Baire one functions depending on finitely many coordinates

Olena Karlova*, Volodymyr Mykhaylyuk

maslenizza.ua@gmail.com, vmykhaylyuk@ukr.net

Let $\left(X_{n}\right)_{n=1}^{\infty}$ be a sequence of topological spaces, $P=\prod_{n=1}^{\infty} X_{n}$ and $a=\left(a_{n}\right)_{n \in \mathbb{N}} \in P$ be a point. For every $n \in \mathbb{N}$ and $x \in P$ we put $p_{n}(x)=\left(x_{1}, \ldots, x_{n}, a_{n+1}, a_{n+2}, \ldots\right)$. We say that a set $A \subseteq P$ depends on finitely many coordinates, if there exists $n \in \mathbb{N}$ such that for all $x \in A$ and $y \in P$ the equality $p_{n}(x)=p_{n}(y)$ implies $y \in A$. A $\operatorname{map} f: X \rightarrow Y$ defined on a subspace $X \subseteq P$ is finitely determined if it depends on finitely many coordinates, i.e., $f(x)=f(y)$ for all $x, y \in X$ with $p_{n}(x)=p_{n}(y)$. We denote by $\mathrm{CF}(X, Y)$ the set of all continuous finitely determined maps between X and Y; we write $\mathrm{CF}(X)$ for $C F(X, \mathbb{R})$.
We answer two questions from [1] and prove, in particular, that every Baire one function on a subspace of a countable perfectly normal product is the pointwise limit of a sequence of continuous functions, each depending on finitely many coordinates. It is proved also that a lower semicontinuous function on a subspace of a countable perfectly normal product is the pointwise limit of an increasing sequence of continuous functions, each depending on finitely many coordinates, if and only if the function has a minorant which depends on finitely many coordinates.
[1] V. Bykov, On Baire class one functions on a product space, Topology and its Applications 199 (2016), no. 1-3, 55-62

