Completeness of products

Szymon Dolecki

dolecki@u-bourgogne.fr

The *completeness number* **compl* (ξ) of a convergence ξ is the least cardinal κ such that there exists a collection \mathbb{P} of cardinality κ of convergence covers such that each \mathbb{P} -fundamental filter is ξ -adherent. A convergence is compact whenever **compl* (ξ) = 0, *locally compactoid* if **compl* (ξ) < \aleph_0 (equivalently, **compl* (ξ) = 1), Čech-complete if ξ (is functionally regular) and **compl* (ξ) $\leq \aleph_0$ (that is, ξ is *countably complete*). Extending a *Frolík theorem* (1960) to convergences, we show that if **compl* ($\Pi \Xi$) < \aleph_0 , then $\Pi \Xi$, = min(1, **card* { ξ : **card* (ξ) > 0}), and, otherwise,

$$*compl(\prod \Xi) = \sum_{\xi \in \Xi} *compl(\xi).$$

In particular, $\prod \Xi$ is compact if and only if ξ is compact for each $\xi \in \Xi$ (the *Tikhonov theorem* for convergence spaces); $\prod \Xi$ is *locally compactoid* if and only if all but finitely many elements of Ξ are compact and the others are locally compactoid; $\prod \Xi$ is *countably complete* if and only if all but countably many elements of Ξ are compact and the others are countably complete.

If \mathbb{H} is a class of filters then the \mathbb{H} -conditional completeness number $* \operatorname{compl}_{\mathbb{H}} (\xi)$ is the least cardinal κ such that there exists a collection \mathbb{P} of cardinality κ of convergence covers such that each \mathbb{P} -fundamental filter from \mathbb{H} is ξ -adherent. In contrast with unconditional completeness. For example, if $\mathbb{H} = \mathbb{F}_1$, then we get a generalization of the *Ox*-toby theorem (1960) that each product of \mathbb{F}_1 -conditionally countably complete.

Copyright © Dolecki

