${\mathfrak G}$ -bases in free objects of Topological Algebra (Local) ω^{ω} -bases in topological and uniform spaces

Taras Banakh and Arkady Leiderman

Lviv & Kielce

Prague, 29 July 2016

T.Banakh

\mathfrak{G} -bases in free objects of Topological Algebra (Local) ω^{ω} -bases in topological and uniform spaces

Taras Banakh and Arkady Leiderman

Lviv & Kielce

Prague, 29 July 2016

Let P be a poset, i.e., a set endowed with a partial order \leq .

Definition (Topological)

A topological space X has a *local* P-base at a point $x \in X$ if X has a neighborhood base $(U_{\alpha})_{\alpha \in P}$ at x such that $U_{\beta} \subset U_{\alpha}$ for any $\alpha \leq \beta$ in P. A topological space X has a *local* P-base if X has a local P-base at each point $x \in X$.

Definition (Uniform)

A uniform space X has a *P*-base (or is *P*-based) if its uniformity $\mathcal{U}(X)$ has a base $\{U_{\alpha}\}_{\alpha \in P}$ such that $U_{\beta} \subset U_{\alpha}$ for all $\alpha \leq \beta$ in P.

Example

Let P be a poset, i.e., a set endowed with a partial order \leq .

Definition (Topological)

A topological space X has a *local P*-base at a point $x \in X$ if X has a neighborhood base $(U_{\alpha})_{\alpha \in P}$ at x such that $U_{\beta} \subset U_{\alpha}$ for any $\alpha \leq \beta$ in *P*. A topological space X has a *local P*-base if X has a local *P* base at each point $x \in X$

Definition (Uniform)

A uniform space X has a *P*-base (or is *P*-based) if its uniformity $\mathcal{U}(X)$ has a base $\{U_{\alpha}\}_{\alpha \in P}$ such that $U_{\beta} \subset U_{\alpha}$ for all $\alpha \leq \beta$ in P.

Example

Let P be a poset, i.e., a set endowed with a partial order \leq .

Definition (Topological)

A topological space X has a *local* P-base at a point $x \in X$ if X has a neighborhood base $(U_{\alpha})_{\alpha \in P}$ at x such that $U_{\beta} \subset U_{\alpha}$ for any $\alpha \leq \beta$ in P. A topological space X has a *local* P-base if X has a local P-base at each point $x \in X$.

Definition (Uniform)

A uniform space X has a *P*-base (or is *P*-based) if its uniformity $\mathcal{U}(X)$ has a base $\{U_{\alpha}\}_{\alpha \in P}$ such that $U_{\beta} \subset U_{\alpha}$ for all $\alpha \leq \beta$ in P.

Example

Let P be a poset, i.e., a set endowed with a partial order \leq .

Definition (Topological)

A topological space X has a *local* P-base at a point $x \in X$ if X has a neighborhood base $(U_{\alpha})_{\alpha \in P}$ at x such that $U_{\beta} \subset U_{\alpha}$ for any $\alpha \leq \beta$ in P. A topological space X has a *local* P-base if X has a local P-base at each point $x \in X$

Definition (Uniform)

A uniform space X has a *P*-base (or is *P*-based) if its uniformity $\mathcal{U}(X)$ has a base $\{U_{\alpha}\}_{\alpha \in P}$ such that $U_{\beta} \subset U_{\alpha}$ for all $\alpha \leq \beta$ in P.

Example

Let P be a poset, i.e., a set endowed with a partial order \leq .

Definition (Topological)

A topological space X has a *local* P-base at a point $x \in X$ if X has a neighborhood base $(U_{\alpha})_{\alpha \in P}$ at x such that $U_{\beta} \subset U_{\alpha}$ for any $\alpha \leq \beta$ in P. A topological space X has a *local* P-base if X has a local P-base at each point $x \in X$.

Definition (Uniform)

A uniform space X has a *P*-base (or is *P*-based) if its uniformity $\mathcal{U}(X)$ has a base $\{U_{\alpha}\}_{\alpha\in P}$ such that $U_{\beta} \subset U_{\alpha}$ for all $\alpha \leq \beta$ in *P*.

Example

Let P be a poset, i.e., a set endowed with a partial order \leq .

Definition (Topological)

A topological space X has a *local* P-base at a point $x \in X$ if X has a neighborhood base $(U_{\alpha})_{\alpha \in P}$ at x such that $U_{\beta} \subset U_{\alpha}$ for any $\alpha \leq \beta$ in P. A topological space X has a *local* P-base if X has a local P-base at each point $x \in X$.

Definition (Uniform)

A uniform space X has a *P*-base (or is *P*-based) if its uniformity $\mathcal{U}(X)$ has a base $\{U_{\alpha}\}_{\alpha \in P}$ such that $U_{\beta} \subset U_{\alpha}$ for all $\alpha \leq \beta$ in P.

Example

Example

A topological space X has a local P-base \Leftrightarrow X is first-countable. A uniform space X has a P-base \Leftrightarrow X is metrizable.

So, for countable posets P (local) P-bases give nothing new. One of the simplest posets of uncountable cofinality is the countable power ω^{ω} of the countable cardinal ω , endowed with the partial order \leq defined by $f \leq g$ iff $f(n) \leq g(n)$ for all $n \in \omega$.

Example

A topological space X has a local P-base \Leftrightarrow X is first-countable. A uniform space X has a P-base \Leftrightarrow X is metrizable.

So, for countable posets P (local) P-bases give nothing new. One of the simplest posets of uncountable cofinality is the countable power ω^{ω} of the countable cardinal ω , endowed with the partial order \leq defined by $f \leq g$ iff $f(n) \leq g(n)$ for all $n \in \omega$.

Example

A topological space X has a local P-base \Leftrightarrow X is first-countable. A uniform space X has a P-base \Leftrightarrow X is metrizable.

So, for countable posets P (local) P-bases give nothing new. One of the simplest posets of uncountable cofinality is the countable power ω^{ω} of the countable cardinal ω , endowed with the partial order \leq defined by $f \leq g$ iff $f(n) \leq g(n)$ for all $n \in \omega$.

Example

A topological space X has a local P-base \Leftrightarrow X is first-countable. A uniform space X has a P-base \Leftrightarrow X is metrizable.

So, for countable posets P (local) P-bases give nothing new.

One of the simplest posets of uncountable cofinality is the countable power ω^{ω} of the countable cardinal ω , endowed with the partial order \leq defined by $f \leq g$ iff $f(n) \leq g(n)$ for all $n \in \omega$.

This terminology came from Functional Analysis and was brought to Topological Algebra and General Topology by Jerzy Kạkol.

But we prefer and agitate to use the more self-suggesting terminology of local ω^{ω} -bases for topological spaces and ω^{ω} -bases for uniform spaces.

Our **Initial Problem** was: Characterize topological spaces whose free objects (like free topological groups or free locally convex spaces) have a local ω^{ω} -base.

This terminology came from Functional Analysis and was brought to Topological Algebra and General Topology by Jerzy Kąkol.

But we prefer and agitate to use the more self-suggesting terminology of local ω^{ω} -bases for topological spaces and ω^{ω} -bases for uniform spaces.

Our **Initial Problem** was: Characterize topological spaces whose free objects (like free topological groups or free locally convex spaces) have a local ω^{ω} -base.

This terminology came from Functional Analysis and was brought to Topological Algebra and General Topology by Jerzy Kąkol.

But we prefer and agitate to use the more self-suggesting terminology of local ω^{ω} -bases for topological spaces and ω^{ω} -bases for uniform spaces.

Our **Initial Problem** was: Characterize topological spaces whose free objects (like free topological groups or free locally convex spaces) have a local ω^{ω} -base.

This terminology came from Functional Analysis and was brought to Topological Algebra and General Topology by Jerzy Kakol.

But we prefer and agitate to use the more self-suggesting terminology of local ω^{ω} -bases for topological spaces and ω^{ω} -bases for uniform spaces.

Our **Initial Problem** was: Characterize topological spaces whose free objects (like free topological groups or free locally convex spaces) have a local ω^{ω} -base.

This terminology came from Functional Analysis and was brought to Topological Algebra and General Topology by Jerzy Kakol.

But we prefer and agitate to use the more self-suggesting terminology of local ω^{ω} -bases for topological spaces and ω^{ω} -bases for uniform spaces.

Our **Initial Problem** was: Characterize topological spaces whose free objects (like free topological groups or free locally convex spaces) have a local ω^{ω} -base.

Stability properties of the class of topological spaces with a local ω^{ω} -base

Theorem

The class of topological spaces X with a local ω^{ω} -base contains all first-countable spaces and is stable under taking

- subspaces,
- images under open maps,
- countable Tychonoff products,
- countable box-products,
- inductive topologies determined by countable covers,
- images under pseudo-open maps with countable fibers.

Corollary

Each submetrizable k_{ω} -space has a local ω^{ω} -base (since any such space embeds into the countable box-power of the Hilbert cube).

Stability properties of the class of topological spaces with a local ω^{ω} -base

Theorem

The class of topological spaces X with a local ω^{ω} -base contains all first-countable spaces and is stable under taking

- subspaces,
- images under open maps,
- countable Tychonoff products,
- countable box-products,
- inductive topologies determined by countable covers,
- images under pseudo-open maps with countable fibers.

Corollary

Each submetrizable k_{ω} -space has a local ω^{ω} -base (since any such space embeds into the countable box-power of the Hilbert cube).

Stability properties of the class of topological spaces with a local ω^{ω} -base

Theorem

The class of topological spaces X with a local ω^{ω} -base contains all first-countable spaces and is stable under taking

- subspaces,
- images under open maps,
- countable Tychonoff products,
- countable box-products,
- inductive topologies determined by countable covers,
- images under pseudo-open maps with countable fibers.

Corollary

Each submetrizable k_{ω} -space has a local ω^{ω} -base (since any such space embeds into the countable box-power of the Hilbert cube).

If a topological space X has a local ω^{ω} -base at a point $x \in X$, then at this point the space X has character $\chi(x; X) \in \{1, \omega\} \cup [\mathfrak{b}, \mathfrak{d}]$.

Example

For a cardinal $\kappa \in \{\mathfrak{b}, \mathfrak{d}, \mathrm{cf}(\mathfrak{d})\}$ the ordinal segment $[0, \kappa]$ has a local ω^{ω} -base at the point κ .

Proof.

For $\kappa = \mathfrak{b}$, choose an unbounded subset $\{x_{\alpha}\}_{\alpha \in \mathfrak{b}} \subset \omega^{\omega}$ in the poset $(\omega^{\omega}, \leq^{*})$ and define an ω^{ω} -base $(U_{x})_{x \in \omega^{\omega}}$ at $\mathfrak{b} \in [0, \mathfrak{b}]$ by $U_{x} = (\alpha_{x}, \mathfrak{b}]$ where $\alpha_{x} = \min\{\alpha \in \mathfrak{b} : x_{\alpha} \not\leq^{*} x\}$. For $\kappa = \mathfrak{d}$ choose a dominating set $\{x_{\alpha}\}_{\alpha \in \mathfrak{d}}$ in the poset ω^{ω} and define an ω^{ω} -base $(U_{x})_{x \in \omega^{\omega}}$ at $\mathfrak{d} = [0, \mathfrak{d}]$ by $U_{x} = (\alpha_{x}, \mathfrak{d}]$ where $\alpha_{x} = \min\{\alpha \in \mathfrak{d} : x \leq^{*} x_{\alpha}\}$.

If a topological space X has a local ω^{ω} -base at a point $x \in X$, then at this point the space X has character $\chi(x; X) \in \{1, \omega\} \cup [\mathfrak{b}, \mathfrak{d}]$.

Example

For a cardinal $\kappa \in \{\mathfrak{b}, \mathfrak{d}, \mathrm{cf}(\mathfrak{d})\}$ the ordinal segment $[0, \kappa]$ has a local ω^{ω} -base at the point κ .

Proof.

For $\kappa = \mathfrak{b}$, choose an unbounded subset $\{x_{\alpha}\}_{\alpha \in \mathfrak{b}} \subset \omega^{\omega}$ in the poset $(\omega^{\omega}, \leq^{*})$ and define an ω^{ω} -base $(U_{x})_{x \in \omega^{\omega}}$ at $\mathfrak{b} \in [0, \mathfrak{b}]$ by $U_{x} = (\alpha_{x}, \mathfrak{b}]$ where $\alpha_{x} = \min\{\alpha \in \mathfrak{b} : x_{\alpha} \not\leq^{*} x\}$. For $\kappa = \mathfrak{d}$ choose a dominating set $\{x_{\alpha}\}_{\alpha \in \mathfrak{d}}$ in the poset ω^{ω} and define an ω^{ω} -base $(U_{x})_{x \in \omega^{\omega}}$ at $\mathfrak{d} = [0, \mathfrak{d}]$ by $U_{x} = (\alpha_{x}, \mathfrak{d}]$ where $\alpha_{x} = \min\{\alpha \in \mathfrak{d} : x \leq^{*} x_{\alpha}\}$.

If a topological space X has a local ω^{ω} -base at a point $x \in X$, then at this point the space X has character $\chi(x; X) \in \{1, \omega\} \cup [\mathfrak{b}, \mathfrak{d}]$.

Example

For a cardinal $\kappa \in \{\mathfrak{b}, \mathfrak{d}, \mathrm{cf}(\mathfrak{d})\}$ the ordinal segment $[0, \kappa]$ has a local ω^{ω} -base at the point κ .

Proof.

For $\kappa = \mathfrak{b}$, choose an unbounded subset $\{x_{\alpha}\}_{\alpha \in \mathfrak{b}} \subset \omega^{\omega}$ in the poset $(\omega^{\omega}, \leq^{*})$ and define an ω^{ω} -base $(U_{x})_{x \in \omega^{\omega}}$ at $\mathfrak{b} \in [0, \mathfrak{b}]$ by $U_{x} = (\alpha_{x}, \mathfrak{b}]$ where $\alpha_{x} = \min\{\alpha \in \mathfrak{b} : x_{\alpha} \nleq^{*} x\}$. For $\kappa = \mathfrak{d}$ choose a dominating set $\{x_{\alpha}\}_{\alpha \in \mathfrak{d}}$ in the poset ω^{ω} and define an ω^{ω} -base $(U_{x})_{x \in \omega^{\omega}}$ at $\mathfrak{d} = [0, \mathfrak{d}]$ by $U_{x} = (\alpha_{x}, \mathfrak{d}]$ where $\alpha_{x} = \min\{\alpha \in \mathfrak{d} : x \leq^{*} x_{\alpha}\}$.

If a topological space X has a local ω^{ω} -base at a point $x \in X$, then at this point the space X has character $\chi(x; X) \in \{1, \omega\} \cup [\mathfrak{b}, \mathfrak{d}]$.

Example

For a cardinal $\kappa \in \{\mathfrak{b}, \mathfrak{d}, \mathrm{cf}(\mathfrak{d})\}$ the ordinal segment $[0, \kappa]$ has a local ω^{ω} -base at the point κ .

Proof.

For $\kappa = \mathfrak{b}$, choose an unbounded subset $\{x_{\alpha}\}_{\alpha \in \mathfrak{b}} \subset \omega^{\omega}$ in the poset $(\omega^{\omega}, \leq^*)$ and define an ω^{ω} -base $(U_x)_{x \in \omega^{\omega}}$ at $\mathfrak{b} \in [0, \mathfrak{b}]$ by $U_x = (\alpha_x, \mathfrak{b}]$ where $\alpha_x = \min\{\alpha \in \mathfrak{b} : x_{\alpha} \leq^* x\}$. For $\kappa = \mathfrak{d}$ choose a dominating set $\{x_{\alpha}\}_{\alpha \in \mathfrak{d}}$ in the poset ω^{ω} and define an ω^{ω} -base $(U_x)_{x \in \omega^{\omega}}$ at $\mathfrak{d} = [0, \mathfrak{d}]$ by $U_x = (\alpha_x, \mathfrak{d}]$ where $\alpha_x = \min\{\alpha \in \mathfrak{d} : x \leq^* x_{\alpha}\}$.

Under $\omega_1 = \mathfrak{b}$ the ordinal segment $[0, \omega_1]$ has a local ω^{ω} -base. Under $\omega_1 = \mathfrak{b} < \mathfrak{d} = \omega_2$ the segment $[0, \omega_2]$ has a local ω^{ω} -base.

According to a famous theorem of Arhangel'skii, each first-countable compact Hausdorff space has cardinality $\leq \mathfrak{c}$.

Problem

Is $|X| \leq \mathfrak{c}$ for any compact Hausdorff space X with a local ω^{ω} -base?

Theorem (Cascales-Orihuela, 1987)

Each compact ω^{ω} -based uniform space is metrizable.

What can be said about non-compact ω^{ω} -based uniform spaces? Informal answer: Such spaces have many features of generalized metric spaces.

Under $\omega_1 = \mathfrak{b}$ the ordinal segment $[0, \omega_1]$ has a local ω^{ω} -base. Under $\omega_1 = \mathfrak{b} < \mathfrak{d} = \omega_2$ the segment $[0, \omega_2]$ has a local ω^{ω} -base.

According to a famous theorem of Arhangel'skii, each first-countable compact Hausdorff space has cardinality $\leq \mathfrak{c}$.

Problem

Is $|X| \leq \mathfrak{c}$ for any compact Hausdorff space X with a local ω^{ω} -base?

Theorem (Cascales-Orihuela, 1987)

Each compact ω^{ω} -based uniform space is metrizable.

What can be said about non-compact ω^{ω} -based uniform spaces? Informal answer: Such spaces have many features of generalized metric spaces.

白 ト イ ヨ ト イ

Under $\omega_1 = \mathfrak{b}$ the ordinal segment $[0, \omega_1]$ has a local ω^{ω} -base. Under $\omega_1 = \mathfrak{b} < \mathfrak{d} = \omega_2$ the segment $[0, \omega_2]$ has a local ω^{ω} -base.

According to a famous theorem of Arhangel'skii, each first-countable compact Hausdorff space has cardinality $\leq \mathfrak{c}$.

Problem

Is $|X| \leq \mathfrak{c}$ for any compact Hausdorff space X with a local ω^{ω} -base?

Theorem (Cascales-Orihuela, 1987)

Each compact ω^{ω} -based uniform space is metrizable.

What can be said about non-compact ω^{ω} -based uniform spaces? Informal answer: Such spaces have many features of generalized metric spaces.

▲□ ▶ ▲ 臣 ▶ ▲ 臣

Under $\omega_1 = \mathfrak{b}$ the ordinal segment $[0, \omega_1]$ has a local ω^{ω} -base. Under $\omega_1 = \mathfrak{b} < \mathfrak{d} = \omega_2$ the segment $[0, \omega_2]$ has a local ω^{ω} -base.

According to a famous theorem of Arhangel'skii, each first-countable compact Hausdorff space has cardinality $\leq \mathfrak{c}$.

Problem

Is $|X| \leq \mathfrak{c}$ for any compact Hausdorff space X with a local ω^{ω} -base?

Theorem (Cascales-Orihuela, 1987)

Each compact ω^{ω} -based uniform space is metrizable.

What can be said about non-compact ω^{ω} -based uniform spaces? Informal answer: Such spaces have many features of generalized metric spaces.

母▶ ★ 臣▶ ★ 臣

Under $\omega_1 = \mathfrak{b}$ the ordinal segment $[0, \omega_1]$ has a local ω^{ω} -base. Under $\omega_1 = \mathfrak{b} < \mathfrak{d} = \omega_2$ the segment $[0, \omega_2]$ has a local ω^{ω} -base.

According to a famous theorem of Arhangel'skii, each first-countable compact Hausdorff space has cardinality $\leq \mathfrak{c}$.

Problem

Is $|X| \leq \mathfrak{c}$ for any compact Hausdorff space X with a local ω^{ω} -base?

Theorem (Cascales-Orihuela, 1987)

Each compact ω^{ω} -based uniform space is metrizable.

What can be said about non-compact ω^{ω} -based uniform spaces? Informal answer: Such spaces have many features of generalized metric spaces.

白 ト ・ ヨ ト ・

Under $\omega_1 = \mathfrak{b}$ the ordinal segment $[0, \omega_1]$ has a local ω^{ω} -base. Under $\omega_1 = \mathfrak{b} < \mathfrak{d} = \omega_2$ the segment $[0, \omega_2]$ has a local ω^{ω} -base.

According to a famous theorem of Arhangel'skii, each first-countable compact Hausdorff space has cardinality $\leq \mathfrak{c}$.

Problem

Is $|X| \leq \mathfrak{c}$ for any compact Hausdorff space X with a local ω^{ω} -base?

Theorem (Cascales-Orihuela, 1987)

Each compact ω^{ω} -based uniform space is metrizable.

What can be said about non-compact ω^{ω} -based uniform spaces? Informal answer: Such spaces have many features of generalized metric spaces.

< ∃ → <

Under $\omega_1 = \mathfrak{b}$ the ordinal segment $[0, \omega_1]$ has a local ω^{ω} -base. Under $\omega_1 = \mathfrak{b} < \mathfrak{d} = \omega_2$ the segment $[0, \omega_2]$ has a local ω^{ω} -base.

According to a famous theorem of Arhangel'skii, each first-countable compact Hausdorff space has cardinality $\leq \mathfrak{c}$.

Problem

Is $|X| \leq \mathfrak{c}$ for any compact Hausdorff space X with a local ω^{ω} -base?

Theorem (Cascales-Orihuela, 1987)

Each compact ω^{ω} -based uniform space is metrizable.

What can be said about non-compact ω^{ω} -based uniform spaces? Informal answer: Such spaces have many features of generalized metric spaces.

- < ≣ ≻ <

A family \mathcal{N} of subsets of a topological space X is called

- a *network* at x ∈ X if for every neighborhood O_x ⊂ X of x there is a set N ∈ N such that x ∈ N ⊂ U;
- a cs*-network at x if for every neighborhood O_x of x and sequence (x_n)_{n∈ω} converging to x there is a set N ∈ N such that x ∈ N ⊂ O_x and N contains infinitely many points x_n;
- a *Pytkeev*-network* at x if for every neighborhood O_x of x and sequence (x_n)_{n∈ω} accumulating at x there is N ∈ N such that x ∈ N ⊂ O_x and N contains infinitely many points x_n.

neighborhood base \Rightarrow Pytkeev* network \Rightarrow *cs**-network \Rightarrow network

A family $\mathcal N$ of subsets of a topological space X is called

- a *network* at x ∈ X if for every neighborhood O_x ⊂ X of x there is a set N ∈ N such that x ∈ N ⊂ U;
- a cs*-network at x if for every neighborhood O_x of x and sequence (x_n)_{n∈ω} converging to x there is a set N ∈ N such that x ∈ N ⊂ O_x and N contains infinitely many points x_n;

 a *Pytkeev*-network* at x if for every neighborhood O_x of x and sequence (x_n)_{n∈ω} accumulating at x there is N ∈ N such that x ∈ N ⊂ O_x and N contains infinitely many points x_n.

neighborhood base \Rightarrow Pytkeev* network \Rightarrow *cs**-network \Rightarrow network

A family $\mathcal N$ of subsets of a topological space X is called

- a *network* at x ∈ X if for every neighborhood O_x ⊂ X of x there is a set N ∈ N such that x ∈ N ⊂ U;
- a cs*-network at x if for every neighborhood O_x of x and sequence (x_n)_{n∈ω} converging to x there is a set N ∈ N such that x ∈ N ⊂ O_x and N contains infinitely many points x_n;
- a *Pytkeev*-network* at x if for every neighborhood O_x of x and sequence (x_n)_{n∈ω} accumulating at x there is N ∈ N such that x ∈ N ⊂ O_x and N contains infinitely many points x_n.

neighborhood base \Rightarrow Pytkeev^{*} network \Rightarrow *cs*^{*}-network \Rightarrow network

A family $\mathcal N$ of subsets of a topological space X is called

- a *network* at x ∈ X if for every neighborhood O_x ⊂ X of x there is a set N ∈ N such that x ∈ N ⊂ U;
- a cs*-network at x if for every neighborhood O_x of x and sequence (x_n)_{n∈ω} converging to x there is a set N ∈ N such that x ∈ N ⊂ O_x and N contains infinitely many points x_n;
- a *Pytkeev*-network* at x if for every neighborhood O_x of x and sequence (x_n)_{n∈ω} accumulating at x there is N ∈ N such that x ∈ N ⊂ O_x and N contains infinitely many points x_n.

neighborhood base \Rightarrow Pytkeev* network \Rightarrow *cs**-network \Rightarrow network

A topological space X is

- strong Fréchet at $x \in X$ if for any decreasing sequence $(A_n)_{n \in \omega}$ of subsets of X with $x \in \bigcap_{n \in \omega} \overline{A}_n$ there exists a sequence $(x_n)_{n \in \omega} \in \prod_{n \in \omega} A_n$ converging to x;
- countable fan tightness at $x \in X$ if for any decreasing sequence $(A_n)_{n \in \omega}$ of subsets of X with $x \in \bigcap_{n \in \omega} \overline{A}_n$ there exists a sequence $(F_n)_{n \in \omega}$ of finite subsets $F_n \subset A_n$ such that each neighborhood of x meets infinitely many sets F_n .

Proposition (folklore)

For a topological space X and a point $x \in X$ TFAE:

- X has a countable neighborhood base at x.
- ② X has a countable cs*-network at x and is strong Fréchet at x.
- 3 X has a countable Pytkeev* network at x and has countable fan tightness at x.

A topological space X is

- strong Fréchet at x ∈ X if for any decreasing sequence (A_n)_{n∈ω} of subsets of X with x ∈ ∩_{n∈ω} Ā_n there exists a sequence (x_n)_{n∈ω} ∈ ∏_{n∈ω} A_n converging to x;
- countable fan tightness at $x \in X$ if for any decreasing sequence $(A_n)_{n \in \omega}$ of subsets of X with $x \in \bigcap_{n \in \omega} \overline{A}_n$ there exists a sequence $(F_n)_{n \in \omega}$ of finite subsets $F_n \subset A_n$ such that each neighborhood of x meets infinitely many sets F_n .

Proposition (folklore)

For a topological space X and a point $x \in X$ TFAE:

- X has a countable neighborhood base at x.
- ② X has a countable cs*-network at x and is strong Fréchet at x.
- 3 X has a countable Pytkeev* network at x and has countable fan tightness at x.

A topological space X is

- strong Fréchet at x ∈ X if for any decreasing sequence (A_n)_{n∈ω} of subsets of X with x ∈ ∩_{n∈ω} Ā_n there exists a sequence (x_n)_{n∈ω} ∈ ∏_{n∈ω} A_n converging to x;
- countable fan tightness at $x \in X$ if for any decreasing sequence $(A_n)_{n \in \omega}$ of subsets of X with $x \in \bigcap_{n \in \omega} \overline{A}_n$ there exists a sequence $(F_n)_{n \in \omega}$ of finite subsets $F_n \subset A_n$ such that each neighborhood of x meets infinitely many sets F_n .

Proposition (folklore)

For a topological space X and a point $x \in X$ TFAE:

- X has a countable neighborhood base at x.
- 2 X has a countable cs*-network at x and is strong Fréchet at x.
- S X has a countable Pytkeev* network at x and has countable fan tightness at x.

If a topological space X has a local ω^{ω} -base at a point $x \in X$, then X has a countable Pytkeev^{*} network at x.

Idea of the proof: Let $(U_{\alpha})_{\alpha \in \omega^{\omega}}$ be a local ω^{ω} -base at x. Given a subset $A \subset \omega^{\omega}$ consider the intersection $U_A = \bigcap_{\alpha \in A} U_{\alpha}$. Let $\omega^{<\omega} = \bigcup_{n \in \omega} \omega^n$ and for every $\beta \in \omega^n \subset \omega^{<\omega}$ consider the basic clopen set $\uparrow \beta = \{\alpha \in \omega^{\omega} : \alpha | n = \beta\} \subset \omega^{\omega}$.

emma

If a topological space X has a local ω^{ω} -base at a point $x \in X$, then X has a countable Pytkeev^{*} network at x.

Idea of the proof: Let $(U_{\alpha})_{\alpha \in \omega^{\omega}}$ be a local ω^{ω} -base at x. Given a subset $A \subset \omega^{\omega}$ consider the intersection $U_A = \bigcap_{\alpha \in A} U_{\alpha}$. Let $\omega^{<\omega} = \bigcup_{n \in \omega} \omega^n$ and for every $\beta \in \omega^n \subset \omega^{<\omega}$ consider the basic clopen set $\uparrow \beta = \{\alpha \in \omega^{\omega} : \alpha | n = \beta\} \subset \omega^{\omega}$.

emma

If a topological space X has a local ω^{ω} -base at a point $x \in X$, then X has a countable Pytkeev^{*} network at x.

Idea of the proof: Let $(U_{\alpha})_{\alpha \in \omega^{\omega}}$ be a local ω^{ω} -base at x. Given a subset $A \subset \omega^{\omega}$ consider the intersection $U_A = \bigcap_{\alpha \in A} U_{\alpha}$. Let $\omega^{<\omega} = \bigcup_{n \in \omega} \omega^n$ and for every $\beta \in \omega^n \subset \omega^{<\omega}$ consider the basic clopen set $\uparrow \beta = \{ \alpha \in \omega^{\omega} : \alpha | n = \beta \} \subset \omega^{\omega}$.

emma

If a topological space X has a local ω^{ω} -base at a point $x \in X$, then X has a countable Pytkeev^{*} network at x.

Idea of the proof: Let $(U_{\alpha})_{\alpha \in \omega^{\omega}}$ be a local ω^{ω} -base at x. Given a subset $A \subset \omega^{\omega}$ consider the intersection $U_A = \bigcap_{\alpha \in A} U_{\alpha}$. Let $\omega^{<\omega} = \bigcup_{n \in \omega} \omega^n$ and for every $\beta \in \omega^n \subset \omega^{<\omega}$ consider the basic clopen set $\uparrow \beta = \{\alpha \in \omega^{\omega} : \alpha | n = \beta\} \subset \omega^{\omega}$.

Lemma

Lemma

The countable family $(U_{\uparrow\beta})_{\beta\in\omega^{<\omega}}$ is a Pytkeev^{*} network at x.

Idea of the proof: Given a sequence $(x_n)_{n \in \omega}$ accumulating at x, use the ω^{ω} -base $(U_{\alpha})_{\alpha \in \omega^{\omega}}$ to prove that the filter

$$\mathcal{F} = \left\{ \{ n \in \omega : x_n \in O_x \} : O_x \text{ is a neighborhood of } x \right\}$$

is analytic as a subset of $\mathcal{P}(\omega)$ and hence is meager. Then apply the Talagrand characterization of meager filters to find a finite-to-one map $\varphi : \omega \to \omega$ such that $\varphi(\mathcal{F})$ is a Fréchet filter. This map φ can be used to prove that for every $\alpha \in \omega^{\omega}$ there exists $k \in \omega$ such that $U_{\uparrow(\alpha|k)}$ contains infinitely many points x_n , $n \in \omega$.

If a countably tight space X has a countable Pytkeev^{*} network at any point, then $|X| \le 2^{L(X)}$ where L(X) is the Lindelöf number of X.

Corollary (B.-Zdomskyy, 27.07.2016)

Each countably tight space X with a local ω^{ω} -base has $|X| \leq 2^{L(X)}$.

Example

For any cardinal κ the ordinal segment $[0, \kappa]$ has a countable Pytkeev^{*} network at each point.

Problem

Is $|X| \leq \mathfrak{c}$ for any compact Hausdorff space X with a local ω^{ω} -base?

If a countably tight space X has a countable Pytkeev^{*} network at any point, then $|X| \le 2^{L(X)}$ where L(X) is the Lindelöf number of X.

Corollary (B.-Zdomskyy, 27.07.2016)

Each countably tight space X with a local ω^{ω} -base has $|X| \leq 2^{L(X)}$.

Example

For any cardinal κ the ordinal segment $[0, \kappa]$ has a countable Pytkeev^{*} network at each point.

Problem

Is $|X| \leq \mathfrak{c}$ for any compact Hausdorff space X with a local ω^{ω} -base?

If a countably tight space X has a countable Pytkeev^{*} network at any point, then $|X| \le 2^{L(X)}$ where L(X) is the Lindelöf number of X.

Corollary (B.-Zdomskyy, 27.07.2016)

Each countably tight space X with a local ω^{ω} -base has $|X| \leq 2^{L(X)}$.

Example

For any cardinal κ the ordinal segment $[0, \kappa]$ has a countable Pytkeev^{*} network at each point.

Problem

Is $|X| \leq \mathfrak{c}$ for any compact Hausdorff space X with a local ω^{ω} -base?

If a countably tight space X has a countable Pytkeev^{*} network at any point, then $|X| \le 2^{L(X)}$ where L(X) is the Lindelöf number of X.

Corollary (B.-Zdomskyy, 27.07.2016)

Each countably tight space X with a local ω^{ω} -base has $|X| \leq 2^{L(X)}$.

Example

For any cardinal κ the ordinal segment $[0, \kappa]$ has a countable Pytkeev^{*} network at each point.

Problem

Is $|X| \leq \mathfrak{c}$ for any compact Hausdorff space X with a local ω^{ω} -base?

If a countably tight space X has a countable Pytkeev^{*} network at any point, then $|X| \le 2^{L(X)}$ where L(X) is the Lindelöf number of X.

Corollary (B.-Zdomskyy, 27.07.2016)

Each countably tight space X with a local ω^{ω} -base has $|X| \leq 2^{L(X)}$.

Example

For any cardinal κ the ordinal segment $[0, \kappa]$ has a countable Pytkeev^{*} network at each point.

Problem

Is $|X| \leq \mathfrak{c}$ for any compact Hausdorff space X with a local ω^{ω} -base?

A topological space X is first countable at $x \in X$ if and only if X has a local ω^{ω} -base at x and X has countable fan tightness at x.

A subset A of a topological space X is called a \overline{G}_{δ} -set if $A = \bigcap_{n \in \omega} U_n = \bigcap_{n \in \omega} \overline{U}_n$ for some sequence $(U_n)_{n \in \omega}$ of open sets.

A subset of a normal space is \overline{G}_{δ} if and only if it is G_{δ} . The following metrization theorem follows from the Metrization Theorem of Moore.

Theorem

A topological space X is metrizable if and only if X is first-countable, each closed subset of X is a \overline{G}_{δ} -set in X and the topology of X is generated by an ω^{ω} -based uniformity.

Corollary

A topological space X is metrizable and separable if and only if X is first-countable, hereditarily Lindelöf and the topology of X is generated by an ω^{ω} -based uniformity.

A subset A of a topological space X is called a \overline{G}_{δ} -set if $A = \bigcap_{n \in \omega} U_n = \bigcap_{n \in \omega} \overline{U}_n$ for some sequence $(U_n)_{n \in \omega}$ of open sets.

A subset of a normal space is \overline{G}_{δ} if and only if it is G_{δ} . The following metrization theorem follows from the Metrizat Theorem of Moore.

Theorem

A topological space X is metrizable if and only if X is first-countable, each closed subset of X is a \overline{G}_{δ} -set in X and the topology of X is generated by an ω^{ω} -based uniformity.

Corollary

A topological space X is metrizable and separable if and only if X is first-countable, hereditarily Lindelöf and the topology of X is generated by an ω^{ω} -based uniformity.

A subset A of a topological space X is called a \overline{G}_{δ} -set if $A = \bigcap_{n \in \omega} U_n = \bigcap_{n \in \omega} \overline{U}_n$ for some sequence $(U_n)_{n \in \omega}$ of open sets.

The following metrization theorem follows from the Metrization Theorem of Moore.

Theorem

A topological space X is metrizable if and only if X is first-countable, each closed subset of X is a \overline{G}_{δ} -set in X and the topology of X is generated by an ω^{ω} -based uniformity.

A subset A of a topological space X is called a \overline{G}_{δ} -set if $A = \bigcap_{n \in \omega} U_n = \bigcap_{n \in \omega} \overline{U}_n$ for some sequence $(U_n)_{n \in \omega}$ of open sets.

A subset of a normal space is \overline{G}_{δ} if and only if it is G_{δ} . The following metrization theorem follows from the Metrization Theorem of Moore.

Theorem

A topological space X is metrizable if and only if X is first-countable, each closed subset of X is a \overline{G}_{δ} -set in X and the topology of X is generated by an ω^{ω} -based uniformity.

Corollary

A topological space X is metrizable and separable if and only if X is first-countable, hereditarily Lindelöf and the topology of X is generated by an ω^{ω} -based uniformity.

For an ω^{ω} -based uniform space X the following conditions are equivalent:

- **1** X is first-countable at x;
- A has countable fan tightness at x;
- \bigcirc X is a q-space at x.

A topological space X is called a *q*-space at $x \in X$ if there are neighborhoods $(U_n)_{n \in \omega}$ of x such that each sequence $(x_n)_{n \in \omega} \in \prod_{n \in \omega} U_n$ has an accumulation point x_∞ in X.

A topological space X is called

- a space with a G_δ-diagonal if the diagonal of the square X × X is a G_δ-set in X; this happens if and only if there exists a sequence (U_n)_{n∈ω} of open covers of X such that {x} = ∩_{n∈ω} St(x,U_n) for each x ∈ X;
- a w∆-space if there exists a sequence (U_n)_{n∈ω} of open covers of X such that for every x ∈ X, any sequence (x_n)_{n∈ω} ∈ ∏_{n∈ω} St(x, U_n) has an accumulation point in X;
- an *M-space* if there exists a sequence (U_n)_{n∈ω} of open covers of X such that each U_{n+1} star-refines U_n and for every x ∈ X, any sequence (x_n)_{n∈ω} ∈ ∏_{n∈ω} St(x, U_n) has an accumulation point in X.

metrizable \Leftrightarrow *M*-space with a *G*_{δ}-diagonal

聞 と く き と く き と

A topological space X is called

- a space with a G_δ-diagonal if the diagonal of the square X × X is a G_δ-set in X; this happens if and only if there exists a sequence (U_n)_{n∈ω} of open covers of X such that {x} = ∩_{n∈ω} St(x,U_n) for each x ∈ X;
- a w∆-space if there exists a sequence (U_n)_{n∈ω} of open covers of X such that for every x ∈ X, any sequence (x_n)_{n∈ω} ∈ ∏_{n∈ω} St(x,U_n) has an accumulation point in X;
- an *M-space* if there exists a sequence (U_n)_{n∈ω} of open covers of X such that each U_{n+1} star-refines U_n and for every x ∈ X, any sequence (x_n)_{n∈ω} ∈ ∏_{n∈ω} St(x, U_n) has an accumulation point in X.

metrizable \Leftrightarrow *M*-space with a *G*_{δ}-diagonal

御 と く ヨ と く ヨ と

A topological space X is called

- a space with a G_δ-diagonal if the diagonal of the square X × X is a G_δ-set in X; this happens if and only if there exists a sequence (U_n)_{n∈ω} of open covers of X such that {x} = ∩_{n∈ω} St(x, U_n) for each x ∈ X;
- a w∆-space if there exists a sequence (U_n)_{n∈ω} of open covers of X such that for every x ∈ X, any sequence (x_n)_{n∈ω} ∈ ∏_{n∈ω} St(x,U_n) has an accumulation point in X;
- an *M*-space if there exists a sequence (U_n)_{n∈ω} of open covers of X such that each U_{n+1} star-refines U_n and for every x ∈ X, any sequence (x_n)_{n∈ω} ∈ ∏_{n∈ω} St(x, U_n) has an accumulation point in X.

metrizable \Leftrightarrow *M*-space with a *G*_{δ}-diagonal

御 と く ヨ と く ヨ と

A topological space X is called

- a space with a G_δ-diagonal if the diagonal of the square X × X is a G_δ-set in X; this happens if and only if there exists a sequence (U_n)_{n∈ω} of open covers of X such that {x} = ∩_{n∈ω} St(x, U_n) for each x ∈ X;
- a w∆-space if there exists a sequence (U_n)_{n∈ω} of open covers of X such that for every x ∈ X, any sequence (x_n)_{n∈ω} ∈ ∏_{n∈ω} St(x,U_n) has an accumulation point in X;
- an *M*-space if there exists a sequence (U_n)_{n∈ω} of open covers of X such that each U_{n+1} star-refines U_n and for every x ∈ X, any sequence (x_n)_{n∈ω} ∈ ∏_{n∈ω} St(x, U_n) has an accumulation point in X.

metrizable \Leftrightarrow *M*-space with a *G*_{δ}-diagonal

▶ 《 문 ▶ 《 문 ▶

A topological space X has a G_{δ} -diagonal if X is a $w\Delta$ -space and the topology of X is generated by an ω^{ω} -based uniformity.

Corollary

A topological space X is metrizable if and only if X is an M-space and the topology of X is generated by an ω^{ω} -based uniformity.

Corollary (Cascales-Orihuela)

A compact space is metrizable if and only if its topology is generated by an ω^{ω} -based uniformity.

A topological space X has a G_{δ} -diagonal if X is a w Δ -space and the topology of X is generated by an ω^{ω} -based uniformity.

Corollary

A topological space X is metrizable if and only if X is an M-space and the topology of X is generated by an ω^{ω} -based uniformity.

Corollary (Cascales-Orihuela)

A compact space is metrizable if and only if its topology is generated by an ω^{ω} -based uniformity.

A topological space X has a G_{δ} -diagonal if X is a w Δ -space and the topology of X is generated by an ω^{ω} -based uniformity.

Corollary

A topological space X is metrizable if and only if X is an M-space and the topology of X is generated by an ω^{ω} -based uniformity.

Corollary (Cascales-Orihuela)

A compact space is metrizable if and only if its topology is generated by an ω^{ω} -based uniformity.

Definition

A family $\mathcal N$ of subsets of a topological space X is called

- a *network* if for each point x ∈ X and neighborhood O_x ⊂ X of x there is a set N ∈ N such that x ∈ N ⊂ O_x;
- a *C*-network for a family *C* of subsets of *X* if for each set
 C ∈ *C* and neighborhood *O_C* ⊂ *X* of *C* there is a set *N* ∈ *N* such that *C* ⊂ *N* ⊂ *O_x*.

Definition

A regular topological space X is called

- *cosmic* if X has a countable network;
- a σ -space if X has a σ -discrete network;
- a Σ-space if X has a σ-discrete C-network for some family C of closed countably compact subsets of X.

Σ -space $\Rightarrow \sigma$ -space $\Rightarrow \cos \mathfrak{mic}$, \mathfrak{s} , \mathfrak

Definition

A family $\mathcal N$ of subsets of a topological space X is called

- a *network* if for each point x ∈ X and neighborhood O_x ⊂ X of x there is a set N ∈ N such that x ∈ N ⊂ O_x;
- a *C*-network for a family *C* of subsets of *X* if for each set $C \in C$ and neighborhood $O_C \subset X$ of *C* there is a set $N \in N$ such that $C \subset N \subset O_X$.

Definition

A regular topological space X is called

- *cosmic* if X has a countable network;
- a σ -space if X has a σ -discrete network;
- a Σ-space if X has a σ-discrete C-network for some family C of closed countably compact subsets of X.

Σ -space $\Rightarrow \sigma$ -space $\Rightarrow \cos \mathfrak{mic}$, \mathfrak{s} , \mathfrak

Definition

A family $\mathcal N$ of subsets of a topological space X is called

- a *network* if for each point x ∈ X and neighborhood O_x ⊂ X of x there is a set N ∈ N such that x ∈ N ⊂ O_x;
- a *C*-network for a family *C* of subsets of *X* if for each set $C \in C$ and neighborhood $O_C \subset X$ of *C* there is a set $N \in N$ such that $C \subset N \subset O_X$.

Definition

A regular topological space X is called

- *cosmic* if X has a countable network;
- a σ -space if X has a σ -discrete network;
- a Σ-space if X has a σ-discrete C-network for some family C of closed countably compact subsets of X.

T.Banakh

Definition

A family $\mathcal N$ of subsets of a topological space X is called

- a *network* if for each point x ∈ X and neighborhood O_x ⊂ X of x there is a set N ∈ N such that x ∈ N ⊂ O_x;
- a *C*-network for a family *C* of subsets of *X* if for each set $C \in C$ and neighborhood $O_C \subset X$ of *C* there is a set $N \in N$ such that $C \subset N \subset O_X$.

Definition

A regular topological space X is called

- *cosmic* if X has a countable network;
- a σ -space if X has a σ -discrete network;
- a Σ-space if X has a σ-discrete C-network for some family C of closed countably compact subsets of X.

 Σ -space $\Rightarrow \sigma$ -space \Rightarrow cosmic.

Σ -space $\Rightarrow \sigma$ -space \Rightarrow cosmic.

Theorem

An ω^{ω} -based uniform space X is a Σ -space iff X is a σ -space.

Corollary (Cascales-Orihuela)

Each compact ω^{ω} -based uniform space is metrizable.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Σ -space $\Rightarrow \sigma$ -space \Rightarrow cosmic.

Theorem

An ω^{ω} -based uniform space X is a Σ -space iff X is a σ -space.

Corollary (Cascales-Orihuela)

Each compact ω^{ω} -based uniform space is metrizable.

→ <

\aleph_0 -spaces, \aleph -spaces, \mathfrak{P}_0 -spaces, \mathfrak{P}^* -spaces

Definition

A topological space X is called

- an \aleph_0 -space if X has a countable cs^* -network;
- an \aleph -space if X has a σ -discrete cs*-network;
- a \$\mathcal{P}_0\$-space if X has a countable Pytkeev* network;
- a \mathfrak{P}^* -space if X has a σ -discrete Pytkeev* network.



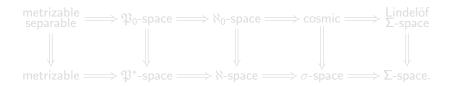
伺 ト く ヨ ト く ヨ ト

\aleph_0 -spaces, \aleph -spaces, \mathfrak{P}_0 -spaces, \mathfrak{P}^* -spaces

Definition

A topological space X is called

- an \aleph_0 -space if X has a countable cs^* -network;
- an \aleph -space if X has a σ -discrete cs^* -network;
- a \mathfrak{P}_0 -space if X has a countable Pytkeev* network;
- a \mathfrak{P}^* -space if X has a σ -discrete Pytkeev* network.

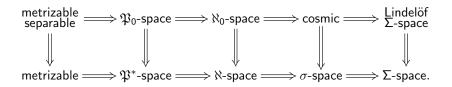


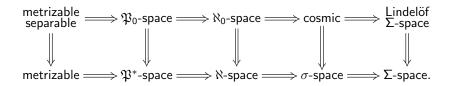
\aleph_0 -spaces, \aleph -spaces, \mathfrak{P}_0 -spaces, \mathfrak{P}^* -spaces

Definition

A topological space X is called

- an \aleph_0 -space if X has a countable cs^* -network;
- an \aleph -space if X has a σ -discrete cs*-network;
- a \mathfrak{P}_0 -space if X has a countable Pytkeev* network;
- a \mathfrak{P}^* -space if X has a σ -discrete Pytkeev* network.





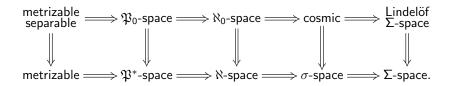
For an ω^{ω} -based uniform space the following equivalences hold:

1
$$\sigma$$
-space $\Leftrightarrow \Sigma$ -space.

2 paracompact \mathfrak{P}^* -space \Leftrightarrow collectionwise normal Σ -space.

Problem

Is each ω^{ω} -based uniform Σ -space a \mathfrak{P}^* -space?



For an ω^{ω} -based uniform space the following equivalences hold:

1
$$\sigma$$
-space $\Leftrightarrow \Sigma$ -space.

2 paracompact \mathfrak{P}^* -space \Leftrightarrow collectionwise normal Σ -space.

Problem

Is each ω^{ω} -based uniform Σ -space a \mathfrak{P}^* -space?

For a uniform space X by $\mathcal{U}(X)$ we denote the universality of X.

Definition

A function $f : X \to Y$ between uniform spaces is called ω -continuous if for every untourage $U \in \mathcal{U}(Y)$ there exists a countable subfamily $\mathcal{V} \subset \mathcal{U}(X)$ such that for every $x \in X$ there exists $V \in \mathcal{V}$ with $f(V[x]) \subset U[f(x)]$. Here $V[x] = \{y \in X : (x, y) \in V\}$ is the V-ball centered at x.

For a uniform space X let $C_{\omega}(X)$ and $C_u(X)$ be the spaces of all ω -continuous and uniformly continuous real-valued functions on X, respectively.

It is clear that $C_u(X) \subset C_\omega(X) \subset C(X) \subset \mathbb{R}^X$.

For a uniform space X by $\mathcal{U}(X)$ we denote the universality of X.

Definition

A function $f : X \to Y$ between uniform spaces is called ω -continuous if for every untourage $U \in \mathcal{U}(Y)$ there exists a countable subfamily $\mathcal{V} \subset \mathcal{U}(X)$ such that for every $x \in X$ there exists $V \in \mathcal{V}$ with $f(V[x]) \subset U[f(x)]$. Here $V[x] = \{y \in X : (x, y) \in V\}$ is the V-ball centered at x.

For a uniform space X let $C_{\omega}(X)$ and $C_u(X)$ be the spaces of all ω -continuous and uniformly continuous real-valued functions on X, respectively.

It is clear that $C_u(X) \subset C_\omega(X) \subset C(X) \subset \mathbb{R}^X$.

For a uniform space X by $\mathcal{U}(X)$ we denote the universality of X.

Definition

A function $f: X \to Y$ between uniform spaces is called ω -continuous if for every untourage $U \in \mathcal{U}(Y)$ there exists a countable subfamily $\mathcal{V} \subset \mathcal{U}(X)$ such that for every $x \in X$ there exists $V \in \mathcal{V}$ with $f(V[x]) \subset U[f(x)]$. Here $V[x] = \{y \in X : (x, y) \in V\}$ is the V-ball centered at x.

For a uniform space X let $C_{\omega}(X)$ and $C_{u}(X)$ be the spaces of all ω -continuous and uniformly continuous real-valued functions on X, respectively.

It is clear that $C_u(X) \subset C_\omega(X) \subset C(X) \subset \mathbb{R}^X$.

For a uniform space X by $\mathcal{U}(X)$ we denote the universality of X.

Definition

A function $f: X \to Y$ between uniform spaces is called ω -continuous if for every untourage $U \in \mathcal{U}(Y)$ there exists a countable subfamily $\mathcal{V} \subset \mathcal{U}(X)$ such that for every $x \in X$ there exists $V \in \mathcal{V}$ with $f(V[x]) \subset U[f(x)]$. Here $V[x] = \{y \in X : (x, y) \in V\}$ is the V-ball centered at x.

For a uniform space X let $C_{\omega}(X)$ and $C_{u}(X)$ be the spaces of all ω -continuous and uniformly continuous real-valued functions on X, respectively.

It is clear that $C_u(X) \subset C_\omega(X) \subset C(X) \subset \mathbb{R}^X$.

For a uniform space X by $\mathcal{U}(X)$ we denote the universality of X.

Definition

A function $f: X \to Y$ between uniform spaces is called ω -continuous if for every untourage $U \in \mathcal{U}(Y)$ there exists a countable subfamily $\mathcal{V} \subset \mathcal{U}(X)$ such that for every $x \in X$ there exists $V \in \mathcal{V}$ with $f(V[x]) \subset U[f(x)]$. Here $V[x] = \{y \in X : (x, y) \in V\}$ is the V-ball centered at x.

For a uniform space X let $C_{\omega}(X)$ and $C_{u}(X)$ be the spaces of all ω -continuous and uniformly continuous real-valued functions on X, respectively.

It is clear that $C_u(X) \subset C_\omega(X) \subset C(X) \subset \mathbb{R}^X$.

Theorem

For an ω^{ω} -based uniform space X TFAE:

- (1) X contains a dense Σ -subspace with countable extent;
- (2) X is separable;
- (3) X is cosmic;
- (4) X is an \aleph_0 -space;
- (5) X is a \mathfrak{P}_0 -space.

If $C_{\omega}(X) = C_u(X)$, then the conditions (1)–(5) are equivalent to: (6) X is σ -compact.

(7) $C_u(X)$ is cosmic (or analytic);

(8) $C_u(X)$ is K-analytic (or has a compact resolution).

If $\omega_1 < \mathfrak{b}$, then (1)–(5) are equivalent to

(9) X is ω -narrow.

Theorem

For an ω^{ω} -based uniform space X TFAE:

- (1) X contains a dense Σ -subspace with countable extent;
- (2) X is separable;
- (3) X is cosmic;
- (4) X is an \aleph_0 -space;
- (5) X is a \mathfrak{P}_0 -space.

If $C_{\omega}(X) = C_u(X)$, then the conditions (1)–(5) are equivalent to: (6) X is σ -compact.

(7) $C_u(X)$ is cosmic (or analytic);

(8) $C_u(X)$ is K-analytic (or has a compact resolution).

If $\omega_1 < \mathfrak{b}$, then (1)–(5) are equivalent to

(9) X is ω -narrow.

Theorem

For an ω^{ω} -based uniform space X TFAE:

- (1) X contains a dense Σ -subspace with countable extent;
- (2) X is separable;
- (3) X is cosmic;
- (4) X is an \aleph_0 -space;
- (5) X is a \mathfrak{P}_0 -space.
- If $C_{\omega}(X) = C_u(X)$, then the conditions (1)–(5) are equivalent to:
- (6) X is σ -compact.
- (7) $C_u(X)$ is cosmic (or analytic);
- (8) $C_u(X)$ is K-analytic (or has a compact resolution).

If $\omega_1 < \mathfrak{b}$, then (1)–(5) are equivalent to

(9) X is ω -narrow.

Theorem

For an ω^{ω} -based uniform space X TFAE:

- (1) X contains a dense Σ -subspace with countable extent;
- (2) X is separable;
- (3) X is cosmic;
- (4) X is an \aleph_0 -space;
- (5) X is a \mathfrak{P}_0 -space.

If $C_{\omega}(X) = C_u(X)$, then the conditions (1)–(5) are equivalent to: (6) X is σ -compact.

- (7) $C_u(X)$ is cosmic (or analytic);
- (8) $C_u(X)$ is K-analytic (or has a compact resolution).

If $\omega_1 < \mathfrak{b}$, then (1)–(5) are equivalent to

(9) X is ω -narrow.

Theorem

For an ω^{ω} -based uniform space X TFAE:

- (1) X contains a dense Σ -subspace with countable extent;
- (2) X is separable;
- (3) X is cosmic;
- (4) X is an \aleph_0 -space;
- (5) X is a \mathfrak{P}_0 -space.

If $C_{\omega}(X) = C_u(X)$, then the conditions (1)–(5) are equivalent to: (6) X is σ -compact.

- (7) $C_u(X)$ is cosmic (or analytic);
- (8) $C_u(X)$ is K-analytic (or has a compact resolution).

If $\omega_1 < \mathfrak{b}$, then (1)–(5) are equivalent to

(9) X is ω -narrow.

A uniform space is ω -narrow if $width(X) \leq \omega_1$, where

- width(X) = min{ $\kappa : \forall U \in \mathcal{U}(X) \exists C \in [X]^{<\kappa} X = U[C]$ };
- depth(X) = min{ $|\mathcal{V}| : \mathcal{V} \subset \mathcal{U}(X) \cap \mathcal{V} \notin \mathcal{U}(X)$ }.

If $\Delta_X \in \mathcal{U}(X)$, then the cardinal depth(X) is not defined. In this case we put depth(X) = ∞ and assume that $\infty > \kappa$ for any cardinal κ . A uniform space is ω -narrow if $width(X) \leq \omega_1$, where

- width(X) = min{ $\kappa : \forall U \in \mathcal{U}(X) \exists C \in [X]^{<\kappa} X = U[C]$ };
- depth(X) = min{ $|\mathcal{V}| : \mathcal{V} \subset \mathcal{U}(X) \cap \mathcal{V} \notin \mathcal{U}(X)$ }.

If $\Delta_X \in \mathcal{U}(X)$, then the cardinal depth(X) is not defined. In this case we put depth(X) = ∞ and assume that $\infty > \kappa$ for any cardinal κ .

Local ω^{ω} -base in free objects of Topological Algebra

Theorem

For a uniform space X consider the following statements:

- (A) The free Abelian topological group of X has a local ω^{ω} -base.
- (B) The free Boolean topological group of X has a local ω^{ω} -base.
- (F) The free topological group of X has a local ω^{ω} -base.
- (L) The free locally convex space of X has a local ω^{ω} -base.
- (V) The free topological vector space of X has a local ω^ω -base.
- (\mathcal{U}) The uniformity of X has an ω^{ω} -base.
- (σ) The space X is σ -compact.
- (Σ) X is discrete or σ -compact or width(X) \leq depth(X).
- If $C_{\omega}(X) = C_u(X)$, then

Local ω^{ω} -base in free objects of Topological Algebra

Theorem

For a uniform space X consider the following statements:

- (A) The free Abelian topological group of X has a local ω^{ω} -base.
- (B) The free Boolean topological group of X has a local ω^{ω} -base.
 - (F) The free topological group of X has a local ω^{ω} -base.
- (L) The free locally convex space of X has a local ω^{ω} -base.
- (V) The free topological vector space of X has a local ω^ω -base.
- (\mathcal{U}) The uniformity of X has an ω^{ω} -base.
- (σ) The space X is σ -compact.
- (Σ) X is discrete or σ -compact or width(X) \leq depth(X).
- If $C_{\omega}(X) = C_u(X)$, then

For a uniform space X consider the following statements:

- (A) The free Abelian topological group of X has a local ω^{ω} -base.
- (B) The free Boolean topological group of X has a local ω^{ω} -base.
- (F) The free topological group of X has a local ω^{ω} -base.
- (L) The free locally convex space of X has a local ω^{ω} -base.
- $({f V})~$ The free topological vector space of X has a local ω^ω -base.
- (\mathcal{U}) The uniformity of X has an ω^{ω} -base.
- (σ) The space X is σ -compact.
- (Σ) X is discrete or σ -compact or width(X) \leq depth(X).
- If $C_{\omega}(X) = C_u(X)$, then

For a uniform space X consider the following statements:

- (A) The free Abelian topological group of X has a local ω^{ω} -base.
- (B) The free Boolean topological group of X has a local ω^{ω} -base.
- (F) The free topological group of X has a local ω^{ω} -base.
- (L) The free locally convex space of X has a local ω^{ω} -base.
- (f V)~ The free topological vector space of X has a local ω^ω -base.
- (\mathcal{U}) The uniformity of X has an ω^{ω} -base.
- (σ) The space X is σ -compact.
- (Σ) X is discrete or σ -compact or width(X) \leq depth(X).
- If $C_{\omega}(X) = C_u(X)$, then

For a uniform space X consider the following statements:

- (A) The free Abelian topological group of X has a local ω^{ω} -base.
- (B) The free Boolean topological group of X has a local ω^{ω} -base.
- (F) The free topological group of X has a local ω^{ω} -base.
- (L) The free locally convex space of X has a local ω^{ω} -base.
- (V) The free topological vector space of X has a local ω^{ω} -base.
- (\mathcal{U}) The uniformity of X has an ω^{ω} -base.
- (σ) The space X is σ -compact.
- (Σ) X is discrete or σ -compact or width $(X) \leq depth(X)$.
- If $C_{\omega}(X) = C_u(X)$, then

 $(L) \Leftrightarrow (V) \Leftrightarrow (\mathcal{U}+\sigma) \Rightarrow (\mathcal{U}+\Sigma) \Rightarrow (F) \Rightarrow (A) \Leftrightarrow (B) \Leftrightarrow (\mathcal{U}).$ If $C_u(X) = C(X)$, then $(\mathcal{U}+\Sigma) \Leftrightarrow (F)$ iff $\mathfrak{e}^{\sharp} = \omega_1$ if $\mathfrak{b} = \mathfrak{d}$.

For a uniform space X consider the following statements:

- (A) The free Abelian topological group of X has a local ω^{ω} -base.
- (B) The free Boolean topological group of X has a local ω^{ω} -base.
- (F) The free topological group of X has a local ω^{ω} -base.
- (L) The free locally convex space of X has a local ω^{ω} -base.
- (V) The free topological vector space of X has a local ω^{ω} -base.
- (\mathcal{U}) The uniformity of X has an ω^{ω} -base.
- (σ) The space X is σ -compact.
- (Σ) X is discrete or σ -compact or width(X) \leq depth(X).
- If $C_{\omega}(X) = C_u(X)$, then

 $(L) \Leftrightarrow (V) \Leftrightarrow (\mathcal{U}+\sigma) \Rightarrow (\mathcal{U}+\Sigma) \Rightarrow (F) \Rightarrow (A) \Leftrightarrow (B) \Leftrightarrow (\mathcal{U}).$ If $C_u(X) = C(X)$, then $(\mathcal{U}+\Sigma) \Leftrightarrow (F)$ iff $\mathfrak{e}^{\sharp} = \omega_1$ if $\mathfrak{b} = \mathfrak{d}$.

For a uniform space X consider the following statements:

- (A) The free Abelian topological group of X has a local ω^{ω} -base.
- (B) The free Boolean topological group of X has a local ω^{ω} -base.
- (F) The free topological group of X has a local ω^{ω} -base.
- (L) The free locally convex space of X has a local ω^{ω} -base.
- (V) The free topological vector space of X has a local ω^{ω} -base.
- (U) The uniformity of X has an ω^{ω} -base.
- (σ) The space X is σ -compact.
- (Σ) X is discrete or σ -compact or width(X) \leq depth(X).
- If $C_{\omega}(X) = C_u(X)$, then

 $(L) \Leftrightarrow (V) \Leftrightarrow (\mathcal{U}+\sigma) \Rightarrow (\mathcal{U}+\Sigma) \Rightarrow (F) \Rightarrow (A) \Leftrightarrow (B) \Leftrightarrow (\mathcal{U}).$ If $C_u(X) = C(X)$, then $(\mathcal{U}+\Sigma) \Leftrightarrow (F)$ iff $\mathfrak{e}^{\sharp} = \omega_1$ if $\mathfrak{b} = \mathfrak{d}$.

For a uniform space X consider the following statements:

- (A) The free Abelian topological group of X has a local ω^{ω} -base.
- (B) The free Boolean topological group of X has a local ω^{ω} -base.
- (F) The free topological group of X has a local ω^{ω} -base.
- (L) The free locally convex space of X has a local ω^{ω} -base.
- (V) The free topological vector space of X has a local ω^{ω} -base.
- (\mathcal{U}) The uniformity of X has an ω^{ω} -base.
- (σ) The space X is σ -compact.
- (Σ) X is discrete or σ -compact or width(X) \leq depth(X).
- If $C_{\omega}(X) = C_u(X)$, then

 $(L) \Leftrightarrow (V) \Leftrightarrow (\mathcal{U}+\sigma) \Rightarrow (\mathcal{U}+\Sigma) \Rightarrow (F) \Rightarrow (A) \Leftrightarrow (B) \Leftrightarrow (\mathcal{U}).$ If $C_u(X) = C(X)$, then $(\mathcal{U}+\Sigma) \Leftrightarrow (F)$ iff $\mathfrak{e}^{\sharp} = \omega_1$ if $\mathfrak{b} = \mathfrak{d}$.

For a uniform space X consider the following statements:

- (A) The free Abelian topological group of X has a local ω^{ω} -base.
- (B) The free Boolean topological group of X has a local ω^{ω} -base.
- (F) The free topological group of X has a local ω^{ω} -base.
- (L) The free locally convex space of X has a local ω^{ω} -base.
- (V) The free topological vector space of X has a local ω^{ω} -base.
- (U) The uniformity of X has an ω^{ω} -base.
- (σ) The space X is σ -compact.
- (Σ) X is discrete or σ -compact or width(X) \leq depth(X).
- If $C_{\omega}(X) = C_u(X)$, then

 $(L) \Leftrightarrow (V) \Leftrightarrow (\mathcal{U}+\sigma) \Rightarrow (\mathcal{U}+\Sigma) \Rightarrow (F) \Rightarrow (A) \Leftrightarrow (B) \Leftrightarrow (\mathcal{U}).$

If $C_u(X) = C(X)$, then $(\mathcal{U}+\Sigma) \Leftrightarrow (F)$ iff $\mathfrak{e}^{\sharp} = \omega_1$ if $\mathfrak{b} = \mathfrak{d}$.

For a uniform space X consider the following statements:

- (A) The free Abelian topological group of X has a local ω^{ω} -base.
- (B) The free Boolean topological group of X has a local ω^{ω} -base.
- (F) The free topological group of X has a local ω^{ω} -base.
- (L) The free locally convex space of X has a local ω^{ω} -base.
- (V) The free topological vector space of X has a local ω^{ω} -base.
- (U) The uniformity of X has an ω^{ω} -base.
- (σ) The space X is σ -compact.
- (Σ) X is discrete or σ -compact or width(X) \leq depth(X).
- If $C_{\omega}(X) = C_u(X)$, then

$$\mathfrak{e}^{\sharp} = \sup\{\kappa^{+}: \omega \leq \kappa = \mathsf{cf}(\kappa), \ \kappa^{\kappa} \leq_{\mathcal{T}} \omega^{\omega}\}$$

Theorem

$$\mathfrak{e}^{\sharp} \in \{\omega_1\} \cup (\mathfrak{b}, \mathfrak{d}]$$
. So, $\mathfrak{b} = \mathfrak{d}$ implies $\mathfrak{e}^{\sharp} = \omega_1$.

Theorem (B., Zdomskyy)

$${ extbf{0}}$$
 lt is consistent that $\mathfrak{b} < \mathfrak{d}$ and $\mathfrak{e}^\sharp = \omega_1.$

2) It is consistent that
$$\mathfrak{e}^{\sharp} > \omega_1$$
.

Problem

Is e[#] equal to any known cardinal characteristic of the continuum?

< □ > < □ > < □ > < □ > < □ > < □

$$\mathfrak{e}^{\sharp} = \sup\{\kappa^{+}: \omega \leq \kappa = \mathsf{cf}(\kappa), \ \kappa^{\kappa} \leq_{\mathcal{T}} \omega^{\omega}\}$$

Theorem

$$\mathfrak{e}^{\sharp} \in \{\omega_1\} \cup (\mathfrak{b}, \mathfrak{d}].$$
 So, $\mathfrak{b} = \mathfrak{d}$ implies $\mathfrak{e}^{\sharp} = \omega_1$.

Theorem (B., Zdomskyy)

$${ extbf{0}}$$
 lt is consistent that $\mathfrak{b}<\mathfrak{d}$ and $\mathfrak{e}^\sharp=\omega_1.$

2) It is consistent that
$$\mathfrak{e}^{\sharp} > \omega_1$$
.

Problem

Is e[#] equal to any known cardinal characteristic of the continuum?

▲□ ► < □ ► </p>

$$\mathfrak{e}^{\sharp} = \sup\{\kappa^{+} : \omega \leq \kappa = \mathsf{cf}(\kappa), \ \kappa^{\kappa} \leq_{\mathsf{T}} \omega^{\omega}\}$$

Theorem

$$\mathfrak{e}^{\sharp} \in \{\omega_1\} \cup (\mathfrak{b}, \mathfrak{d}]$$
. So, $\mathfrak{b} = \mathfrak{d}$ implies $\mathfrak{e}^{\sharp} = \omega_1$.

Theorem (B., Zdomskyy)

$${ extbf{0}}$$
 lt is consistent that $\mathfrak{b} < \mathfrak{d}$ and $\mathfrak{e}^\sharp = \omega_1.$

2) It is consistent that
$$\mathfrak{e}^\sharp > \omega_1.$$

Problem

Is e[#] equal to any known cardinal characteristic of the continuum?

- 4 同 2 4 三 2 4 4

$$\mathfrak{e}^{\sharp} = \sup\{\kappa^{+} : \omega \leq \kappa = \mathsf{cf}(\kappa), \ \kappa^{\kappa} \leq_{\mathsf{T}} \omega^{\omega}\}$$

Theorem

$$\mathfrak{e}^{\sharp} \in \{\omega_1\} \cup (\mathfrak{b}, \mathfrak{d}]$$
. So, $\mathfrak{b} = \mathfrak{d}$ implies $\mathfrak{e}^{\sharp} = \omega_1$.

Theorem (B., Zdomskyy)

) It is consistent that
$$\mathfrak{b} < \mathfrak{d}$$
 and $\mathfrak{e}^{\sharp} = \omega_1$.

2) It is consistent that
$$\mathfrak{e}^{\sharp} > \omega_1$$
.

Problem

Is e[#] equal to any known cardinal characteristic of the continuum?

- **→** → **→**

$$\mathfrak{e}^{\sharp} = \sup\{\kappa^{+}: \omega \leq \kappa = \mathsf{cf}(\kappa), \ \kappa^{\kappa} \leq_{\mathsf{T}} \omega^{\omega}\}$$

Theorem

$$\mathfrak{e}^{\sharp} \in \{\omega_1\} \cup (\mathfrak{b}, \mathfrak{d}]$$
. So, $\mathfrak{b} = \mathfrak{d}$ implies $\mathfrak{e}^{\sharp} = \omega_1$.

Theorem (B., Zdomskyy)

- It is consistent that $\mathfrak{b} < \mathfrak{d}$ and $\mathfrak{e}^{\sharp} = \omega_1$.
- 2 It is consistent that $\mathfrak{e}^{\sharp} > \omega_1$.

Problem

Is e[#] equal to any known cardinal characteristic of the continuum?

$$\mathfrak{e}^{\sharp} = \sup\{\kappa^{+} : \omega \leq \kappa = \mathsf{cf}(\kappa), \ \kappa^{\kappa} \leq_{\mathsf{T}} \omega^{\omega}\}$$

Theorem

$$\mathfrak{e}^{\sharp} \in \{\omega_1\} \cup (\mathfrak{b}, \mathfrak{d}]$$
. So, $\mathfrak{b} = \mathfrak{d}$ implies $\mathfrak{e}^{\sharp} = \omega_1$.

Theorem (B., Zdomskyy)

$${f 0}$$
 It is consistent that ${f b}<{f d}$ and ${f e}^{\sharp}=\omega_1$.

2) It is consistent that
$$\mathfrak{e}^{\sharp} > \omega_1$$
.

Problem

Is e[#] equal to any known cardinal characteristic of the continuum?

- ₹ 🖬 🕨

- T. Banakh, Topological spaces with a local -base have the strong Pytkeev property, preprint (http://arxiv.org/abs/1607.03599).
- T. Banakh, ω^{ω} -bases in topological and uniform spaces, preprint (http://arxiv.org/abs/1607.07978).
- T. Banakh, A. Leiderman, &-bases in free (locally convex) topological vector spaces, preprint (https://arxiv.org/abs/1606.01967).
- T. Banakh, A. Leiderman, Local ω^{ω} -bases in free topological (Abelian) groups, in preparation.

T.Banakh