A cardinality bound for T_2 spaces

Nathan A. Carlson*, Jack R. Porter

ncarlson@callutheran.edu, porter@ku.edu

For a space *X* we introduce the cardinal invariant aL'(X), a weakening of the Lindelöf degree L(X), and establish that $|X| \leq 2^{aL'(X)\chi(X)}$ for any T_2 space *X*. It can be shown that a) $aL'(X) = \aleph_0$ for an H-closed space *X*, and b) $aL(X) \leq aL'(X) \leq aL_c(X) \leq L(X)$ for a general T_2 space *X*. Thus, this result gives a common proof that $|X| \leq 2^{\chi(X)}$ for both the class of Lindelöf spaces (Arhangel'skii) and the class of H-closed spaces ([1]). Recall that a space *X* is H-closed if every open cover of *X* has a finite subfamily with dense union.

A set $A \subseteq X$ is said to be E-closed if its absolute, EA, is equal to A. Then aL'(X) is defined as the least cardinal κ such that for every cover \mathcal{U} of an E-closed set A by sets open in X there exists $\mathcal{U} \in [\mathcal{U}]^{\leq \kappa}$ such that $A \subset \bigcup_{V \in \mathcal{U}} \overline{V}$.

To put the established bound in context by recall that

- 1. $|X| \le 2^{aL_c(X)t(X)\psi_c(X)}$ for a T_2 space X ([2]);
- **2.** $2^{aL(X)\chi(X)}$ is not a bound for the cardinality of all T_2 spaces ([3]);
- 3. $aL_c(X)$ is not necessarily countable for H-closed X, as witnessed by the Katětov extension $\kappa \omega$ of the countable discrete space ω .
- [1] A. Dow and J. Porter *Cardinalities of H-closed spaces*, in *Proceedings of the 1982 Topology Conference* (1982), pp. 27–50.
- [2] A. Bella and F. Cammaroto, On the cardinality of Urysohn spaces, Canad. Math. Bull. 31 (1988), no. 2, 153–158

