On group-valued continuous functions: *k*-groups and reflexivity

Gábor Lukács

lukacs@topgroups.ca

This talk concerns two results about C(X, A), the set of continuous maps on a space X with values in a topological group A, equipped with pointwise operations and the compact-open topology.

Definition. A topological group *G* is a *k*-group if every group homomorphism $\varphi : G \to H$ into a topological group *H* such that $\varphi_{|K}$ is continuous for every compact subset *K* of *G* is actually continuous.

Definition. For an Abelian topological group *G*, let \hat{G} denote the group of all continuous characters of *G*, and equip \hat{G} with the compact-open topology. The group *G* is *reflexive* if the evaluation map $\alpha_G : G \to \hat{G}$ is a topological isomorphism.

Theorem If X is a compact Hausdorff space such that $C(X, \mathbb{R}/\mathbb{Z})$ is divisible and A is a locally compact Abelian group, then:

- 1. C(X, A) is a k-group; and
- 2. C(X, A) is reflexive.

Copyright © Lukacs

