On the center of distances

Wojciech Bielas, Szymon Plewik*, Marta Walczyńska ${ }^{1}$

wojciech.bielas@us.edu.pl, plewik@math.us.edu.pl, marta.walczynska@us.edu.pl

Given a metric space X with the distance d, then the set

$$
S(X)=\left\{\alpha: \forall_{x \in X} \exists_{y \in X} d(x, y)=\alpha\right\}
$$

is called the center of distances of X. This notion occurs naturally in the following generalization of the theorem by J. von Neumann: Suppose that sequences $\left\{a_{n}\right\}_{n \in \omega}$ and $\left\{b_{n}\right\}_{n \in \omega}$ have the same set of cluster points $C \subseteq X$, where (X, d) is a compact metric space. If $\alpha \in S(C)$, then there exists a permutation $\pi: \omega \rightarrow \omega$ such that $\lim _{n \rightarrow+\infty} d\left(a_{n}, b_{\pi(n)}\right)=\alpha$. Also, it is used to study sets of subsums of some sequences of positive reals, as well to some impossibility proofs. We compute the center of distances of the Cantorval \mathbb{X}, which is the set of subsums of the sequence $\frac{3}{4}, \frac{1}{2}, \ldots, \frac{3}{4^{n}}, \frac{2}{4^{n}}, \ldots$, and also for some related subsets of the reals. Some of our results are: If $q>2$ and $a \geqslant 0$, then the center of distances of the set of subsums of a geometric sequence $\left\{\frac{a}{q^{n}}\right\}_{n \geqslant 1}$ consists of the terms $0, \frac{a}{q}, \frac{a}{q^{2}}, \ldots ;$ The center of distances of the Cantorval \mathbb{X} consists of the terms $0, \frac{3}{4}, \frac{1}{2}, \ldots, \frac{3}{4^{n}}, \frac{2}{4^{n}}, \ldots$; The center of distances of the set $\left[0, \frac{5}{3}\right] \backslash$ Int \mathbb{X} is trivial, since it consists of only Zero; Neither $\left[0, \frac{5}{3}\right] \backslash$ Int \mathbb{X} nor $\mathbb{X} \backslash$ Int \mathbb{X} is the set of subsums of a sequence; The center of distances of the set $\mathbb{X} \backslash$ Int \mathbb{X} consists of the terms $0, \frac{1}{4}, \frac{1}{16}, \ldots, \frac{1}{4^{n}}, \ldots ;$ Let $A \subset\left\{\frac{2}{4^{n}}: n>\right.$ $0\} \cup\left\{\frac{3}{4^{n}}: n>0\right\}=B$ be such that $B \backslash A$ and A are infinite. Then the set of subsums of a sequence consisting of different elements of A is homeomorphic to the Cantor set. Copyright © Plewik

[^0]
[^0]: ${ }^{1}$ Second and third authors acknowledge support from GAČR project 16-34860L and RVO: 67985840

