ල-Bases in free objects of Topological Algebra

Taras Banakh*, Arkady Leiderman

t.o.banakh@gmail.com, arkady@math.bgu.ac.il

A topological space *X* has a *local* \mathfrak{G} -*base* if every point $x \in X$ has a neighborhood base $(U_{\alpha})_{\alpha \in \omega^{\omega}}$ such that $U_{\beta} \subset U_{\alpha}$ for all $\alpha \leq \beta$ in ω^{ω} .

Theorem For a Tychonoff space X the following conditions are equivalent:

- 1. The free Abelian topological group A(X) of X has a local \mathfrak{G} -base.
- 2. The free Boolean topological group B(X) of X has a local \mathfrak{G} -base.
- 3. The universal uniformity U(X) of X has a \mathfrak{G} -base.

If X *is first-countable and perfectly normal, then* (1)–(3) *are equivalent to:*

4. X is metrizable and has σ -compact set X' of non-isolated points.

Theorem For a Tychonoff space X the following conditions are equivalent:

- 1. The free locally convex space L(X) of X has a local \mathfrak{G} -base.
- 2. The free topological vector space V(X) of X has a local \mathfrak{G} -base.
- 3. The universal uniformity U(X) of X has a \mathfrak{G} -base and the function space C(X) is ω^{ω} -dominated (in \mathbb{R}^X).

The conditions (1)-(3) imply (and if X is not a P-space, are equivalent to): (4) the free topological group F(X) of X has a local \mathfrak{G} -base. If X is first-countable and perfectly normal, then (1)–(3) are equivalent to metrizability and σ -compactness of X.

