Baire one functions depending on finitely many coordinates

Olena Karlova*, Volodymyr Mykhaylyuk

maslenizza.ua@gmail.com, vmykhaylyuk@ukr.net

Let $(X_n)_{n=1}^{\infty}$ be a sequence of topological spaces, $P = \prod_{n=1}^{\infty} X_n$ and $a = (a_n)_{n \in \mathbb{N}} \in P$ be a point. For every $n \in \mathbb{N}$ and $x \in P$ we put $p_n(x) = (x_1, ..., x_n, a_{n+1}, a_{n+2}, ...)$. We say that a set $A \subseteq P$ depends on finitely many coordinates, if there exists $n \in \mathbb{N}$ such that for all $x \in A$ and $y \in P$ the equality $p_n(x) = p_n(y)$ implies $y \in A$. A map $f : X \to Y$ defined on a subspace $X \subseteq P$ is finitely determined if it depends on finitely many coordinates, i.e., f(x) = f(y) for all $x, y \in X$ with $p_n(x) = p_n(y)$. We denote by CF(X, Y) the set of all continuous finitely determined maps between X and Y; we write CF(X) for $CF(X, \mathbb{R})$.

We answer two questions from [1] and prove, in particular, that every Baire one function on a subspace of a countable perfectly normal product is the pointwise limit of a sequence of continuous functions, each depending on finitely many coordinates. It is proved also that a lower semicontinuous function on a subspace of a countable perfectly normal product is the pointwise limit of an increasing sequence of continuous functions, each depending on finitely many coordinates, if and only if the function has a minorant which depends on finitely many coordinates.

[1] V. Bykov, *On Baire class one functions on a product space*, Topology and its Applications **199** (2016), no. 1-3, 55–62

Copyright © Karlova

