Maximal Homogeneous Spaces

Evgenii Reznichenko¹

erezn@inbox.ru

We say that a space *X* is *maximal homogeneous* if *X* is a maximal homogeneous subspace of βX containing *X*. For any homogeneous space *X*, there exists a unique maximal homogeneous space $H(X) \subset \beta X$ for which $X \subset H(X) \subset \beta X$. For example, any first countable homogeneous space is maximal homogeneous. Let *p* be a free ultrafilter on ω . We say that a space *X* totally countably *p*-compact if, for any infinite $M \subset X$, there exists an infinite $L \subset M$ such that any sequence $(x_n)_{n \in \omega} \subset L$ ($x_i \neq x_j$ for $i \neq j$) has a *p*-limit in *X*. Any totally countably compact space) is totally countably *p*-compact for any $p \in \omega^* = \beta \omega \setminus \omega$. Clearly, any totally countably *p*-compact space is contable compact.

- **Theorem** If $p \in \omega^*$ and X is totally countably p-compact space, then X^{ω} is totally countably p-compact and, hence, countably compact.
- **Theorem** Let *X* be a maximal homogeneous extremally disconnected space. If *X* contains a nonclosed dicrete sequence of points, then *X* is totally countably *p*-compact for some $p \in \omega^*$.

Note that all known examples of homogeneous extremally disconnected countably compact spaces are maximally homogeneous.

Copyright © Reznichenko

¹ Supported by the RFBR, project no. 15-01-05369

