PRω .

At this stage, we have not been able to characterise Pu(N0(Rω)).
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Thank you!

Dĕkuji!
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