ල-bases in free objects over uniform spaces

Taras Banakh, Arkady Leiderman*

t.o.banakh@gmail.com, arkady@math.bgu.ac.il

Denote by ω^{ω} the set of natural sequences endowed with the partial order: $f \leq g \operatorname{iff} f(n) \leq g(n)$ for all $n \in \omega$. We say that a uniform space X has a \mathfrak{G} -base if its uniformity $\mathcal{U}(X)$ admits a base of entourages $(U_{\alpha})_{\alpha \in \omega^{\omega}}$ such that $U_{\beta} \subset U_{\alpha}$ for all elements $\alpha \leq \beta$ in ω^{ω} . By $C_u(X)$ we denote the space of all uniformly continuous real-valued functions on X endowed with the pointwise partial order.

Theorem The free locally convex space $L_u(X)$ of a uniform space X has a local \mathfrak{G} -base if and only if the uniformity $\mathcal{U}(X)$ of X has a \mathfrak{G} -base and the poset $C_u(X)$ is ω^{ω} -dominated.

Similar sufficient conditions are found which imply that the free linear topological space $V_u(X)$ of a uniform space *X* has a local \mathfrak{G} -base.

Theorem If the free locally convex space L(X) of a k-space X has a local \mathfrak{G} -base, then the double function space with the compact-open topology $C_k(C_k(X))$ has a local \mathfrak{G} -base, too.

The talk is based on the results of preprints [1], [2], [3].

- [1] A. Leiderman, V. Pestov, and A. Tomita, *On topological groups admitting a base at identity indexed with* ω^{ω} , preprint (2015)
- [2] T. Banakh and A. Leiderman, &-bases in free (locally convex) linear topological spaces, preprint (2016a)
- [3] T. Banakh and A. Leiderman, &*-bases in free (Abelian) topological groups,* preprint (2016b)

Copyright © Leiderman

